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We construct the first four-dimensional multiple black hole solution of general relativity with a positive
cosmological constant. The solution consists of two static black holes whose gravitational attraction is
balanced by the cosmic expansion. These static binaries provide the first four-dimensional example of

nonuniqueness in general relativity without matter.
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Introduction.—Black holes are famously featureless.
This idea is embodied by the no-hair theorems, which
state in essence that stationary black holes are uniquely
characterized by their mass, angular momentum, and
charge [1-11].

It should be noted that there are many situations where
black hole uniqueness, as we have expressed it, is known to
be violated. A well-known example involves multihorizon
configurations of charged, extremal black holes [12,13].
Other examples include higher dimensions [14], anti-de
Sitter asymptotics [15—17], or exotic matter like classical
Yang-Mills fields, complex scalars, and Proca fields
[18-20].

Additionally, there are some mathematical gaps in fully
establishing black hole uniqueness, even in the more
limited case of four-dimensional pure gravity in flat space.
Indeed, asymptotically flat multi-Kerr black holes, where
their gravitational attraction might be balanced by spin-spin
interactions, have not been ruled out (see, e.g., [21-33] for
attempted constructions that yield singular configurations).
Though for static solutions, a classic theorem due to
[34-36] precludes the existence of regular asymptotically
flat multiple black holes.

Despite these (and potentially more) counterexamples,
there is currently no experimental or observational evidence
that black hole nonuniqueness can be realized in astro-
physical or cosmological contexts. Indeed, the no-hair
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theorems are fully consistent with observational results
from the LIGO consortium [37].

However, the no-hair theorems assume that spacetime is
asymptotically flat, a feature that is violated in our Universe
at the longest scales by the presence of a cosmological
constant [38—42]. The resulting cosmic expansion might
balance out the gravitational attraction of two or more black
holes, allowing multiple black holes to exist in static
equilibrium. Such a configuration would share the same
mass and angular momentum as some single-horizon black
hole and therefore serve as a more realistic counterexample
to black hole uniqueness.

The aim of this Letter is to demonstrate that such a
multihorizon configuration indeed occurs within general
relativity. We will focus on the simplest case with two
equal-mass black holes that do not rotate or contain charge,
but our results and methods can be straightforwardly
generalized. We will first show that these black binaries
can be anticipated using intuition from Newton-Hooke
theory, and then construct these solutions by solving the
Einstein equation numerically. Finally, we study the proper-
ties of these binaries in detail.

Our results, along with physical intuition, suggest that
the static de Sitter binaries are dynamically unstable.
Nevertheless, there remains a possibility that they can be
stabilized with the introduction of charge or angular
momentum. We will comment on this and other matters
in the conclusions.

Before we continue, we mention some closely related
work. Dynamical (i.e., out of equilibrium) multiple black
holes in Einstein-Maxwell theory with a positive cosmo-
logical constant were found in [43]. The “rod structure”
corresponding to our static binaries were anticipated and
examined in detail in [44]. In [45], a novel mechanism for
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balancing multiple black holes was proposed. These con-
structions provide Ricci-flat, closed-form solutions for
static binaries supported by expanding bubbles of nothing.
Mechanically, these solutions behave similarly to the static
binaries we find.

Finally, we mention the mathematical papers [46—48],
which might seem to rule out the existence of static black
binaries in de Sitter. We will show that the assumptions
made in [46,47] do not apply, and that (for technical
reasons) this conclusion from [48] is not correct.

Newton-Hooke.—Let us first set out to see if the
aforementioned multiple black hole configurations are
allowed within Newtonian gravity. We adopt geometrized
units in which c =G =kp =h = 1.

Consider a configuration of N black holes with masses
m,, witha = 1, ..., N. For the Newtonian approximation to
be valid, we assume that the distances between the black
holes are much larger than their masses. We now include
the effects of the cosmological constant A =3/£% > 0,
where ¢ is the de Sitter length scale. Accordingly, we
assume that the entire configuration of black holes lies
within a distance much smaller than # and consider the
Newton-Hooke equations of motion [49,50]
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where x, are the positions of the black holes.
Static solutions exist when

Xq = mb(xa _xb) (2)
2 b#a |xa _xb|3

Such solutions are known as “central configurations” and
provide homothetic solutions of the Newtonian N-body
problem that have applications to Newtonian cosmology.
Equation (2) can also be obtained from the Dmitriev-
Zeldovich equations [51] by using the scale factor
S(t) = /%), corresponding to a de Sitter background in
“stead-state” coordinates [49,50,52,53].

Consider a central configuration with two equal mass
black holes aligned along the z axis and separated by a
distance d. That is, N =2, x; = —x, = (d/2)e,, and

m, = my, = M. Then Eq (2) imposes
& ry
i G)

where r, = 2M is the Schwarzschild radius.

The requirements that the Newton-Hooke approximation
should be valid and that the black holes are inside a single
cosmological event horizon amount to
d<?¢, and

r.<d, rpK . (4)

If the distance between the black holes is given as in
Eq. (3), then we see that the first two conditions above are
satisfied if we assume the third, i.e., if the black holes are
small enough. We therefore conclude that static de Sitter
binaries with small black holes are consistent with Newton-
Hooke theory.

