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Enzyme-enriched condensates can organize the spatial distribution of their substrates by catalyzing
nonequilibrium reactions. Conversely, an inhomogeneous substrate distribution induces enzyme fluxes
through substrate-enzyme interactions. We find that condensates move toward the center of a confining
domain when this feedback is weak. Above a feedback threshold, they exhibit self-propulsion, leading to
oscillatory dynamics. Moreover, catalysis-driven enzyme fluxes can lead to interrupted coarsening,
resulting in equidistant condensate positioning, and to condensate division.
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Liquid-liquid phase separation in living cells can lead to
the formation of biomolecular condensates that aid intra-
cellular organization [1–7]. These condensates have differ-
ent functions such as compartmentalization of reactions [4],
buffering of molecules [8], and midcell localization during
cell division [9]. However, in a thermal equilibrium system,
the liquids will completely segregate through a coarsening
process (Ostwald ripening) [10–13]. To arrest this process,
the systemmust be brought out of equilibrium by supplying
energy, e.g., via fuel-driven chemical reactions. This has
been shown to lead to “active droplet” systems that exhibit
a wealth of novel phenomena not encountered in thermal
equilibrium [3,6,14].
Previous studies have considered systems with a con-

tinuous turnover of condensate (droplet) material by
chemical reactions [14–24]. The resulting material fluxes
lead to multidroplet coexistence [18,19,22–24] and droplet
division [21]. Here, we study a different class of systems
where conserved enzymes spontaneously phase separate, or
localize to an existing condensate [25]. These enzymes then
regulate reactions among other molecules by transiently
binding substrate and catalyzing its conversion into product
via a lower activation barrier. For example, in the bacterium
Myxococcus xanthus, a PomXY cluster (moving on the
nucleoid) regulates the cycling of PomZ between two
conformations [9,31–33]. We show that such substrate
turnover and the resulting enzyme fluxes lead to condensate
self-propulsion, positioning, interrupted coarsening, and
condensate division. Interestingly, previous studies have

shown that liquid droplets can self-propel on a surface
through active stresses [34–39], altering their wetting proper-
ties [40,41], or in viscous fluids through Marangoni flows
[42]. In contrast, in our case, condensate motion is driven by
the bulk interactions between the various chemical species
and does not require surfaces or hydrodynamic coupling.
While condensates might consist of several components,

here we focus on the enzyme concentration cðx; tÞ. To
describe the dynamics of liquid-liquid phase separation, we
take the Cahn-Hilliard equation as a starting point with the
following chemical potential [43]: μ0ðcÞ ¼ −rðc − c̃Þ þ
uðc − c̃Þ3 − κ∇2c. This chemical potential μ0ðcÞ ¼
δF ½c�=δc corresponds to the Ginzburg-Landau free energy
functional F ½c� for a symmetric binary mixture with the
critical density c̃ and phenomenological parameters r, u,
and κ; in particular, the control parameter r measures the
distance from the critical point [13]. The enzymes interact
with substrates and products, which are present at concen-
trations sðx; tÞ and pðx; tÞ. These couplings, quantified by
the Flory-Huggins (FH) parameters χs and χp, modify the
local chemical potential of enzymes. Assuming that
the particle currents are proportional to gradients in the
chemical potential [44,45], the enzyme dynamics is
given by

∂tcðx; tÞ ¼ ∇ · ½Mc∇ðμ0ðcÞ þ χssþ χppÞ�; ð1Þ

where M denotes a mobility and the term in the square
brackets is the enzyme flux jðx; tÞ. This “gradient dynam-
ics” leads to a gradual minimization of the free energy
functional from which it is derived [25], a hallmark of
systems close to thermal equilibrium. Analogously, the
thermodynamic fluxes of substrates and products can be
derived from the same free energy functional [25].
Active systems, however, exhibit processes that break

detailed balance in protein reaction networks [46,47].
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For example, in the conversion of nucleoside triphospha-
tases (NTPases) between an NDP-bound (“product”) and a
less stable NTP-bound (“substrate”) state, abundance of
NTP (nucleoside triphosphate, “fuel”) in solution may shift
the equilibrium toward the latter [48] and replenish sub-
strate with the net rate k2p. Transient binding of an enzyme
(NTPase-activating protein) to substrate can, by lowering
the activation barrier of hydrolysis, kinetically select the
fuel-independent reaction pathway and replenish product
with the net rate k1cs, which follows from the law of mass
action. We assume that these separate reaction pathways are
far from their respective equilibria, so that we can disregard
thermodynamic constraints [44,49] and treat the rate
constants k1;2 as independent parameters [25]. Hence,
we write for the dynamics of the substrate and the product:

