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Online communities featuring “anti-X” hate and extremism, somehow thrive online despite moderator
pressure. We present a first-principles theory of their dynamics, which accounts for the fact that the online
population comprises diverse individuals and evolves in time. The resulting equation represents a novel
generalization of nonlinear fluid physics and explains the observed behavior across scales. Its shockwave-
like solutions explain how, why, and when such activity rises from “out-of-nowhere,” and show how it can
be delayed, reshaped, and even prevented by adjusting the online collective chemistry. This theory and
findings should also be applicable to anti-X activity in next-generation ecosystems featuring blockchain
platforms and Metaverses.
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Society is struggling with online anti-X hate and
extremism, where “X” can nowadays be any topic, e.g.,
religion, race, ethnicity [1–3]. Recent research has con-
firmed that in-built online communities play a key role in
developing support for a topic at scale [4] and anti-X
sentiment is no different [1–3]. These in-built communities
are referred to differently on different platforms, e.g.,
Group on VKontakte and on Gab, Page on Facebook,
Channel on Telegram, and are unrelated to community
detection in networks. Each in-built community is a self-
organized aggregate of anywhere from a few to a few
million users.
Such anti-X communities can grow quickly from out of

nowhere because of interested individuals or other com-
munities joining (fusing) with them [Fig. 1(a), empirical
fusion] [4–8]. Having content that violates platforms’ terms
and conditions means that they can also suddenly get shut
down when discovered by moderators [Fig. 1(b), empirical
total fission]. Therefore, in contrast to communities such as
pizza fans, there is a clear benefit for such anti-X com-
munities to grow in a bottom-up way in order to remain
under moderators’ radar. Figures 2(a) and 2(b) illustrate the
sea of erratic shark-fin-shaped waves that emerges: each
shows an anti-X community’s size of membership as it
suddenly appears and grows through fusion and may then
suddenly disappear via total fission. Some social scientists
[9] are suggesting that such volatility is “online turbulence”
which could—if proven true—open up an important new
field for physics and also help bridge the current gap
between computational approaches to online (mis)behavior
and in-depth case studies [10].
Unfortunately such physics does not yet exist, i.e., there

is no first-principles theory that accounts for populations of
objects (e.g., anti-X individuals) that (i) have their own
internal character that may evolve over time, and (ii) inter-
act in a distance-independent way as allowed by the

FIG. 1. Empirically observed (a) fusion and (b) total fission of
in-built communities featuring anti-U.S. hate on VKontakte
between day t (yellow) and tþ 1 (blue). Red nodes are anti-
U.S. communities that later got shut down (total fission); green
nodes are those still not yet shut down; yellow links point to
individuals (white dots) removed from the anti-U.S. community
on day tþ 1; blue links point to individuals added to the anti-U.S.
community on day tþ 1. Spatial layout results from (a) and (b)
being close-ups of a fuller network plotted using ForceAtlas2,
meaning that nodes appearing closer together are more inter-
connected. (b) Also shows that very few individuals are simulta-
neously also members of other communities (SM shows further
proof). (c) Empirically observed clustering of antigovern-
ment communities across platforms around U.S. Capitol riot.
(d)–(f) The theory in this Letter incorporates (d) heterogeneous
individuals aggregating (i.e., fusion) based on character simi-
larity, (e) total fission with probability νf, (f) time-varying
population size NðtÞ.

PHYSICAL REVIEW LETTERS 130, 237401 (2023)
Editors' Suggestion Featured in Physics

0031-9007=23=130(23)=237401(7) 237401-1 © 2023 American Physical Society

https://orcid.org/0000-0001-6715-8660
https://orcid.org/0000-0003-4087-3554
https://orcid.org/0000-0003-2689-9539
https://orcid.org/0000-0001-7110-4040
https://orcid.org/0000-0002-3224-3213
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.237401&domain=pdf&date_stamp=2023-06-05
https://doi.org/10.1103/PhysRevLett.130.237401
https://doi.org/10.1103/PhysRevLett.130.237401
https://doi.org/10.1103/PhysRevLett.130.237401
https://doi.org/10.1103/PhysRevLett.130.237401


