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Many biological processes require timely communication between molecular components. Cells employ
diverse physical channels to this end, transmitting information through diffusion, electrical depolarization,
and mechanical waves among other strategies. Here we bound the energetic cost of transmitting
information through these physical channels, in kBT=bit, as a function of the size of the sender and
receiver, their spatial separation, and the communication latency. These calculations provide an estimate for
the energy costs associated with information processing arising from the physical constraints of the cellular
environment, which we find to be many orders of magnitude larger than unity in natural units. From these
calculations, we construct a phase diagram indicating where each strategy is most efficient. Our results
suggest that intracellular information transfer may constitute a substantial energetic cost. This provides a
new tool for understanding tradeoffs in cellular network function.
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A large portion of energy consumption in biology goes
toward information processing tasks. There have been
many theoretical efforts to bound the energy needed
for these tasks, including the cost of precisely reading
DNA [1], performing abstract computation [2–7], measur-
ing and sensing the environment [8–13], breaking time-
reversal symmetry [14–18], keeping accurate time [19–21],
self-replication [22], and controlling a small thermo-
dynamic system [23–25]. The abstract nature of these
bounds makes them broadly applicable, but often at the
cost of divorcing them from the details of their physical
implementations. For many cellular examples, the bounds
appear dramatically far from saturated [26–29].
Biological systems are subject to constraints often not

captured in these theoretical abstractions. In particular,
information processing networks are by nature distributed
in space and time. For example, chemoreceptors in
bacteria measure environmental information that must
then travel ∼1 μm from receptor clusters to cellular
motors within a fraction of a second to be behaviorally
useful. In neurons, information arriving at synapses in
dendrites must travel across the cell body in timescales of
milliseconds.
The schemes that have evolved to move information

across space are varied, not just in their molecular details,
but in their underlying physics. In neurons, signals are
transmitted electrically via the opening of ion channels that
depolarize the membrane, causing distant changes in
electrical potential. All cells signal through the diffusion
of second-messenger molecules. At the organism level,

pressure waves transmit information over longer distances
in the form of sound.
While moving information is not a process that has a

fundamental energetic cost, the practical costs can be
substantial—a large fraction [30,31] of the energy humans
consume is spent by neurons to generate voltage gradients,
primarily used for sending signals [27].
In this Letter, we estimate bounds for this energetic cost

of sending information. We examine several physical
communication strategies used by biology: (1) electrical
signaling via the depolarization of membranes through ion
channels, (2) diffusive signaling in 2D and 3D, and
(3) acoustic signaling. The resulting energetic costs, in
kBT=bit, depend on four key parameters: the distance the
signal is sent r, the signal frequency ω, and the size of the
sender and receiver σI and σO. The bounds we find do not
represent fundamental costs associated with information
processing, but instead represent costs associated with the
constraints that biology faces, subject to life’s existence in a
watery buffer. As such our bounds contain not only pure
numbers and kBT, but also geometric factors, diffusion
constants, membrane capacitances, and other parameters.
Like previous work, here we use thermodynamic tools to

place energetic bounds on information processing at the
cellular level. However, unlike previous analyses of infor-
mation processing, here we focus on the cost of moving
information, which we find to be shaped by the constraints
imposed by the physical environments available to biology.
The resulting costs we find are large and theoretically
comprehensible, but can only be obtained by making
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reference to the physics of the system; they cannot
be extracted from information-theoretic considerations
alone.
Setup.—As summarized in Figs. 1(a) and 1(b), there is a

sender I and a receiver O embedded in a background
medium λðx; tÞ subject to thermal fluctuations. The sender
transmits a time-varying signal IðtÞ by locally perturbing
the medium λ. The receiver then measures the signal by
observing OðtÞ, the local deviation of the medium λ from
equilibrium. From this measurement, the receiver is able to
extract information about the state of the sender. The input
IðtÞ is localized to a region of radius σI centered at the
origin, and the output OðtÞ is measured by a sensor a
distance r away, of radius σO. We define these regions as
Gaussian densities for mathematical simplicity. λ is a
density field, whose nature and dynamics depend on the
specific communication medium (see Table I).
We quantify the rate of information transfer between the

sender and the receiver using the time-series mutual infor-
mation rate between IðtÞ and OðtÞ, measured in bits per
second [45]. In our setup, this quantifies directed informa-
tion transfer because the sender’s behavior is externally
specified, with no feedback from the output, obviating the
need for measures like the transfer entropy [46–48].
Following [45], we assume that we are in the weak signal
regime and further that noise is dominated by thermal
fluctuations in λ. With this assumption, the rate that
information is sent from the input to the output is