∂ts ¼ ∇ · ðD∇sþ Λsχs∇cÞ − k1csþ k2p; ð2aÞ

∂tp ¼ ∇ · ðD∇pþ Λpχp∇cÞ þ k1cs − k2p: ð2bÞ

Catalytic substrate turnover is preceded by enzyme bind-
ing, suggesting effective pairwise attraction, χs < 0.
Converting substrate into product reduces its affinity for
the enzymes, χs < χp, leading to unbinding. Note that in
Eq. (2) we have taken the liberty of formally decoupling the
diffusion coefficient D from the mobility Λ, thus introduc-
ing a further source of far from equilibrium dynamics by
breaking the fluctuation-dissipation relation valid for ther-
mal equilibrium systems. In the present context, this is the
Einstein-Smoluchowsky relation D ¼ ΛkBT [50]. With the
aim of simplifying the analysis, in the present work we
consider Λ ¼ 0, an approximation that is valid for weak FH
parameters χs;p and will be addressed elsewhere [51].
For our initial exploration of the dynamics, we consider

a finite-sized domain ½−L; L� in a one-dimensional (1D)
geometry with no-flux boundary conditions at x ¼ �L. A
droplet then corresponds to a plateau with a high enzyme
concentration, surrounded by an enzyme-poor phase
(Fig. 1). If the width of the interface between these phases,
w ¼ ffiffiffiffiffiffiffiffiffiffi

2κ=r
p

, is much smaller than all other length scales,
one can use a sharp interface approximation with piecewise
constant concentration c. For our analysis, we consider
weak interactions, jχssj þ jχppj ≪ rðcþ − c−Þ, and there-
fore approximate the enzyme concentrations in the two
phases by their equilibrium values, c� ¼ c̃� ffiffiffiffiffiffiffiffi

r=u
p

.
First, consider a stationary droplet, where a closed

analytic solution of Eqs. (1) and (2) can be obtained [25].
The stationary state is maintained by a balance of reactive
and diffusive fluxes (Fig. 1). In the droplet, the enzymes
catalyze the conversion of substrate to product, consuming
the former and accumulating the latter. Diffusive fluxes
in turn replenish substrate in the droplet while expelling
product, resulting in concentration gradients over the
characteristic diffusion lengths l� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D=ðk1c� þ k2Þ
p

inside and outside the droplet, respectively. This leads to
cyclic diffusive and reactive fluxes such that time-reversal
symmetry is broken and one has a reaction-driven non-
equilibrium steady state.
If there is an appreciable difference in substrate or

product concentration between the two droplet interfaces
(henceforth referred to as “imbalance”), this generally
results in a chemical potential gradient that can drive
droplet motion through a net flux of enzymes [Eq. (1)].
Indeed, using finite element (FEM) simulations of Eqs. (1)
and (2), we find a broad parameter regime with ballistic
droplet motion [Fig. 2(c), Video 1]. To analytically deter-
mine the conditions for the onset of this self-propulsion
instability, we next study the sharp-interface limit of a
single 1D droplet in an infinite domain.
Similar to the analysis of Fisher waves [52], we solve

