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We demonstrate that two-dimensional crystals made of active particles can experience extremely large
spontaneous deformations without melting. Using particles mostly interacting via pairwise repulsive
forces, we show that such active crystals maintain long-range bond order and algebraically decaying
positional order, but with an exponent η not limited by the 1

3
bound given by the (equilibrium) KTHNY

theory. We rationalize our findings using linear elastic theory and show the existence of two well-defined
effective temperatures quantifying respectively large-scale deformations and bond-order fluctuations. The
root of these phenomena lies in the sole time-persistence of the intrinsic axes of particles, and they should
thus be observed in many different situations.
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Two-dimensional (2D) crystalline phases are usually
defined by a slow algebraic decay of positional order
and the presence of long-range bond order. In thermal
equilibrium, the decay exponent η of the positional corre-
lation function then increases with temperature. In many
cases well described by the celebrated Kosterlitz-Thouless-
Halperin-Nelson-Young (KTHNY) theory [1–5], mel-
ting of 2D crystals is a two-step process yielding an
intermediate—usually hexatic—phase with short-range
positional order and only quasi-long-range bond order
between the crystal and liquid phases (see, e.g., [6] for a
classic review). The first step is defined to be when
thermally activated pairs of dislocations can unbind. This
typically occurs when entropy and elastic energy for an
isolated dislocation are balanced. KTHNY theory tells us
that this must happen when η, which increases with
temperature, reaches a value between 1

4
and 1

3
(for a

hexagonal crystal). This bound can be seen as putting a
limit on the deformability of 2D crystals.
Crystals made of active particles are maintained out of

equilibrium by the persistent injection of mechanical work
at local timescales and length scales, and thus are not
subjected to the same constraints as their equilibrium
counterparts. In particular one should not expect, on such
general grounds, that KTHNY theory holds for the melting
of 2D active crystals. It is then surprising that, so far, most
studies of the melting of simple versions of such crystals
(without chirality nor orientational order) have concluded
that KTHNY theory still holds, or have assumed that it
remains valid for deciding when and how melting occurs
[7–18].
In this Letter, we show that 2D active crystals can

experience extreme spontaneous deformations without
melting: they can maintain true long-range bond order

and resist unbinding of dislocation pairs even as positional
order correlations decay very fast, albeit still algebraically.
We argue that the decay exponent η can in fact be arbitrarily
large, and rationalize our findings in terms of two well-
defined effective temperatures quantifying, respectively,
elastic deformations and bond-order fluctuations.
Many active crystals studied consist of spinning units or

individual self-organized vortices forming a hexagonal
lattice in two dimensions [19–29]. Such chiral active
crystals are investigated for their specific properties such
as edge modes and odd elasticity [30–33].
Active crystals with a strong alignment of the intrinsic

polarities of particles have also been considered. Models
demonstrated the possibility of traveling crystals [34–44] in
relatively small systems. Experiments by Dauchot et al.
investigated small crystals of polarly aligned particles
[45,46]. On the theory side, the recent work of Maitra
and Ramaswamy [47] makes general predictions about
oriented active solids that have not been tested so far.
Here, we study the melting of simpler active crystals

made of self-propelled particles subjected to pairwise
repulsive forces and to rotational noise, with no or weak
alignment of their polarities. Previous works have con-
cluded or assumed that KTHNY theory remains relevant
(see in particular [13–16]). They often rely on the numeri-
cal estimation of the decay of positional order correlation
functions, a difficult task given that only relatively small
system sizes are typically considered and that the functions
usually considered are intrinsically oscillatory. Below we
circumvent this problem, which allows to obtain much
clearer results.
We first consider N overdamped active Brownian par-

ticles interacting via soft harmonic pairwise forces and
local ferromagnetic alignment in 2D domains with periodic
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boundary conditions. Their positions ri and polarities θi
obey