For later use, we introduce the event horizon Hawking
temperature 7, = (4zr, )" and rewrite Eq. (3) as

d 1

¢ (4ntT,)'P ®)

We will confirm that our numerical solutions to the Einstein
equation satisfy this scaling in the appropriate limit.

Numerical construction.—We now construct static bina-
ries in general relativity by numerically solving the Einstein
equation with a positive cosmological constant:

3
Ry, = ﬁgab’ (6)

where R, is the Ricci tensor and g, is the metric tensor.

We use the DeTurck method, first introduced for general
relativity in [54] and reviewed in [55,56]. This method
provides a convenient way of addressing the issue of gauge
invariance, which ultimately causes the Einstein equation
[Eq. (6)] to yield a set of ill-posed, nonelliptic partial
differential equations (PDEs).

The DeTurck method involves choosing any reference
metric § with the same symmetries and causal structure as
the solution we seek. In this case, our reference metric is
static, contains two identical black holes and a cosmologi-
cal horizon, and is axisymmetric. There is therefore a
discrete Z, symmetry, as well as two Killing vector fields
k = d/0t and m = 9/d¢p. We further assume that the black
holes and cosmological horizon are Killing horizons
generated by k. Our choice of reference metric involves
a combination of the Bach-Weyl solution with two identical
black holes [57] (equivalent to the Israel-Khan solution
[58,59] with two black holes) and the static patch of de
Sitter space. Its design is detailed in the Supplemental
Material [60].

We then write down the most general metric ansatz g that
respects the desired symmetries and causal structure. In this
case, the metric ansatz depends nontrivially on two
coordinates (i.e., it is cohomogeneity-two, and will yield
two-dimensional PDEs).

We then solve the Einstein-DeTurck equation

3
2 Yab> (7)

a afb
where & = g¥“[% (g9) —T'.(3)], and T'(g) is the metric-
preserving Christoffel connection associated to a metric g.
Unlike the Einstein equation, the Einstein-DeTurck equa-
tion [Eq. (7)] yields a set of elliptic PDEs [54-56,61],
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which gives a well-posed boundary-value problem with
appropriate physical boundary conditions.

The Einstein-DeTurck equation [Eq. (7)] is solved
numerically. One complication is that the integration
domain contains five boundaries: the Z, reflection surface,
the inner and outer portions of the symmetry axes, the black
hole horizons, and the cosmological horizon. We handle
this domain using patching techniques. This and other
numerical methods we use are described in [56] and
detailed in the Supplemental Material.

After solving Eq. (7), we must verify that the solution
actually solves the Einstein equation, i.e., that £ = 0, and is
therefore not a Ricci soliton (for which & # 0). Under many
circumstances [61,62], it can be proved that these unwanted
Ricci solitons do not exist. Unfortunately, the present case
is not one of these circumstances. Indeed, with a positive
cosmological constant, Ricci solitons are known to exist
(see, e.g., [63]). Nevertheless, ellipticity guarantees local
uniqueness. That is, solutions with £ =0 cannot be
arbitrarily close to solutions with £ # 0, and thus the norm
£%&, can be monitored to identify whether our numerical
discretization converges in the continuum to a Ricci soliton
or to a true solution of the Einstein equation. In the
Supplemental Material, we provide ample evidence that
the numerical solutions we construct are not Ricci solitons.

Results.—Having numerical solutions corresponding to
static black binaries in de Sitter, we can now describe their
properties and compare the numerical results to Newton-
Hooke theory when the latter is valid.

We expect to find agreement with Newton-Hooke theory
when the black holes become sufficiently small, or alter-
natively, when the black hole temperature becomes suffi-
ciently large T, Z > 1. In Fig. 1, we provide a log-log plot
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FIG. 1. Proper distance between the black hole horizons versus

the black hole temperature. The solid black line shows the scaling
[Eqg. (5)] according to Newton-Hooke analysis and the blue dots
show numerical data according to general relativity.

of the proper distance between the horizons of the two
black holes along the symmetry axis P,/¢, as a function of
temperature 4z7 . ¢. The solid black line is the scaling
[Eq. (5)], and the blue dots are the numerical data. The
agreement at large values of T, ¢ shows the validity of the
Newton-Hooke analysis and corroborates our numerical
construction.

We have not managed to find solutions with large black
holes (small 47T, ¢). Because our solutions do not have
regions of large curvature, there might be a “turning point”
to a new branch of solutions. A similar phenomenon occurs
for localized Kaluza-Klein black holes when the black
holes are large relative to the Kaluza-Klein -circle
[54,55,64—-83]. We leave the exploration of this region of
parameter space for future work.

Let us now discuss black hole thermodynamics. For a
central configuration containing N black holes inside the
static patch of de Sitter, the covariant phase space formal-
ism [84-95] shows that the following form of the first law
of black hole mechanics holds:

TWas\) = -1.4s.. (8)
i=1
where T, is the temperature of the cosmological horizon,

and S, is its entropy (i.e., horizon area). Tif) and § S:) are the
same quantities, respectively, for the ith black hole. With
N = 2 and equal-mass black holes, we find

2T, dS, = -T.dSs.. (9)

We have checked that our data satisfies this form of the first
law to within 0.01%.
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FIG. 2. Total black hole entropy versus the cosmological
horizon entropy. The blue dots are numerical data for static
binaries (S =2S,) and the solid black line is for the single
Schwarzschild-de Sitter black hole.
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0.4

FIG. 3.

