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The pursuit of exotic phases of matter outside of the extreme conditions of a quantizing magnetic field is
a long-standing quest of solid state physics. Recent experiments have observed spontaneous valley
polarization and fractional Chern insulators in zero magnetic field in twisted bilayers of MoTe2, at partial
filling of the topological valence band (ν ¼ −2=3 and −3=5). We study the topological valence band at half
filling, using exact diagonalization and density matrix renormalization group calculations. We discover a
composite Fermi liquid (CFL) phase even at zero magnetic field that covers a large portion of the phase
diagram near twist angle ∼3.6°. The CFL is a non-Fermi liquid phase with metallic behavior despite the
absence of Landau quasiparticles. We discuss experimental implications including the competition between
the CFL and a Fermi liquid, which can be tuned with a displacement field. The topological valence band
has excellent quantum geometry over a wide range of twist angles and a small bandwidth that is,
remarkably, reduced by interactions. These key properties stabilize the exotic zero field quantum Hall
phases. Finally, we present an optical signature involving “extinguished” optical responses that detects
Chern bands with ideal quantum geometry.
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Strong interactions can lead to exotic phases of matter
such as non-Fermi liquids. A remarkable example is the
composite Fermi liquid (CFL) that occurs in a half or
quarter filled lowest Landau level (LLL). The CFL is a
non-Fermi liquid with an emergent Fermi sea composed
of charge neutral “composite fermions” [1–4] and has
anomalous responses to a wide variety of experimental
probes [5–10]. The gapless CFL state has provided an
elegant interpretation for various Abelian [1–4] and non-
Abelian gapped topological phases [11].
This work proposes an alternative route to realize CFLs.

Our proposal is based on twisted 2D transition metal
dichalcogenides (TMD), a family of platforms that have
realized a wealth of interesting phenomena [12–27], and
generated much theoretical interest for their topological
properties [28–41]. A recent experiment [26] provided
strong evidence for zero field fractional Chern insu-
lators (FCIs) [42–45] at fillings ν ¼ −2=3 and −3=5 in
twisted bilayer MoTe2 (tMoTe2). The ν ¼ −2=3 FCI was
separately found by Ref. [27]. These experiments
were preceded by theoretical models of Chern bands in
tMoTe2 [29], as well as numerical works that found FCIs at
partial fillings in MoTe2 [46] and in WSe2 [47,48]. More
recently, theoretical studies combining ab initio lattice
relaxation and exact diagonalization on tMoTe2 [49,50]
have also obtained FCIs.
FCIs were previously reported at high magnetic

fields [51] by partially filling Hofstadter bands [52]
of a substrate-induced moiré potential in graphene.
Shortly thereafter, with the discovery of correlated

phenomena [53,54] and spontaneous Chern insulators
[55–57] in twisted bilayer graphene (TBG), FCIs in
zero field were theoretically anticipated in magic-angle
TBG [58–60]. Experimental observations of FCIs in this
setting soon appeared [61], albeit in a small magnetic field
that theory [62] found was needed to improve the band-
width and quantum geometry. These barriers are strikingly
absent in tMoTe2, motivating us to go beyond zero field
FCIs to an exotic gapless state—the CFL.
We will focus on the gapless CFL phase, which pre-

sents challenges [63–66] relative to the well-understood
spectral and entanglement signatures present in gapped FCI
phases [67–72]. Combining large scale exact diagonaliza-
tion (ED) with density matrix renormalization group
(DMRG) numerics, we find a broad CFL phase at experi-
mentally realistic parameters of tMoTe2. Furthermore, we
present an explicit trial wave function that captures the
essential features of the zero field CFL and its low energy
spectrum. Finally, we discuss experimental signatures that
distinguish the CFL from Fermi liquids, enabling experi-
mental exploration.
Continuum model.—We consider a model [29] for the

valence bands of a twisted TMD with gate-screened [73]
Coulomb interactions

Ĥ¼−ĥþ 1

2A

X
q

Vq∶ρ̂qρ̂−q∶; Vq¼
2π tanhðqdÞ

ϵrϵ0q
; ð1Þ

where ρ̂q is the density operator, A is the sample area,
normal ordering is relative to filling ν ¼ 0, d is gate
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distance, and ϵr ≈ 8–40 is the dielectric constant [49].
Because of spin-valley locking [29], the low energy holes
of theK (K0) valley are locked to spin-up (-down). The total
kinetic term is h ¼ hK þ hK0 with [29]

hK ¼
"
hbðrÞ þ V=2 TðrÞ

T†ðrÞ htðrÞ − V=2

#
; ð2Þ

where hlðrÞ ¼ −ðp − ℏvFKlÞ2=2m� þ ΔlðrÞ and hK0 is
determined by time reversal. Here the layer-diagonal terms
include the quadratic monolayer TMD dispersion centered
at rotated monolayer K points Kt=b, shifted by the dis-
placement field V, and the moiré potentials Δb=tðrÞ ¼
2v