_ri ¼ s0eðθiÞ þ μr
X

j∼i
ðd0 − rijÞeij; ð1Þ

_θi ¼ κ
X

j∼i
sinðθj − θiÞ þ

ffiffiffiffiffiffiffiffi
2Dr

p
ξiðtÞ; ð2Þ

where eðθiÞ is the unit vector along θi, rij ¼ jrj − rij, eij is
the unit vector pointing from j to i, the sums are taken over
all j particles within distance d0 of i, and ξiðtÞ is a zero-
mean Gaussian white noise with hξiðtÞξjðt0Þi ¼ δijδðt − t0Þ.
Numerical details are given in [48].
We fix d0 ¼ 1, μr ¼ 1.5 without loss of generality, work

mostlywith the rotational noise strengthDr ¼ 1, and vary the
two remaining parameters, the self-propulsion speed s0 and
the alignment strength κ. To set the stage, we first show the
phase diagram of our model in this ðs0; κÞ plane [Fig. 1(a),
methodological details in [48] ]. Strong enough alignment
(κ ≳ 0.65) yields global polar order (Ψ ¼ jheiθjijj > 0). In
this work, we focus on the complementary region where
repulsive interactions dominate alignment, and thus Ψ ≈ 0,
with polarity correlations decaying exponentially and very
fast. The crystal phase of main interest here is found at small
s0 or κ values. A liquid phase is found at large s0 or κ values.
These twophases are separated bya regionof hexatic order, in
line with the KTHNY two-step scenario.
Our primary interest being the stability of crystalline

arrangements, we consider initially perfect hexagonal
configurations with lattice step l0 ¼

ffiffiffi
3

p
=2 yielding a

mean number density ρ ≃ 1.54. Below, L is the linear size
in y of approximately square domains (see Ref. [48] for
details).
Positional order in the crystal phase is estimated via

the large-scale behavior of the two-point correlation
function [49]

ĝðrÞ ¼
�P

j≠k δðr − jr̂j − r̂kjÞeiĜ·½uj−uk�
P

j≠k δðr − jr̂j − r̂kjÞ
�

t

; ð3Þ

where r̂i is the position of particle i on the initial perfect
lattice, uiðtÞ ¼ riðtÞ − r̂i its displacement vector, and Ĝ is
one of the reciprocal vectors of the perfect lattice.
The correlation function ĝ6ðrÞ of orientational bond

order (which is hexatic for our triangular lattice crystals)
can be defined similarly, replacing the exponential by
ψ�
6ðjÞψ6ðkÞ with the local order ψ6ðjÞ ¼ hei6θjj0 ij0∼j, where

j0 denotes the Voronoi neighbors of particle j and θjj0 is the
orientation of rj0 − rj.
The ĝðrÞ and ĝ6ðrÞ correlation functions are suited to

configurations with at most bounded pairs of dislocations.
They have the great advantage of not being oscillatory, so
that their asymptotic behavior can be easily measured.
As expected, quasi-long-range positional order is

observed in the crystal region, ĝðrÞ ∼ r−η, as shown in
Fig. 1(b), where results obtained at increasing system sizes
are plotted [50]. Strikingly, the value η ≃ 0.68 measured in
this case is much larger than 1

3
, the bound set by KTHNY

theory, yet true long-range bond order is present [Fig. 1(c)],
and no unbound dislocation (and hardly any bound dis-
location pair) is found. Repeating these measurements at
different values of alignment strength κ and self-propulsion
force s0, we find that η increaseswith both κ and s0 [Figs. 1(d)
and 1(e)] Interestingly,we observe that η ∝ s20 (at constant κ).
We now present general arguments advocating for the

possibility to observe η values larger than 1
3
in active crystals.

In thermal equilibrium, linear elastic theory [4,51] leads to

η ¼ kBTjĜj2 3μþ λ

4πμð2μþ λÞ ; ð4Þ

where μ and λ are the Lamé elastic constants. Melting
occurs roughly when entropy and elastic energy for creating
a dislocation are balanced. This statement, made precise by
KTHNY [6], yields the melting temperature

kBTm ¼ l2
0

μðμþ λÞ
4πð2μþ λÞ : ð5Þ

FIG. 1. Model defined by Eqs. (1) and (2) with d0 ¼ Dr ¼ 1, μr ¼ 1.5. (a) Phase diagram in the ðκ; s0Þ plane (details about its
elaboration in [48]). (b) Positional order correlation function ĝðrÞ in the crystal phase (κ ¼ 0.35, s0 ¼ 0.05, various system sizes).
(c) Same as (b) but for the bond order correlation function ĝ6ðrÞ. (d) Decay exponent η, extracted from plots similar to (b), as a function
of κ at various s0 values; the dashed vertical lines indicate our estimates of the melting transition. (e) Linear variation of η with s20 at
various κ values; inset: same data rescaled by a2, where a was extracted from noise spectra such as in Fig. 2(a) (see main text).
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Combining these two equations by eliminating kBT, and
using jĜj2l2