Internet, and (iii) have a changing total size (e.g., Internet
use jumped 13.2% in 2020), and (iv) undergo rapid fusion-
fission dynamics as in Fig. 1, Figs. 2(a) and 2(b), and
(v) scales up to describe key aspects of multi-platform
settings as in Figs. 2(f) and 4(b). Our previous efforts went
some way to addressing items (i) and (ii) [11–14], but not
all five, i.e., a full theory addressing all five points is
missing.
Here we propose this new physics via a first-principles

dynamical theory of anti-X communities within and across
social media platforms. The resulting equation [Eq. (2);
derivation Supplemental Material, Sec. 2 [15] ] provides a
novel generalization of nonlinear fluid physics, including
shockwaves and turbulence, and extends the physics of
aggregation and fragmentation [11–14,16–35]. Its solutions
explain empirically observed patterns within and across
social media platforms (Fig. 2), and predict how the rise of
anti-X communities can be delayed, reshaped, and even
prevented (Fig. 3). Its approximate analytic solutions can
also explain the complex multicommunity evolution
around the U.S. Capitol riot [Fig. 4(b)]. Our empirical
data are obtained using a published methodology [36–38]
that we summarize in Supplemental Material Sec. 1 [15],
which includes Refs. [39–45]. We are not claiming that all
online anti-X activity will always exhibit the patterns in
Figs. 2 and 4(b), or that all non-anti-X activity never does—
however, the important cases shown here do, while
Supplemental Material Sec. 1.1 [15] shows that non-anti-
X communities typically do not. Situations in which the
observed anti-X activity does not follow these patterns may
therefore be indicative of other mechanisms being at play,
e.g., top-down coordination or state actor control.

Our theory considers NðtÞ heterogeneous individuals
that are attracted online by anti-X content and hence
could aggregate over time depending on their traits.
Each aggregate (i.e., in-built community) then totally
fragments with some small probability at each timestep
[Figs. 1(d)–1(f)]. Following prior social science and
physics studies [11–14,16,17,32,33], each individual
i ¼ 1; 2;…; NðtÞ can have an arbitrary number of traits,
expressed as a vector y⃗iðtÞ, where each component (trait
value) lies between 0 and 1; but for notational simplicity we
only consider one here. At each timestep, two (e.g.,
randomly) chosen individuals i and j can fuse together
with a probability that depends on the pair’s similarity
jyiðtÞ − yjðtÞj [Fig. 1(d)]. If i and j are already part of an
aggregate, their whole aggregates fuse. Hence the mecha-
nism accounts for loners (aggregates of size s ¼ 1) joining
together, or a loner joining a community (aggregate of any
size s > 1), or two communities (aggregates of any size s1,
s2 > 1) joining together [Fig. 1(a)]. We can calculate a
mean-field fusion probability FðtÞ by averaging over the
population distribution at time t, e.g., for a constant uni-
form distribution, pairing favoring similarity (homophily)
yields FðtÞ ¼ 2=3 while dissimilarity (heterophily) yields
FðtÞ¼1=3 (details in Supplemental Material Sec. 2.1 [15]).
In this way, FðtÞ captures the online collective chemistry.
Master equations for the number nsðtÞ of aggregates of

size s, are for s > 1 and s ¼ 1, respectively,

_ns ¼
FðtÞ
NðtÞ2

X
s1þs2¼s

s1ns1s2ns2 −
2FðtÞsns
NðtÞ2

X∞
s1¼1

s1ns1 −
νfsns
NðtÞ ;

_n1 ¼ −
2FðtÞn1
NðtÞ2

X∞
s1¼1

s1ns1 þ
νf

NðtÞ
X∞
s1¼2

s21ns1 þ _NðtÞ; ð1Þ

FIG. 2. Empirical data (symbols) and Eq. (2) theory predictions (lines) for in-built anti-X communities within and across platforms.
(a) Size (i.e., number of members) of foreign anti-U.S. (jihadi) communities on VKontakte. (b) Size of domestic anti-U.S. government
(pro-civil war) communities on Facebook. Insets: changing population size; time-averaged FðtÞ which suggests that (b) reflects a
heterophily fusion mechanism more than (a). (c) and (d) Complementary cumulative distribution (CCDF) of individual community sizes
s from (a) and (b). (e) Evolution of total size of all communities from (b). (f) CCDF at a higher scale, i.e., sizes of clusters of interlinked
communities. Inset: empirically inferred interaction kernelWðs1; s2Þ obtained from data across all platforms; axes s1 and s2 are sizes of
interacting aggregates.
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where the first term(s) on each right-hand side are fusion,
the next are total fission, and the final _n1ðtÞ term is the
influx of potential recruits. The fusion product kernel is
justified empirically by studies of humans’ electronic
communications [28] and by the online anti-X data [see
Fig. 2(f) inset, and Supplemental Material Sec. 1.1 [15] ].
We made the reasonable assumption that macrolevel
quantities FðtÞ and NðtÞ vary slowly compared to micro-
level aggregation: the Supplemental Material shows this is
justified by comparing to full microscopic simulations [15].
Defining uðx; tÞ ¼ P