P
j¼1;3;5 cos ðbj · r� ψÞ. The off-diagonal terms

are interlayer tunnelings TðrÞ ¼ ωð1þ eib2·r þ eib3·rÞ,
where bj are the reciprocal vectors obtained by counter-
clockwise ðj − 1Þπ=3 rotations of b1 ¼ ð4π3−1=2θ=a0; 0Þ.
We focus on tMoTe2, where recent first-principles calcu-
lations [49] (see also [29,50]) found ða0; m�; V;ψ ;ωÞ ¼
ð3.52 Å; 0.6me; 20.8 meV;−107.7°;−23.8 meVÞ. We take
θ ¼ 3.7° throughout.
Flat almost-ideal Chern band.—Figure 1(a) shows the

band structure for electrons hK . The top moiré band has
Chern number C ¼ 1, due to the skyrmionic character of
the layer spinor [29].
Recent experiments [26,27] demonstrate that the many-

body ground state is ferromagnetic (valley-polarized)
in at least the range −1.2≲ ν≲ −0.4. The “parent state”
for this regime is the correlated insulating state at ν ¼ −1.
Figure 1(b) shows its band structure within self-consistent
Hartree-Fock (SCHF), which is strongly renormalized by
interactions. Strikingly, the renormalized C ¼ 1 band (red)
becomes almost exactly flat, with bandwidth 1.6 meV at
θ ¼ 3.7°. This reduction [74] in bandwidth from interaction
effects is highly unusual [75].
The many-body physics of such flat bands is determined

by the Bloch wave functions, often through their “quantum
geometry.” Recent theories [42,58,80–91] emphasize the
role of Kähler geometry in FCI stability. We say that a
band has “ideal quantum geometry” if the trace inequality
T ¼ R

d2k½TrgFSðkÞ−ΩðkÞ� ≥ 0 is saturated [58,83,87,92];
here gFS is the Fubini-Study metric and Ω is the Berry
curvature. Ideal bands are “vortexable” in the sense that
ẑP ¼ PẑP, where P is the projector onto the band and
ẑ ¼ x̂þ iŷ [89,93]. Vortexability enables the direct con-
struction of Laughlin-like FQHE trial states that are exact
many-body ground states for ideal bands with short-range
interactions [89,93,94]. Figure 1(c) shows T, the deviation
from ideality, and σ½Ω�, the standard deviation of Berry
curvature. Both are small in tMoTe2 for 3° ≤ θ ≤ 4°. The
top valence band thus has the rare combination of excellent
quantum geometry and negligible bandwidth that favors
lattice realizations of exotic quantum Hall states at zero
magnetic field.

The interacting physics of the flat band is modeled by
projecting Eq. (1) via −ĥ →

P
k ϵðkÞĉ†kĉk and ρ̂q → ρ̄q ¼P

k ĉ
†
khukjukþqiĉkþq, where ϵðkÞ and uk are the dispersion

and periodic part of Bloch wave function. Figure 1(d)
shows the bare (ν ¼ 0) and renormalized (ν ¼ −1) band-
widths versus twist angle, minimized near 3° and 3.6°,
respectively. Figure 1(e) confirms that FCIs are stabilized
at ν ¼ −1=3, −2=3—in accordance with previous results
[46,49,50]. The mild angular dependence should make
FCIs relatively robust to twist angle disorder. Notably the
gap at ν ¼ −2=3 is largest where the bandwidth at ν ¼ −1
is smallest [95]. We therefore expect∼3.6° to be optimal for
FQH physics at half filling.
Composite Fermi liquid at ν ¼ −1=2.—We now go