0 ¼ ð16=3Þπ2 for triangular lattices, yields
η ¼ ðμþ λÞð3μþ λÞ=3ð2μþ λÞ2 at melting, an expression
bounded from above by 1

3
.

Of course, things can be very different out of equilib-
rium. We argue here and show later that one can, in a sense,
still invoke the two equilibrium relations (4) and (5) but at
two different noise levels or effective temperatures: TS,
involved in (4), characterizes the large scale elastic defor-
mations of the crystal structure, and TD, involved in (5),
drives dislocation motion. Given that the weak polar
alignment of persistent polarities smoothes out local
irregularities, one can expect TD < TS, which, when (4)
and (5) are combined, yields η values at melting larger
than 1

3
[52].

These ideas can be made more concrete by considering
the polarity field s ¼ s0eðθÞ. Our observation that η ∝ s20
suggests that s can be taken as an effective space- and time-
correlated noise. We have calculated the spatial power
spectrum of s [Fig. 2(a)]. The plateaus at small wave
number define an effective temperature corresponding to
TS, while a lower noise level TD can be attributed to the
k > 1 (near lattice spacing) behavior [53]. These spectra
can be superimposed by dividing them by s20 (not shown),
whereas the low-k plateau values corresponding to TS
increase with κ [inset of Fig. 2(a)]. Note that this is
consistent with our observation that η increases with s20
(linearly) and with κ [Figs. 1(d) and 1(e)].
Most of our findings can be accounted for within linear

elastic theory. The equation governing the displacement
field u can be expressed as [44,54]

∂tu ¼ ðλþ μÞ∇ð∇ · uÞ þ μ∇2uþ s: ð6Þ

In equilibrium, s is a white noise defining a thermal
temperature kbT, but in our active crystal one can
expect [55]

∂ts ¼ −asþ b∇2sþ σ ð7Þ
with σ a white noise with hσαðr; tÞσβðr0; t0Þi ¼
s20Drρδαβδðr − r0Þδðt − t0Þ [as can be obtained from coarse-
graining Eqs. (1) and (2)]. Coefficients a and b are positive:
−as is a damping term accounting for the short range
correlations of polarities, and the Laplacian arises from the
weak aligning interactions.
The spatial spectrum of u can be calculated from the

linear Eqs. (6) and (7) [48]. Its small wave number limit
reads

lim
k→0

hjũðkÞj2i ¼ ρðλþ 3μÞ
μðλþ 2μÞ

s20Dr

2a2k2
; ð8Þ

which, compared to the equilibrium case, yields an effec-
tive temperature TS ¼ 1

2
s20Dr=a2 [56]. Good agreement is

found between linear theory and the numerical estimates of
hjũðkÞj2i: at fixed s0, varying κ, rescaling wave numbers by
k�ðκÞ and spectra by a coefficient c�ðκÞ yields an excellent
collapse which reveals a 1=k2 behavior at low k followed by
a 1=k6 decay at high k [Fig. 2(b), and calculation in [48] ].
The product c�ðκÞk�2ðκÞ provides an estimate of the
prefactor of 1=k2 in Eq. (8), and thus, using Eq. (4), of
the decay exponent η, which can be reexpressed as
η ¼ ð1=4πÞjĜj2c�k�2. As expected, these estimates of η
match very well those obtained by directly calculating the
decay of ĝðrÞ [Fig. 2(c)].
Remarkably, the spectra-based η values extend even

further than the direct ones, reaching η ≃ 20 for the case
presented in Fig. 2(c). The direct evaluation of η breaks