s snsðtÞe−xs, Eq. (1) becomes

_uðx; tÞ ¼ −
2FðtÞ
N2ðtÞ uðx; tÞu

0ðx; tÞ þ 2½FðtÞ þ νf=2�
NðtÞ u0ðx; tÞ

þ e−x
�
_NðtÞ − νf

NðtÞ u
0ðx; tÞjx¼0

�
; ð2Þ

where u0 is the x derivative. Equation (2) is a novel
generalization of nonlinear fluid equations with shockwave
solutions. An additional link mechanism, discussed later,
would add the diffusive term u00ðx; tÞ typical of turbulence
studies in viscous fluids. If platform moderators are
ineffective in implementing shutdowns (i.e., νf → 0) and
if NðtÞ and FðtÞ are effectively constant, Eq. (2) reduces to
the well-known case of the inviscid Burgers equation. The
solutions uðx; tÞ yield the anti-X community size SðtÞ ¼
NðtÞ − uð0; tÞ that develops between shutdown events:
in this simple limit SðtÞ ¼ Nð1þ ðtsw=tÞW½−ðt=tswÞ×
exp ð−t=tswÞ�Þ with W½:� the Lambert function, akin to
the emergence of a giant connected component in a net-
work interpretation, and its onset time tsw ¼ Nð2FÞ−1, i.e.,
anti-X community will suddenly appear at tsw and grow
rapidly. More generally, tsw ≈ NðtÞ½2FðtÞ�−1 involving time
averages (Supplemental Material, Sec. 2.3.3 [15]).
Generalizing to multiple traits per individual, allows

multiple anti-X communities to emerge: each has its own
“flavor” of the anti-X topic (i.e., the members of different
communities are concentrated along a different fy⃗iðtÞg
axis, see Supplemental Material, Sec. 2.7 [15]); each has
its own onset time [i.e., they appear asynchronously as
observed empirically in Figs. 2(a) and 2(b)]; and each has
its own growth curve [again as observed empirically in
Figs. 2(a) and 2(b)]. This explains why typical observers of
social media simply see an erratic succession of different
anti-X communities rising suddenly and unexpectedly from
out of nowhere.
Figures 2(a) and 2(b) show explicitly the generalized

shockwave solutions of Eq. (2) in between shutdown events.
They reproduce the complex growth curve shapes for both
(a) foreign anti-U.S. communities and (b) domestic U.S.
antigovernment communities (see Supplemental Material
Sec. 1 for data details [15]). The simpler Burgers equation
solutions give far poorer fits. The inferred average FðtÞ
values shown in the insets are closer to heterophily in

(b) than in (a) which is consistent with the highly diverse
nature of the support reported for (b) [46]. We note that the
“steps in the VK data [Fig. 2(b)] are manifestations of large
clusters joining existing ones at particular timesteps, while
for the FB data [Fig. 2(a)] the clusters that joined were
typically much smaller (e.g., 1–2 individuals). Figures 2(c)
and 2(d) show that the theory’s predicted 2.5-exponent
power-law distribution for the community sizes (see
Supplemental Material Sec. 2.4.2.2 for proof) is also
consistent with the empirical data. We stress that this 2.5
fusion-fission power law is not the same as the critical
distribution that appears at a single instant in time during a
process of pure fusion but no fission. The Supplemental
Material gives all our statistical analyses [15].
The online anti-X communities often link to each other

within and across platforms because of their shared
interests (see Supplemental Material [15], Sec. 5 for
examples). Hence clusters of interlinked anti-X commun-
ities form over time, and these clusters may also get broken
up by moderators when noticed. This gives rise to addi-
tional fusion and total fission on a higher scale, where each
aggregating object is now an in-built community rather
than an individual, and each aggregate is a cluster-of-
communities [Fig. 1(c)] as opposed to a community of
individuals. The interaction kernel from the empirical data
is again approximately productlike [Fig. 2(f) inset]. Hence
Eqs. (1) and (2) can again be applied at this higher scale.
Figure 2(e) shows that the growth of the entire movement of
anti-X communities on a given platform is consistent with
the theoretical shockwave solution at this higher scale.
Also, the theory’s predicted 2.5-exponent power-law dis-
tribution for sizes of these clusters of communities is
consistent with the data [Fig. 2(f)] at this higher scale. It
is possible that specific details of the multiplatform media
structure across scales play a role in how a particular
individual behaves or particular content gets shared at any
one time [47–50]. Figures 2 and 4(b) demonstrate that
despite our equations averaging over such details, they
manage to reproduce key system-level patterns in the data.
Going further, however, Sec. 2.8 of the Supplemental
Material shows in detail how our model, and hence these
equations, can be modified to include additional types
(species) of heterogeneity, e.g., account for different plat-
forms. The generalized equations contain intriguing inter-
species (e.g., interplatform) coupling terms and are accurate
compared to numerical simulations (see Supplemental
Material Sec. 2.8) [15].
Equation (2) predicts how the onset time tsw and growth