beyond gapped FCIs and examine the more exotic gapless

FIG. 1. The top valence band has favorable conditions for
fractionalized topological phases. Band structure as seen from
(a) charge neutrality and (b) from ν ¼ −1 computed from self-
consistent Hartree-Fock. (c) Quantum geometry in terms of trace
condition T and Berry curvature deviation σ½Ω�. (d) Bare and
SCHF bandwidths and (e) the many-body gap of FCIs at ν ¼
−1=3 and ν ¼ −2=3 as a function of twist angle. The FCI gaps
are obtained from ED with Ne ¼ 8 and 16, respectively. (f) and
(g): ED spectrum for 14 particles at half filling for Coulomb
interaction in lowest Landau level and screened Coulomb
interaction in twisted MoTe2, respectively. Parameters:
ðθ; ϵr; dÞ ¼ ð3.7°; 15; 300 ÅÞ unless otherwise noted.
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CFL state [1,11]. We focus on ν ¼ −1=2 but our con-
clusions also apply to ν ¼ −3=4 (data in Supplemental
Material [96]).
(i) Many body spectrum: Figures 1(f) and 1(g) compare

the spectra of twisted MoTe2 and the lowest Landau level
(LLL) at half filling with 14 electrons, showing a one-to-
one correspondence at low energy. The LLL spectrum uses
the same geometry as tMoTe2 with Coulomb interactions.
This one-to-one similarity holds at all system sizes
Ne ¼ 8–14. We thus conclude that the ground state of Ĥ
at ν ¼ −1=2 is the same phase as the half-filled LLL
with Coulomb interactions—the CFL. The ground state and
low-energy excitations are at precisely the momenta
expected for compact composite Fermi sea (CFS) configu-
rations [113]. See Supplemental Material [96] for other
system sizes, and detailed matching of degeneracies,
momenta, and excitations to CFL expectations.
(ii) Absence of electron Fermi surface: A finite quasi-

particle weight Z > 0 gives the jump in electron occupa-
tions nðkÞ at the Fermi surface in a regular Fermi liquid
(FL). As a non-Fermi liquid, composite fermions have
vanishing Z, leading to the absence of Fermi surface
occupation discontinuities.
To characterize the CFL, we employ large-scale

iDMRG [114,115] calculations with the TenPy library
[116]. We use an infinite cylinder geometry with circum-
ference Ly ¼ 5–10, corresponding to Ly evenly spaced
horizontal wires through the Brillouin zone [Fig. 2(c)
inset]. We take a computational basis of hybrid Wannier
orbitals [117–119], and use “MPO compression” [120,121]
to accurately capture gate-screened Coulomb interactions
in the flat band. Under weak interactions (ϵr ¼ 100), we
find the FL expected from band theory at ν ¼ −1=2, with
an almost-circular Fermi surface centered at Γ [Fig. 2(a),
left] with radius kF ¼ ðABZ=2πÞ1=2. The Supplemental
Material [96] shows electrons, holes, and particle-hole
pairs are likely gapless [122], confirming the Fermi liquid.
Under realistic interactions (ϵr ¼ 15) with the same

parameters, the ground state has quasi-uniform occupations
jnðkÞ − 1

2
j < 0.17 [Fig. 2(a), right]. Because charge

QE ¼ 1 correlations are short ranged, the state is incon-
sistent with an electronic Fermi liquid. However, the state
has high entanglement and significant electrically neutral
correlations, consistent with the gapless density fluctua-
tions expected from an emergent CFS. To reveal the
“hidden” CFS, we turn to the structure factor.
(iii) Scattering across the composite Fermi sea:

Figure 2(b) contrasts the connected structure factor SðqÞ ¼
hρ̂qρ̂−qi − hρ̂qihρ̂−qi between the FL and the CFL. Both
nearly vanish when jqj > 2kF, strongly implying that there
is a Fermi surface in the CFL phase whose constituent
fermions are not electrons. We then match the features of
SðqÞ to scattering events with different momentum transfers
across the putative CFS in Fig. 2(c), e.g., ĉ†k¼Gĉk¼B

scattering with qx ≈ 1.94kF. The tour-de-force work of

Geraedts et al. [63] showed such features are emblematic of
the CFS arising from the half-filled LLL. As every feature
in SðqÞ corresponds to such a scattering (quantitative
matching in the Supplemental Material [96]), we conclude
the state has an almost-circular [123] CFS composed of
non-Landau quasiparticles. These two independent numeri-
cal methods establish a CFL state at ν ¼ −1=2 (see the
Supplemental Material [96] for ν ¼ −3=4).
Zero field CFL wave function.—Standard theories of

composite fermions apply at B > 0, where emergent gauge
flux cancels external magnetic flux. These cannot
apply directly here at zero magnetic field. We therefore
construct an explicit zero-field CFL wave function. To start,
we approximate the geometry of the top tMoTe2 band as
ideal. Such bands have the general “LLL-like” wave
function [58,87],