FIG. 2. (a) Spatial spectra of s for various κ values. Black dashed curves are fits by the function hjs̃2ðkÞj2i ¼ s20Drρ=ðaþ bk2Þ
obtained by solving Eq. (7) [48], from which we extract estimates of a. Inset: variation of a with κ. (b) Spatial spectra hjuðkÞj2i for
κ ¼ 0.3, 0.35, 0.4, 0.44, 0.48, 0.52, 0.56 from bottom up (lower curves) and their collapse hjuðkÞj2i=c�ðκÞ vs k=k�ðκÞ obtained by
choosing appropriate scaling parameters c�ðκÞ and k�ðκÞ. (c) variation with κ of jĜj2c�k�2=4π (jĜj2 ¼ 4π2) and η measured as in Fig. 1
from the decay of ĝðrÞ; inset: c�ðκÞ and k�ðκÞ values used to collapse spectra in (b). (d) − log ĝ6jr→∞ vs s20 for Dr ¼ 1 and κ ¼ 0 (gray
stars), κ ¼ 0.17, 0.26, 0.35, 0.44 (down triangles from right to left), and for various Dr ¼ 1

8
; 1
4
; 1
2
; 2; 5; 10; 20; 40; 80; 160; 320; 640 at

κ ¼ 0 (up triangles) (solid lines are near perfect fits to linear functions of s20) (e) variation with Dr (top) and κ (bottom) of s20-rescaled
temperatures t6 and tS extracted from fits shown in (d) and from corresponding estimates of η (see text). [L ¼ 384, s0 ¼ 0.05 in (a),
s0 ¼ 0.01 in (b)–(e)].
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down when η → 2 since then the very notion of Bragg peak
with power-law divergence disappears [51]. Nevertheless,
even though distortions of the crystal exceed the lattice
spacing, the deformation field u behaves smoothly, locally
preserving the crystalline order while hexatic bond order is
clearly long range [Figs. 3(a) and 3(b)]. As expected, the
structure factor presents a sixfold symmetry in Fourier
space (testifying of crystal order), but it consists of smooth,
nondiverging, noisy extended peaks [Fig. 3(c)]. The central
region flattens as jqj → 0 and the further peaks in the high
q region show a q−2 scaling. All this is qualitatively
different from the behavior at smaller κ values where η
is smaller than 2 and peaks with a power-law divergence
jqy − q�jη−2 are observed [Fig. 3(d)]. Thus, estimates of η
obtained via hjũðkÞj2i remain well defined. Contrary to
direct measurements, they can be extended almost up to the
crystal-hexatic transition.
We now consider the bond order properties of our active

crystals. At fixed parameter values, one can estimate the
asymptotic nonzero value ĝ∞6 ¼ limL;r→∞ĝ6ðrÞ from data

such as those in Fig. 1(c). In equilibrium, linear theory
predicts that ĝ∞6 decreases exponentially with temperature
[51]. Herewe do observe that− logðĝ∞6 Þ ∼ s20 for a variety of
Dr and κ values [Fig. 2(d)]. This suggests the existence of a
“bond-order temperature” T6 ¼ t6ðDr; κÞs20 with the
rescaled temperature t6ðDr; κÞ proportional to the prefactor
of s20 for the lines of Fig. 2(d). To be a meaningful temper-
ature, though, the absolute value of T6 must be adjusted so
that it coincides with TS in the equilibrium Dr → ∞
limit where the system is subjected to a white noise.
Since TS ¼ ðDr=2a2Þs20, we define a rescaled temperature
tSðDr; κÞ ¼ TS=s20 ¼ Dr=2a2, and globally adjust t6 so that
it coincides with tS in theDr → ∞ limit. Our data then show
how t6 departs from tS asDr decreases, even in the absence
of alignment (κ ¼ 0). Similarly, t6 < tS, and increasingly so,
when κ is increased [Fig. 2(e)]. That T6 can easily be much
smaller than TS indicates that fluctuations of bond order can
remain rather gentle while positional order ones are strong.
Since bond disorder helps trigger the unbinding of dis-
location pairs, one can argue that T6 is closely related to TD,
confirming the scenario introduced earlier.
We finally show that our results are not specific to soft

interaction potentials and confirm—this was already shown
in Fig. 2(e)—that alignment is not necessary to observe
extremely deformable active crystals. We revisited the
crystals of active Brownian particles investigated recently
by Paliwal and Dijkstra [16], which were declared to
exhibit a “defectless hexatic phase,” a conclusion drawn
from positional order correlations decaying faster than a
η ¼ 1