Eq. (2) in the reference frame of a moving droplet to obtain
the concentration profiles of substrates and products, and
then use Eq. (1) to derive a self-consistency relation for
the droplet velocity v. Specifically, the continuity equation,
Eq. (1), implies that the moving steady-state enzyme
profile, cðzÞ with z ≔ x − vt and constant velocity v,
can only be maintained if ∂zjðzÞ ¼ v∂zcðzÞ holds at all
times. The local flux of enzymes is therefore given by
jðzÞ ¼ v½cðzÞ − c−�, and vanishes in the far field where all
concentrations become homogeneous [25]. The concen-
tration of enzymes in the droplet is enriched by Δc ¼
cþ − c− with respect to the far-field value cð�∞Þ ¼ c−.
While the enzyme flux is driven by the local chemical
potential and concentration gradients [Eq. (1)], integrating
the flux over the droplet domain ½−R;R� yields an expres-
sion that depends only on the values at the droplet
boundaries. In the sharp-interface limit, the μ0 term

FIG. 1. Steady-state concentration profiles for a 1D droplet
with no-flux boundary conditions at x ¼ �L. Arrows indicate
reactive (vertical) and diffusive (horizontal) fluxes. The analytical
solutions in the sharp interface approximation (lines) match our
simulations (dots). We use cþ as reference concentration and
define the characteristic time τ0 ≔ k−12 , diffusion length in the
absence of enzymes l0 ≔

ffiffiffiffiffiffiffiffiffiffiffi

D=k2
p

, and reference energy
ϵ0 ≔ rcþ. The remaining parameters, c− ¼ 0.1cþ, w ¼ 0.1l0,
R ¼ l0, L ¼ 5l0, M ¼ 100D=ϵ0, k1 ¼ k2=cþ, χs ¼ −0.05r,
χp ¼ −0.01r, and sþ p ¼ cþ, are fixed for all figures unless
stated otherwise.
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becomes mirror-symmetric relative to the droplet center
and hence does not contribute to the self-consistency
relation for the droplet velocity:

2RΔcv ¼ −Mcþ½χsΔsðvÞ þ χpΔpðvÞ�: ð3Þ

Here, ΔsðvÞ ¼ sðRÞ − sð−RÞ is the substrate concentration
imbalance between the two opposite sides of the droplet,
with an analogous expression ΔpðvÞ for the product. This
result quantifies how asymmetric substrate and product
concentration profiles drive droplet motion.
Using the closed analytic expressions for the substrate

concentration profiles [25], shown in Fig. 2(a), one can
graphically solve the self-consistency relation, Eq. (3), for
the droplet velocity v [Fig. 2(b)]. Specifically, for Λ ¼ 0,
where the total concentration of substrates and products is
constant [Eq. (2)], the right-hand side of Eq. (3) simplifies
to Mcþðχp − χsÞΔsðvÞ. Based on the graphical form of
ΔsðvÞ, a nonvanishing solution to the self-consistency
relation for the velocity v exists if [Fig. 2(b)]:

∂

∂v
ΔsðvÞjv¼0 >

2RΔc
Mcþðχp − χsÞ

: ð4Þ

Thus, traveling wave solutions emerge if, for example, the
mobility M or the difference between the FH parameters
χp − χs are sufficiently large. Then, enzymes are pulled

more toward substrates than products, so that enzymatic
substrate depletion can induce a chemophoretic effect. This
theoretical analysis quantitatively explains the onset of the
self-propulsion instability that we observed in our simu-
lations; see Fig. 2(c) for a comparison.
Droplet movement is driven by asymmetries in the con-

centration profiles of substrates and products. Droplets
induce such asymmetries autonomously during self-
propulsion but also near impermeable domain boundaries.
Figure 3(a) and Video 2 show the results of FEM
simulations in a closed domain for four characteristic
values of the mobility M. Below the self-propulsion
threshold M�, the droplet exhibits an overdamped relaxa-
tion toward the domain center (red), where the concen-
tration profiles become symmetric. Thus, the impermeable
domain boundaries effectively repel the droplet, due to
substrate depletion and product enrichment within a
range l−. When increasing M�, there is a transition from
overdamped to underdamped oscillatory relaxation (blue),
where the relaxation rate λ has a maximum at critical
damping [Fig. 3(b)], similar to a damped harmonic
oscillator. Above the self-propulsion threshold M�,
droplets autonomously accelerate to a terminal velocity
v [Fig. 2(c)]. Instead of droplet self-centering, one
then observes oscillations (green) with frequency ω≈
v=ðL − l−Þ, where the domain boundaries cause droplets
to slow down and reverse. Droplets with strong self-
propulsion (purple) can overcome this repulsion and attach
to the boundary.
To elucidate how droplet self-centering depends on the