Contour plot showing the level sets of the lapse function N. The cosmological horizon is the outer solid black semicircle. The

horizon axes has the two black hole horizons as solid magenta lines, and the outer and inner axes in dashed black lines. The green square

is where N takes its maximum value.

Following [96], we now consider the entropy, which
must increase during time evolution. The blue dots in Fig. 2
show the entropy of the static binary as a function of the
entropy S, of the cosmological horizon. The black curve
shows the entropy for the single Schwarzschild-de Sitter
black hole (also known as the Kottler black hole). We see
that for any given S, the single Schwarzschild black hole
has higher entropy than the binary. This, together with the
second law of thermodynamics, indicates that classically
the binary can evolve toward the single black hole but not
the other way around. The static black binary is therefore
thermodynamically unstable. Beyond the classical level,
when the black holes are small, Hawking radiation should
however also play a role in this discussion.

The fact that (at least) two solutions exist for a
given cosmological horizon entropy implies that the
Schwarzschild-de Sitter black hole is not unique. This is
the first counterexample to the no-hair conjecture [97] for
pure gravity with a positive cosmological constant.

We now comment on the uniqueness theorems for de
Sitter black holes [46—48] that would, under certain
assumptions, rule out the existence of static de Sitter
binaries. In [46], the level sets of the lapse function N =
/=9y are assumed to be surface forming. In particular, this
means that the level sets must consist only of 2D surfaces.
In [47], the set MAX(N) = {x € M:N(x) = Npu}
where N, is the maximum value of N in the manifold
M, is assumed to disconnect M into an inner region M_
and an outer region M, with the same virtual mass. Our
static binaries do not satisfy either of these assumptions.
Indeed, in Fig. 3 we show the level sets NV in our domain of
integration for a typical solution (all of our solutions show
the same qualitative behavior). The coordinates (r,z) are
defined in the Supplemental Material. The cosmological

horizon is represented by the outer solid black semicircle,
the two black hole horizons are marked by solid magenta
lines along the line » = 0, and the inner and outer portions
of the symmetry axes are given by the dashed horizontal
line. Finally, the green square marks the location of the
maximum of N in M. This maximum represents an S' on
the manifold, which is not a 2D surface, and it also does not
partition the manifold into two regions. Therefore, our
static binaries fail to satisfy the assumptions in [46,47].

Finally, we comment on [48]. We believe that this work
is not correct for a rather technical reason. Beginning with
the Schwarzschild-de Sitter black hole, the authors in [48]
argue that they can construct an asymptotically flat metric
that is conformal to the original one, is topologically
S x 82 deprived of one point, and has zero Arnowitt-
Deser-Misner (ADM) mass. If that were true, the rigidity
statement in the positive mass theorem [98—102] would not
only imply that the original metric is conformally flat, but
also that S' x $? with one point removed is diffeomorphic
to R3, which is impossible.

Conclusions.—We constructed the first example of a
multiple black hole solution within general relativity with a
positive cosmological constant and established that the
leading behavior of these solutions agrees (for small black
holes) with estimates from Newton-Hooke theory. Based
on thermodynamic considerations, we argued that these
solutions are thermodynamically unstable. Because the
configuration requires a delicate balance between gravita-
tional attraction and cosmic expansion, we expect these
solutions to also be dynamically unstable.

We have focused on the static configuration of two
identical black holes, but our results and methods can be
generalized. First, consider the case where the black holes
have different masses. When one of the black holes is much
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smaller than the other, one can use the geodesic approxi-
mation to predict the existence of such a configuration.
Indeed, one can easily confirm the existence of static orbits
for timelike particles on a Schwarzschild-de Sitter black
hole background, thus providing further evidence for the
existence of this more general central configuration. Note
that if [48] were correct, this asymmetric binary would also
not exist.

We can also include rotation, which will introduce spin-
spin interaction of the black holes. This opens the pos-
sibility of continuous nonuniqueness. Consider, for exam-
ple, the case with two identical black holes rotating in
opposite directions along the axis of symmetry. This
configuration will have vanishing total angular momentum,
and will thus be in the same class as the Schwarzschild-de
Sitter black hole. Work in this direction is underway.

Perhaps more interestingly, because spin-spin inter-
actions act on shorter length scales, they could provide a
mechanism for stabilizing the binary. This possibility
resembles the mechanism that provides stability for mol-
ecules. Work in this direction is underway.

We could also consider central configurations containing
N > 2 static black holes in the static patch of de Sitter.
These configurations can show interesting properties within
the Newton-Hooke approximation. For instance, when
N > 13, minimal energy central configurations do not lie
on a regular polyhedron [49]. We thus expect the equivalent
property within general relativity. The study of these
configurations is within the reach of the numerical methods
employed in this Letter.
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