ψ lðrÞ ¼ ϕðrÞζlðrÞ ¼ fðzÞe−KðrÞζlðrÞ; ð3Þ

FIG. 2. Numerical identification of the composite Fermi liquid
(CFL) from iDMRG. (a) Occupations nðkÞ in the Brillouin zone
at Ly ¼ 8 for the Fermi liquid (FL, left side) versus the CFL (right
side). (b) Connected structure factor SðqÞ ¼ hρ̂qρ̂−qi − hρ̂qihρ̂−qi
at Ly ¼ 8. Characteristic features of a Fermi surface are visible
for both the FL and CFL: near-vanishing weight outside
jqj ≈ 2kF, and peaks corresponding to momentum transfers inside
that radius. (c) Cuts of SðqÞ at constant qy for Ly ¼ 5 for the CFL.
Each peak or inflection in SðqÞ quantitatively matches scattering
events across the almost-circular composite Fermi surface (Inset).
Parameters match Fig. 1 with ϵr ¼ 15 (100) for the CFL (FL).
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where fðzÞ is holomorphic and ζlðrÞ is an orbital-
space spinor where

P
l jζlðrÞj2 ¼ 1. Here ϕðrÞ is the wave

function of a Dirac particle in an inhomogeneous, periodic,
magnetic field BðrÞ ¼ ∇2ReKðrÞ with one flux per unit
cell [58,124,125]. While ψ is symmetric under ordinary
translations, ϕðrÞ and ζlðrÞ are symmetric under magnetic
translations, with opposite magnetic twists [126], giving a
gauge redundancy ϕðrÞ → eþiλðrÞϕðrÞ, ζlðrÞ → e−iλðrÞζlðrÞ.
The form Eq. (3) implies that all many-body wave
functions within the band of interest have the form
Ψ ¼ Ψϕ

Q
i ζliðriÞ, where Ψϕ is a wave function of flux-

feeling particles; in the Supplemental Material [96] we
interpret this fractionalization in terms of a new type of
Chern band parton theory [127,128]; see also [129–134].
For example, we may use Read and Rezayi’s LLL ansatz
for the CFL [135] to obtain

ΨðfrigÞ¼PdetijψCF
ki
ðrjÞ

Y
i<j

ðzi−zjÞ2
Y
i

e−KðriÞζliðriÞ: ð4Þ

Here P ¼ Q
i Pi is the many-body projector to the top

band, and ψCF
ki

fill a Fermi sea [136].
Experimental signatures.—We conclude with experi-

mental implications of the quantum geometry and
CFL phase. Figures 3(a) and 3(b) show phase diagrams
of tMoTe2. At ν ¼ −1, SCHF finds the jCj ¼ 1 phase
transitions to a valley and layer polarized phase at large V.
At ν ¼ −1=2, we find a broad CFL phase centered around
3.8° that competes with layer polarized phases and C ¼ 1
Fermi liquids at larger V. The layer polarized region is
estimated from SCHF at ν ¼ −1, where an interaction-
driven layer-polarized state is more favorable. The
phase diagram at ν ¼ −3=4 is similar (see Supplemental
Material [96]), except the CFL is more sensitive to the
displacement field.
The almost ideal quantum geometry manifests optically.

If a band with projector P is vortexable, then ẑP ¼ PẑP
implies the velocity operator v̂� ¼ −i½x̂� iŷ; Ĥ�must obey
ðI − PÞv̂þP ¼ 0, i.e., left-circularly polarized transitions
are “extinguished.” This gives perfect circular dichroism:

σþ − σ−

σþ þ σ−
¼ 1; σ�ðωÞ ¼ ie2

ℏ

X
k;a≠b¼0

fab
ϵab

jhψkajv̂�jψkbij2
ω− ϵab

:

ð5Þ

Here ϵab ¼ ϵa − ϵb are energy differences and fab ¼
fðϵaÞ − fðϵbÞ are Fermi factors. Figure 3(c) shows σ�
for tMoTe2 at ν ¼ −1. As the C ¼ þ1 band is nearly
vortexable, transitions from the second and third valence
bands to the empty top valence band nearly vanish, giving
nearly perfect circular dichroism > 0.9 at resonance. The
inset shows a control experiment: the Haldane model has
Chern bands C ¼ �1 but not ideal geometry; σ− is not
extinguished there.