reaction rates, we analyzed the overdamped regime, in

FIG. 2. Self-propulsion instability. (a) Analytical profiles for a
droplet moving with velocity v ¼ 2l0=τ0. Lighter colors indicate
earlier times. (b) Graphical analysis of the self-consistency
relation, Eq. (3), for Mϵ0=D ¼ 1000. The solid curve indicates
the substrate imbalance ΔsðvÞ, while the slope of the dashed line
corresponds to the right-hand side of inequality, Eq. (4).
Stationary droplets correspond to unstable solutions (empty
circle), while self-propelling droplets are stable (filled circles).
(c) Theoretical prediction and simulation results for the self-
propulsion velocity (color scale) with M and k1 as free para-
meters. The solid black lines indicate the critical mobilityM� (for
the explicit closed expression see [25]).

FIG. 3. Self-centering and oscillations. (a) Droplet center
trajectories in simulations for different values of M; symbols
indicate the position in the diagram shown in Fig. 2(c). The
droplet center is initially at xdð0Þ ¼ −l0 in a domain of size
L ¼ 3l0. (b) Decay rate (black dots) and frequency (red dots) as
functions of M, obtained by fitting the respective droplet trajec-
tories. Red triangle indicates overdamped regime. (c) Relaxation
rate λ as a function of k1 (bottom axis), for Mϵ0=D ¼ 10 and
xdð0Þ ¼ −0.3l0. Top axis relates the domain size to the length
scale of the concentration profiles. The analytical predictions
(blue line) in the quasi-steady-state approximation [25] match our
simulations (black dots).
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which droplet motion is much slower than the relaxation
of the substrate and product concentration profiles. This
timescale separation allows one to solve Eq. (2) analytically
using a quasistationary approximation, where the substrate
and product concentration profiles are in steady state with
the droplet center xdðtÞ considered as slowly varying. The
obtained steady-state profiles are asymmetric when
the droplet is not centered in the domain, if and only if
the characteristic length lþ is neither much larger nor much
smaller than the droplet size R (lest both droplet interfaces
have equal concentrations). These asymmetric concentra-
tion profiles induce droplet motion toward the domain
center, see Eq. (3), with a velocity vðxdÞ that we linearize as
a function of the distance to the domain center [25],
jxdj ≪ l−. The resulting approximation for the relaxation
rate λ agrees well with our simulations [Fig. 3(c)], and
demonstrates that droplet self-centering is fastest for a finite
value of k1cþ=k2. Moreover, our analysis and simulations
show that droplet self-centering proceeds fastest when
the distance between the droplet interface and the
domain boundary is comparable to the range of repulsion,
L − R ∼ l− [Fig. 3(c)].
A state with multiple droplets cannot be stable in a

thermodynamic system. Instead, a coarsening process
driven by interfacial energy minimization takes place,
causing smaller droplets to shrink and larger droplets to
grow until there is complete phase separation [11–13].
As our system is out of equilibrium, it can result in a
stable coexistence of multiple droplets. Specifically for the
system we are considering, larger droplets have a larger
enzymatic activity and hence consume more substrate,
leading to a reduced substrate concentration at their
interfaces. This results in a gradient of substrate (and
product) in the low-concentration phase between droplets
of different sizes, thereby transporting enzymes from the
larger to the smaller droplets and thus counteracting the
coarsening process [Eq. (1)].
For a 1D system, the thermodynamic coarsening process

described by the Cahn-Hilliard model is extraordinarily
slow with the average droplet radius growing only loga-
rithmically with time [13]. Hence, one expects that (even
weak) enzymatic processes can interrupt coarsening.
Indeed, solving the dynamics of multiple droplets analyti-
cally in the adiabatic limit [25], we find enzyme fluxes
between pairs of differently sized droplets, which are
proportional to the difference in the substrate concentration
at their closest interfaces. These currents stop the coars-
ening process and lead to a steady state where the droplets
position themselves equidistantly to each other to even out
concentration imbalances between all interfaces (Video 4).
For 2D and 3D systems, Ostwald ripening is dominated