SðtÞ can be manipulated to mitigate this anti-X behavior, as
we now illustrate with two examples:
Mitigation example 1.—Change _NðtÞ, which changes

the flux of new users. Consider _NðtÞ ¼ q. Equation (2)
yields

tsw ¼ q−1Nð0Þ½ðα − 1Þ2=αðαþ 1Þ−2=α − 1�; ð3Þ
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where α2 ¼ 1–8FðtÞ=q and we assume FðtÞ has small
fluctuations compared to the mean FðtÞ. Hence tsw
increases with larger rate q: i.e., flooding the system with
more heterogeneous individuals will slow the ability of
a shock wave to organize macroscopically. Eventually
tsw → ∞ for q ≥ 8FðtÞ, i.e., the shockwave is prevented
from forming. Figures 3(a) and 3(b) show a more general
example _NðtÞ ¼ qtβ. Increasing β with β > 0, makes
tsw → ∞ at smaller q. By contrast, β < 0 appears to remove
this transition. Figure 3(b) shows the corresponding growth
SðtÞ. For β > 0, SðtÞ initially rises more slowly than for
β ≤ 0, but it eventually overtakes. As β becomes more
negative, SðtÞ rises quicker but flattens faster.
Mitigation example 2.—Change Pðfy⃗igÞ, which

changes the collective chemistry of the platform’s user
base and hence FðtÞ. Figure 3(c) shows two opposite cases
starting from uniform Pðfy⃗igÞ: converge to a single delta
function (i.e., all identical); or diverge to two maximally
separated delta functions (i.e., polarized). Both have
the same simple time dependence involving σðr; t1; tÞ ¼
ð1þ exp ½−rðt − t1Þ�Þ−1, where r quantifies the rate of
change and t1 is the median time for the change.
Equation (2) yields the approximate expression (exact

for r → ∞) tconvergesw ≈ 2
3
tð0Þsw þ 1

3
t1 and tdivergesw ≈ 4

3
tð0Þsw − 1

3
t1,

where tð0Þsw is the onset time for a static uniform Pðfy⃗igÞ,
which agrees with microscopic simulations (Supplemental
Material Sec. 3 [15]). There is also some recent empirical
support: experiments show that communities formed by
random aggregation from a diverse pool [i.e., uniform
Pðfy⃗igÞ hence Fð0Þ ¼ 1] are quicker to attain a high level
of coherence (i.e., smaller tsw) than those chosen to have
Fð0Þ < 1 [51]. The Supplemental Material Sec. 2.2.3
Eq. S.64 [15] gives an explicit analytic expression for
SðtÞ which is then plotted in Fig. 4(a): it confirms that SðtÞ
grows slower with a later onset as FðtÞ decreases, i.e.,
making the online population more diverse will delay the
anti-X shockwave onset and flatten its growth.
This theory is easily extended to include other on-

line mechanisms. Here we summarize some of them:
(i) Introducing an exponential decay e−aðs1þs2Þ to the pro-
duct kernel in Eq. (1) adds a nonlocal term uðxþ a; tÞ to
Eq. (2) (Supplemental Material Sec. 2.6.3 [15]). (ii) Adding
a multicommunity (γ > 2) product kernel to Eq. (1) to
mimic a coordinated campaign, adds ½uðx; tÞ�γ−1u0ðx; tÞ
to Eq. (2) (Supplemental Material Sec. 2.5 [15]).
(iii) Individuals’ own loss of interest can be mimicked
by adding a monomer fragmentation term (Supplemental
Material Sec. 2.4.1 [15]). (iv) Shifts in background popu-
lation mood and influxes of new recruits in response to
external events, can be mimicked by changes in FðtÞ and
NðtÞ. (v) Changes in moderator effort and/or platform (or
government) tolerance can be mimicked by changing νf.
(vi) The presence of influencers can be mimicked by
making the aggregation favor their particular y⃗iðtÞ values.
(vii) The influence of external actors can be mimicked by
biasing subsets of y⃗iðtÞ over time, as can the influence of
so-called digital inoculation schemes. (viii) The fact that
different platforms feature different severities of harm