RðI;OÞ≈ 1

4π log2

Z
dω

jχOIðωÞj2SIðωÞ
SOðωÞ ðbits=sÞ; ð1Þ

where jχOIj2 and SOðωÞ correspond to the transmission gain
and noise, as defined in Fig. 1(b), and where SIðωÞ is the
power spectrum of the signal process, chosen by the sender,
and thus external to the network itself.
To compute the energetic cost of signaling, we need to

compare the information rate to the rate of work required to
produce the input signal. We characterize this dissipation
rate _W by a dissipation kernel function DðωÞ, describing
the rate of energy dissipation at each signal frequency
[Fig. 1(b) ]. The overall cost per bit at frequency ω is the
ratio of the dissipation rate integrand to the information rate
integrand (see Supplemental Material [32]),

CðωÞ≡ cost
bit

≡ d _W
dω

=
dR
dω

¼ 4π log2
DðωÞSOðωÞ
jχOIðωÞj2 : ð2Þ

Characterizing this for a given model requires computing
the equilibrium noise spectrum SOðωÞ, the dissipation
kernel DðωÞ, and the transmission coefficient χOIðωÞ.
We sketch this analysis explicitly for the case of electrical
signaling in membranes. The detailed analysis for this and
the other systems (diffusive and acoustic signaling) is found
in the Supplemental Material [32].
Electrical communication.—We suppose there is a sig-

naling process between two ion channels bound to a 2D
membrane embedded in a bulk 3D environment extending
in the z direction [Fig. 1(c) ]. Current may flow through the
bulk via the movement of charged ions, which we model as
a resistive material obeying Laplace’s equation (∇2V ¼ 0)
with conductance α (Ω−1=m) (Supplemental Material
Sec. 3.6 [32]). Free charges may accumulate at the

FIG. 1. An overview of spatial communication. (a) An abstract transmission scheme that sends information from a sender I to a
receiver O. The sender locally modifies the density field λ with current density J, which propagates to the receiver where it is measured
as a local perturbation OðtÞ. The input current density J is normalized to separate the effects of the input signal strength and its spatial
distribution. The output O is not normalized, reflecting the fact that the receiver’s ability to resolve the signal increases with its size.
(b) Outline of calculation for the energetic cost of communication, which depends on the signal transmission strength χOI , the thermal
noise SOðωÞ in the output measurement, and the dissipation kernelDðωÞ of the input process. (c) Electrical communication between two
ion channels in a membrane. The input signal IðtÞ is the time-varying current flowing through the input ion channel. The output OðtÞ is
the excess charge accumulated at the output ion channel. The density field λ is the surface charge density on the membrane. (d) Diffusive
signaling in 2D between two proteins embedded in a membrane.
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membrane, which we treat as having uniform capacitance c
(F=m2). The surface charge density at the membrane is
given by λðx; yÞ.
Following Fig. 1(a), the input of the system IðtÞ is the

time-varying flow of current through the sender ion channel
located at the origin. The output of the system OðtÞ is the
excess charge at the receiver. We assume an infinite flat
membrane, though the geometry of specific systems is
likely important.
Linearized dynamics.—To compute (2), we need a

minimal model for the dynamics of λ. At the membrane,
the voltage is given by the local capacitance equation:
Vðx; yÞ ¼ λðx; yÞ=c − hðx; yÞ, where h is an artificial
external field useful in calculating the spectrum of thermal
charge fluctuations. Bulk current flows according to
−α∇V, which is divergenceless everywhere except
at the membrane. Thus, the rate of change of charge at
the membrane is given by the sum of the injected current
Jðx; yÞ and the rate that charge accumulates from
bulk currents: ∂tλðx; yÞ ¼ Jðx; yÞ þ α∂zVðx; y; zÞjz¼0. These
equations are linear, and in xy-Fourier space they close in
terms of λ and applied fields h and J yielding