by surface tension effects (Laplace pressure) and the
ensuing law for droplet growth becomes a power law [13].
In this case, one intuitively expects that the coarsening
process can be interrupted only if the mass fluxes of the

enzymes are sufficiently strongly coupled to the concen-
tration of the products and substrates [53,54]. Figure 4(a)
shows FEM simulation results for a 3D system with a pair
of droplets, which confirm this intuitive argument. The
existence of a coarsening threshold for 3D systems can also
be understood analytically as a balance between a coars-
ening current due to surface tension and a mass flux of
enzymes driven by reaction-maintained product and sub-
strate concentration gradients. We estimate the former
using the standard Gibbs-Thomson relation [13,14] and
the latter by adapting the above results for the 1D system
[25]. By comparing the two currents we find the following
estimate for the critical difference between the FH param-
eters Δχ ¼ χp − χs above which one expects droplet
coexistence, i.e., interrupted coarsening:

Δχ� ¼ 2

3

rwΔc=Δs⋆½l−1þ coshðξÞ þ l−1− sinhðξÞ�2
l−1þ ½sinhð2ξÞ − 2ξ� þ 2l−1− ½sinh2ðξÞ − ξ2� ; ð5Þ

where ξ ≔ R̄=lþ is the ratio of the average droplet radius
to the typical length scale of the concentration gradients
inside of a droplet, and Δs⋆ is the difference between the
local equilibria of substrate in the two phases [25].
Notwithstanding the partially heuristic nature of the der-
ivation, our estimate yields a good approximation for the
boundary between coexistence and coarsening in parameter
space [Fig. 4(a)].
In our numerical simulations, we also observed that

initially spherical droplets can undergo a shape instability
and elongate in one direction for large enough values of Δχ
[25]. Once sufficiently elongated, 3D droplets form a neck
and divide (Fig. 4, Video 5), which we speculate to occur

FIG. 4. Coexistence and division of 3D droplets. We consider
Mϵ0=D ¼ 10 and w ¼ 0.05l0. Scale bars indicate unit length
l0 ≔

ffiffiffiffiffiffiffiffiffiffiffi

D=k2
p

. (a) Simulated pairs of droplets with different initial
radii R1 ¼ 1.1l0 and R2 ¼ 0.9l0 either stay separated (cyan
regime) or coalesce (yellow regime) depending on k1 and on
the difference in FH parameters Δχ ¼ χp − χs. Solid black
line corresponds to analytical estimate, Eq. (5), for Δχ�ðk1Þ.
(b) Simulation snapshots demonstrating a droplet division in 3D.
We observed droplet divisions only for very strong attraction of
enzymes toward substrates, here χs=r ¼ −0.5.
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through a pearling instability driven by surface tension [55]
independent of the preceding shape instability. This droplet
division process is driven by intermolecular interactions
that induce conservative enzyme fluxes, as opposed to
Ref. [21] where the droplet material is cyclically produced
and degraded, leading to nonconservative fluxes and
droplet growth.
We have analyzed the nonequilibrium dynamics of

enzyme-enriched condensates, whose enzymatic activity
guides the generation of inhomogeneous substrate and
product concentration profiles that, in turn, drive conden-
sate motion. Conceptually, this corresponds to a feedback
mechanism in which, for example, an NTPase such as
PomZ undergoing a cycle of hydrolysis (s → p, catalyzed
by a NTPase-activating protein c) and nucleotide exchange
(p → s) generates concentration gradients of its two differ-
ent chemical states (s and p) that drive droplet movement
through a process akin to chemophoresis. Our results show
that such a generic mechanism results in equidistant
positioning of condensates in closed domains, persistent
condensate motion, and even shape instabilities that lead to
condensate division. We speculate that this mechanism, in
its basic form, may be relevant for processes like midcell
localization of protein clusters in some prokaryotic cells
[9,31], directed motion of partition complexes [33], equi-
distant placing of plasmids along nucleoids [56], and
maybe even transcription regulation [57].
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