(a) (b)

(c)

FIG. 3. Mitigations suggested by Eq. (2) theory. (a) and
(b) Changing newcomer flux _NðtÞ ¼ qtβ. FðtÞ≡ F; Nð0Þ ¼ 103;
q ¼ 0.5; uniform user distribution. (c) Changing user population
distribution Pðfy⃗igÞ. Starting with uniform user distribution,
converge means Pðfy⃗igÞ evolves to single delta function (i.e.,
users all identical); diverge means Pðfy⃗igÞ evolves to two
opposite peaks (i.e., users polarized). t1 is the median time for
the change. Analytic results (curves) and microscopic simulations
(symbols).
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FIG. 4. (a) Approximate analytic solutions of Eq. (2) using a
time-average FðtÞ≡ F (see Eq. S64 in Sec. 2.2.3 in the
Supplemental Material [15]) versus exact microscopic simu-
lations (solid gray curves show average over 100 runs).
Nð0Þ¼500; uniform heterogeneity distribution; _NðtÞ¼q¼0.5.
(b) Empirical data (symbols) and approximate analytic predic-
tions (solid curves) for coupled shock waves (Supplemental
Material Sec. 2.7 [15]).
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(e.g., Facebook vs 4Chan) and thesemay change in time, can
be incorporated via the characters of that platform’s com-
munities and hence its members (Supplemental Material
Sec. 4.2 [15]). (ix) Much research has also focused on the
spreading of harmful content including mis(dis)information:
this could be mimicked by adding a viral process (e.g., SIR
[29,52]) into the generative equation. However, until the
correct viral process is established for online material, it
makes more sense to focus on the total number of links
available since this is ultimatelywhat amplifies the traffic and
encourages further growth of anti-X communities: adding
s2nsðtÞ to Eq. (1) (which for large s is the total number of
possible links within all aggregates of size s) adds a diffusive
term u00ðx; tÞ to Eq. (2). (x) Communities may become
coupled when their interests converge [e.g., Fig. 4(b) around
the U.S. Capitol riot]. Crude analytic expressions for SðtÞ
(Supplemental Material Sec. 2.7 [15]) yield NS coupled
differential equations for shockwaves S1ðtÞ; S2ðtÞ;…;
SNS

ðtÞ, whose solutions agree well with the empirical data
[Fig. 4(b)].
Our analysis already incorporates heterogeneity at the

level of individuals, the communities that they form, and
the dynamical connectivity between communities.
However, it so far treats other heterogeneities (e.g., differ-
ent platforms) in an averaged way. The good agreement
with data in Figs. 2 and 4(b) shows that these averaged
equations can be sufficient despite missing such features,
akin to effective medium theories in alloys [53–55].
However, our model can indeed be extended to include
such additional heterogeneities at the expense of the
equations taking on a tensor form. We derive these
generalized equations in Supplemental Material Sec 2.8
[15], and demonstrate their accuracy compared to detailed
microscopic simulations. An unpublished working paper
[56] adds a simple viral process to mimic spreading of
information and memes, etc., and reveals the extent to
which the averaged equations are accurate—and when the
generalized forms (Supplemental Material Sec. 2.8 [15])
must be used. We also note that the 5=2 exponent can be
seen as a surprisingly robust manifestation or legacy of the
Fisher exponent 5=2 in the mean-field theory of ordinary
percolation which governs the number density of lattice
sites. The difference is that instead of this occurring at a
sole value of the connectivity in an increasingly connected
system, it represents a dynamical steady state which arises,
and persists, due to the presence of fragmentation (see
Supplemental Material, Sec. 2.4.2.2 for mathematical proof
[15]). We also note that our use of the term “turbulence” is
figurative since we have not found actual turbulence
scaling, though the possibility exists that approximate
forms lie deep in the online data.
In summary, we presented a theory for online anti-X

behavior. It establishes a formal connection to nonlinear
fluid dynamics (e.g., shockwaves, turbulence) and hence
opens a new door for physics. More empirical work is

needed beyond the blanket anti-X label, to understand
which communities more closely follow Eq. (2).
References [57,58] show explicitly how dynamical
machine learning can help with this task, by inferring
and quantifying the time evolution of each anti-X com-
munity’s “flavor” (i.e., collective traits) from its content.
More broadly, our theory should, in principle, be applicable
to many decentralized systems of heterogeneous objects.

This research is supported by U.S. Air Force Office of
Scientific Research Awards No. FA9550-20-1-0382 and
No. FA9550-20-1-0383.
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