∂tλðk; tÞ ¼ −αk
�
λðk; tÞ
c

− hðk; tÞ
�
þ Jðk; tÞ; ð3Þ

where k is the xy-momentum vector (all Fourier transforms
are implicit).
Calculating transmission strength χOI .—The transmis-

sion strength is characterized by the linear response
function χOI which indicates how the mean output hOðtÞi

responds to the input IðtÞ. We first compute the response of
the charge density to the input signal χλJ in frequency space
by reading off the frequency-space Fourier transform
of Eq. (3): χλJðk;ωÞ ¼ c=αðjkj þ iωc=αÞ. By then inte-
grating χλJ over the sensor area, we get the transmission
coefficient χOI,

jχOIðωÞj2 ¼ c2σ4O
α2r2

US

�
r

lðωÞ
�
; lðωÞ ¼ α

ωc
; ð4Þ

whereUS is a universal function of its argument that goes to
1 when r=lðωÞ ≪ 1 and then quickly decays (see
Supplemental Material Sec. 3 [32]). Importantly, we have
expressed this universal function in terms of the length
scale lðωÞ ¼ α=ωc, which sets an upper limit on the
viability of transmission. The origin of this length scale
is related to the RC timescale found in basic RC circuits.
The 3D bulk resistance and 2D membrane capacitance
together define an RC (inverse) velocity, or equivalently, a
length scale at a given frequency.
Calculating dissipation DðωÞ.—In the linear response

regime, the instantaneous dissipation associated with
powering a transmembrane current is given by a spatial
integral of the injected current density multiplied by the
voltage across the membrane. In frequency space, this can
be calculated from the response function, yielding

DðωÞ ¼ 1

8π3=2ασI
UD

�
σI

lðωÞ
�
; ð5Þ

where UDðσ=l ≪ 1Þ ∼ 1 is another universal function.

TABLE I. A summary of the setup and energetic cost of sending information for four classes of physical communication systems.
Each system has a coupling field λ, which transmits the signal with dynamics specific to that system. The sender couples to λ via
∂tλ ¼ ð∂tλÞ0 þ Jðx; tÞ. C is the computed energetic cost to send information in units of kBT=bit when the transmission distance r is
smaller than the system-specific characteristic length scale l. Derivations and explanations of these models can be found in the
Supplemental Material [32].

System,
example

Coupling field λ,
dynamics

Input IðtÞ,
output OðtÞ Energy cost C Length scale

Electrical,
ion channels in neurons

Surface charge
density (C=m2)

IðtÞ ¼ injected
current (A)

CEl ¼ π log 2ðr2=σIσOÞ lðωÞ ¼ ðα=ωcÞ

∂tλðk; tÞ ¼ −ðαk=cÞλðk; tÞ OðtÞ ¼ excess
charge (C)

Diffusion 2D,
Pip2

Messenger
density (1=m2)

IðtÞ ¼ activation
rate (Hz)

CD2 ≈ 4 log 2flog ðl=σIÞ
logðl=σOÞ= log½ðl=rÞ2�g

lðωÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD=ωÞp

∂tλðx; tÞ ¼ D∇2λðx; tÞ OðtÞ ¼ messenger
count (1)

Diffusion 3D,
CheY in E. coli

Messenger
density (1=m3)

IðtÞ ¼ activation
rate (Hz)

CD3 ¼ ð4 log 2=πÞðr2=σIσOÞ lðωÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD=ωÞp

∂tλðx; tÞ ¼ D∇2λðx; tÞ OðtÞ ¼ messenger
count (1)

Acoustic,
Speech

Medium density (kg=m3) IðtÞ ¼ injected
mass (kg=s)

CAc ¼ ð2 log 2=πÞðr2l2
σ=σIσ3OÞ ν ¼ ðiτωÞη

l ¼ ðc=ωÞ=ImðνÞ
lσ ¼ ðc=ωÞImðνÞ∂

2
t λ − c2ðτ∂tÞη∇2λ ¼ c2∇2λ OðtÞ ¼ excess

density (kg)
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Calculating noise SO.—We define the noise SOðωÞ to be
the power spectrum of the equilibrium fluctuations in the
output OðtÞ in the absence of an input signal. As with χOI,
we first compute χλh, the susceptibility of the charge
density field to the external field h, by reading off
Eq. (3): χλhðk;ωÞ ¼ αk=ðαk=cþ iωÞ. The fluctuation dis-
sipation theorem [49] then tells us that the equilibrium
fluctuations of λ are related to the imaginary part of χλh:
SλðωÞ ¼ −ð2kBT=ωÞImðχλhÞ. We integrate Sλ over the
sensor area to obtain SOðωÞ,