3
power law. Particles now interact via only pairwise,

hardcore repulsive forces. Angles follow Eq. (2) with κ ¼ 0
and positions are governed by

_ri ¼ s0eðθiÞ þ μr
X

j∼i
∂rUðrijÞeij; ð9Þ

where UðrÞ ¼ 4ε½ðσ=rÞ12 − ðσ=rÞ6� þ ε is a repulsive
Weeks-Chandler-Andersen potential cutoff at rc ¼ 21=6σ.

FIG. 3. Highly distorted configuration in the crystal phase for
which the effective decay exponent η ≃ 14 (κ ¼ 0.56, s0 ¼ 0.01,
L ¼ 1536). (a) Displacement field u (color is orientation, bright-
ness is magnitude) with superimposed contour lines drawn for
integer values of juj in units of lattice spacing. (b) Hexatic bond
order field ψ6 [color scheme as in (a)]. (c) Instantaneous static
structure factor SðqÞ ¼ ρ�ðqÞρðqÞwhere ρðqÞ ¼ heiq·rjij (color in
linear scale); the inset is a zoom on the region of the first quasi-
Bragg peak. (d) Time-averaged static structure factor hSðqyÞit
measured at qx ¼ 0 superimposed on that obtained for κ ¼ 0.35
forwhich η ≃ 0.027. Inset: zoomon the first peak located atq ¼ q�

showing an algebraic divergence jqy − q�jη−2 only for κ ¼ 0.35.

FIG. 4. Crystal phase of active Brownian particles interacting
via a repulsive WCA potential (initial conditions as in other
figures, ρσ2 ¼ 1.25, ϵ ¼ μr ¼ 1). (a) ĝðrÞ in the crystal phase
(s0 ¼ 8, various system sizes), showing a decay exponent
η ≃ 0.58; inset: η vs s20=Dr for various Dr and s0 values
(L ¼ 768). (b) Same as (a) but for the bond order correlation
function ĝ6ðrÞ; inset: ĝ∞6 vs s20=Dr.
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Using parameter values similar to those at which “defect-
less hexatic order” was reported but considering larger
systems, we find instead a bona fide crystal phase, with
clear algebraic decay of positional order—and η values
easily larger than 1

3
—, while bond orientational order is

truly long range (Fig. 4) [58]. Varying Dr and s0 we find
again that η depends only on TS ¼ s20=2Dr, while ĝ∞6 does
not (insets of Fig. 4), indicating that, in this case
also, T6 < TS.
To summarize, we have shown that fluctuations in 2D

active crystals can induce extremely large deformations
without melting: bond order remains long range, and
positional order decays algebraically, but with an exponent
η not limited by the 1

3
bound given by KTHNY theory. For

the simple cases studied, linear elastic theory allowed us to
rationalize our findings in terms of well-defined effective
temperatures TS and T6 quantifying, respectively, large-
scale deformations and bond-order fluctuations. We found
in particular that T6, which is expected to control melting,
can be much smaller than TS, allowing thus extreme
spontaneous deformations while long-range bond order
is preserved. The root of our results, obtained both with and
without weak alignment of the intrinsic axes of active
particles, lies in the sole time persistence of these polarities
[59]. We thus expect similar phenomena to be present in
other types of active crystals, such as those made of chiral
or spinning units. Generalizing further, the key ingredient
can be seen to be the existence of some effective time-
correlated local noise. In line with this idea, preliminary
results indicate that even passive crystals submitted to an
active bath can display large spontaneous deformations.

We thank Benoît Mahault for a careful reading of the
manuscript. This work is supported by the National Natural
Science Foundation of China (Grants No. 12275188 and
No. 11922506).
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