Finally, we discuss direct experimental probes of the zero-
field CFL. While the CFL and the FL are both compressible
and metallic, they differ in that the CFL’s excitations have
vanishing overlap with the electron in the limit of low
energies, and CFs themselves are best thought of as
(doubled) vortices in the electronic fluid [3,4,137–139].
This observation leads to a number of striking physical
responses that differ strongly from Fermi liquids. These
include (i) a “pseudogap” in the tunneling density of states
AðωÞ ∝ e−ω0=ω [140] as a function of biasω, which has been
observed between two CFLs with a tunnel barrier [5];
(ii) distinct dc conductivity in the clean limit: σxx → 0 in
a CFL in the absence of disorder kFl → ∞, whereas in the
FL, even in a Chern band, σxx diverges [141]; (iii) strong
violation of the Wiedemann-Franz law [138,139] which
compares heat and charge transport; (iv) quantum oscilla-
tionswith doping, that CFs feel amagnetic field∝ ðν − 1=2Þ
and can fill Landau levels, leading to Jain-like [1]
FCIs when fully developed, which can further be probed
using geometric resonance with a one-dimensional
periodic grating [3,6,7]; (v) vanishing thermoelectric con-
ductance αxx ¼ jx=ð−∂xTÞ due to approximate emergent

FIG. 3. Many-body phase diagrams and optical responses.
(a) Phase diagram at ν ¼ −1 with θ ¼ 3.7° showing a transition
from C ¼ 1 layer-unpolarized state to a C ¼ 0 layer polarized
state. (b) Phase diagram of the topological regime at ν ¼ −1=2:
The CFL phase is shown in red, whereas the green region
corresponds to the FL phase. Here LP indicates a layer polari-
zation instability determined from ν ¼ −1 SCHF. (c) Direct
optical probe of almost-ideal quantum geometry via an “extin-
guished” valence-valence optical responses in σ−, Inset: the
Haldane model at ðt; t2Þ ¼ ð1; 0.05Þ has nonideal geometry.
Parameters match Fig. 1.
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particle-hole symmetry [142,143]; (vi) surface acoustic
wave attenuation, a contactless probe that measures
σxxðqÞ ∝ jqj in the CFL [3], as opposed to σxx ∝ jqj−1 in
a clean FL [8].
Finally, we highlight properties of zero field CFLs that

transcend LLL physics. First, the Chern bands of MoTe2
have one effective magnetic flux quantum per moiré unit
cell, translating to 160 T at 3.7°. This vastly exceeds
laboratory magnetic fields, leading to enhanced energy
scales. The lack of real quantizing magnetic fields, how-
ever, opens up the possibility of employing zero field
experimental probes such as high resolution angle-resolved
photoemission spectroscopy (ARPES). Furthermore, the
exponentially suppressed tunneling density of states of the
CFL could be probed through tunneling from a proximate
Fermi liquid state, or via spatial variation of the twist angle,
which can be used to create a CFL-FL interface within the
same sample. Our work does not rule out the possibility
of a continuous quantum phase transition, driven by
displacement field, between the CFL and FL [133], which
could be studied experimentally. Since the effective mag-
netic field of the TMD originates from spontaneous break-
ing of time reversal symmetry through valley polarization,
rather than external magnetic field, domains between
opposite valley polarizations and hence between time-
reversal-related CFLs are expected. Transport properties
across such a domain wall would interrogate composite
fermions in an entirely new regime, and potentially shed
light on their proposed Dirac character [4,137,139]. Finally,
we note that moiré phonons occur on the same scale as the
effective magnetic length in this system; their interplay
with CFL physics is unclear at present and worthy of
future study.
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Note added.—Recently, we were alerted by Taige Wang to
the importance of layer polarization after our Letter was
announced on arXiv. Also, [144,145] appeared recently,
which overlap with parts of this work, and Ref. [146]
overlaps with the optical responses discussed here.

Subsequent to our work, transport experiments [147]
on twisted MoTe2 were performed and the results are
consistent with our findings.
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