SO ¼ 2π3=2kBTc2σ3O
α

UN

�
σO
lðωÞ

�
; ð6Þ

where, again, UNðσO=l ≪ 1Þ ∼ 1 is a universal function.
Energetic cost per bit.—Plugging these results into

Eq. (2) yields the energetic cost of sending an electric
signal at frequency ω over a distance r between two ion
channels,

CEl ¼ π log 2
r2

σIσO
UEl

�
r

lðωÞ
�

ðkBT=bitÞ: ð7Þ

We refer to π log 2r2=σIσO as the “scaling” cost and to UEl

as the length scale correction, which can be ignored when
the transmission distance r is smaller than the characteristic
length scale lðωÞ. When r ≪ lðωÞ, the cost per bit is
independent of the system constants and frequency; it
depends only on the length scales r, σI , σO. However,
when r ≫ lðωÞ, the correction function UEl blows up, and
the cost becomes large [Fig. 2(c), lower panel].
Comparing strategies.—In addition to electrical signal-

ing, we also considered the energetic cost of sending

information via diffusive signaling in 2D and 3D and
acoustic signaling. The setup and results are summarized
in Table I, with detailed derivations provided in the
Supplemental Material [32]. Figure 2(a) shows the resulting
phase diagram with respect to frequency and distance,
indicating where each method of signaling is energetically
preferred. For all of these systems, the cost of signaling
diverges as the sensor size goes to zero, reflecting the fact
that an infinitesimal sender has an infinite resistance and an
infinitesimal receiver cannot resolve a signal.
Each of these systems has a characteristic length scale

lðωÞ, which determines its limits of viability [Fig. 2(b) ],
given in Table I. When the transmission distance exceeds
this length scale, the energetic cost of sending information
no longer follows the scaling forms C, instead becoming
exponentially expensive. Below their characteristic length
scales, the cost of communication for 3D diffusion,
electrical and acoustic signaling scale with r2. Therefore,
the transition lines between the phases in Fig. 2(a) can be
determined by their characteristic length scales, which set
the cutoff in energetic efficiency. Diffusive signaling in 2D
has a unique scaling form and is preferred over 3D diffusive
signaling, except in the regime where diffusion in 2D
would be too slow; typical membrane diffusion constants
are 2–3 orders of magnitude slower than those for small
molecules in the cytoplasm.
For diffusive and electrical signaling, the frequency ω

can be interpreted as measuring the speed of signal trans-
mission. These two physical mediums do not support
coherent waves and so a signal must reach the receiver
before it phase shifts and is strongly attenuated. In diffusive
signaling in d dimensions, for example, this means that the
transmission distance is limited to the half-period diffusive

FIG. 2. An illustration of the energetic cost of communication for four signaling mechanisms: 2D diffusive signaling (purple), 3D
diffusive signaling (red), electrical-membrane signaling (blue), and acoustic signaling in saline water (yellow). Here, the sender-receiver
sizes are fixed at σI ¼ σO ¼ 5 nm. Diffusion: D ¼ 0.1 μm2=s (d ¼ 2), D ¼ 50 μm2=s (d ¼ 3), typical values in the plasma membrane
and cytoplasm [50]. Electrical: α ¼ 10−6 S=μm [51], c ¼ 10−14 F=μm2 [52]. Acoustic: c ¼ 1.5 × 109 μm=s, η ¼ 0.21, τη ¼ 8.9 × 10−5

(sη) (extracted from ultrasound measurements in blood, see Supplemental Material Sec. 5.2 [32]). (a) The optimality phase space. For
each value of signal distance and frequency, the color of the optimal signaling mechanism is displayed. (b) The characteristic length
scale l is plotted for each signaling mechanism. These draw exclusion zones dictating where signaling mechanisms become
prohibitively expensive. (c) The energetic cost of sending information is plotted for each signaling mechanism as a function of distance
at a transmission frequency of 0.1 Hz (top) and 1 kHz (bottom).

PHYSICAL REVIEW LETTERS 131, 068401 (2023)

068401-4



travel distance r2 < hΔx2i ¼ 2dπD=ω, explaining the
appearance of the length scale lðωÞ ¼ ffiffiffiffiffiffiffiffiffiffi

D=ω
p

.
Acoustic signaling is different in that it permits coherent

waves which move at speed c. For these waves, the
damping coefficient τ sets two characteristic scales. The
inverse attenuation l sets the length over which a plane
wave is attenuated and thus the cutoff for the scaling
regime. In addition, lσ sets the length below which pressure
fluctuations are overdamped and do not propagate as
waves, around 10 μm in the cellular environment [53],
much larger than subcellular sensors. For sensors smaller
than this second length scale, noise is dominated by these
slower decaying, nonpropagating modes. In this regime, we
find acoustic signaling is less efficient than electrical
signaling by a factor of ðlσ=σOÞ2 ∼ 106 (Supplemental
Material Sec. 5 [32]). This provides a possible energetic
explanation for why acoustic signaling is absent at the
cellular level despite its ubiquity in larger organisms.
Outlook.—The energetic costs we have obtained are

lower bounds that hold regardless of the molecular mecha-
nism being used to power the communication channel,
which can be quite varied. For example, diffusive signaling
can be driven by reaction cycles (e.g., in CheY phospho-
rylation-dephosphorylation cycles which in net hydrolyze
ATP) or by chemical pumps that concentrate signal
molecules for controlled release (e.g., neurotransmitter
concentration in synaptic vesicles). For each of these
processes, the total dissipation required to power the
channel may be larger than the bounds we derive, but
cannot be smaller. The bounds also apply regardless of how
the information is ultimately read out. The continuous
output signal used here may be needed in other forms, such
as the binary switching state of a flagellar motor. Such lossy
signal conversions involve a reduction of information and
are thus still bounded by our results [54].
There are some limitations in this analysis. Our results

often assume a simplified geometry. In electrical signaling,
axons and dendrites are roughly cylindrical, rather than the
2D sheets used here, qualitatively changing results when
signals are sent a distance farther than the cylinder radius.
And in a membrane enclosed region, diffusive signals do
not potentiate indefinitely, changing the form of our bound
when the diffusive length scale becomes larger than the
length of the region. Our bounds are approximate in that we
make use of linearized equations for the media, which is a
good model for these systems in biological contexts. In this
approximation, driving further from equilibrium decreases
information efficiency. The small nonlinearities in these
systems could make small changes to our approximate
bounds in either direction. Our setup also does not capture
some physical strategies, such as the manipulation of
stresses in fiber networks and directed transport by motor
proteins. The noise in this calculation is assumed to be
thermal noise arising from equilibrium fluctuations. There
may also be other design principles that are not covered by

our bounds. We do not consider the cost of building and
maintaining the protein machinery required to run these
communication channels. For sending information over
longer ranges, biology often uses relays, where information
is sent through an excitable medium, often as an energy
consuming traveling wave, a mechanism of information
transfer not discussed in this Letter.
Prior work that investigates the cost of computation often

considers either the Landauer limit [2,8,12,55] required to
erase information or the cost of breaking time-reversal
symmetry [14,15,19–21,25]. While these results are fun-
damental, they produce bounds on the order of kBT, far
below the energetic scale seen in real processes. In contrast,
the results obtained here depend on physical constants as
well as practical constraints like the size of the sensors and
the transmission distance, producing energetic constraints
orders of magnitude larger. For example, for a diffusive
signal sent in 3D over a distance r ∼ 1 μm, with sensor
sizes on the order of σ ∼ 10 nm, the cost is on the order of
104 kBT. Thus the large costs that biology must pay to
process information can be understood theoretically, albeit
only by additionally considering the physical constraints on
real biological systems. In conjunction with a range of
recent efforts to quantify information transfer across
biological scales [48,56–58], we hope that follow-ups to
this Letter will be able to quantify a computational budget
required for these processes, which in many cases appears
to be substantial [26,28].
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