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In financial markets, the market-order sign exhibits strong persistence, widely known as the long-range
correlation (LRC) of order flow; specifically, the sign autocorrelation function (ACF) displays long
memory with power-law exponent γ, such that CðτÞ ∝ τ−γ for large time-lag τ. One of the most promising
microscopic hypotheses is the order-splitting behavior at the level of individual traders. Indeed, Lillo, Mike,
and Farmer (LMF) introduced in 2005 a simple microscopic model of order-splitting behavior, which
predicts that the macroscopic sign correlation is quantitatively associated with the microscopic distribution
of metaorders. While this hypothesis has been a central issue of debate in econophysics, its direct
quantitative validation has been missing because it requires large microscopic datasets with high resolution
to observe the order-splitting behavior of all individual traders. Here we present the first quantitative
validation of this LMF prediction by analyzing a large microscopic dataset in the Tokyo Stock Exchange
market for more than nine years. On classifying all traders as either order-splitting traders or random traders
as a statistical clustering, we directly measured the metaorder-length distributions PðLÞ ∝ L−α−1 as the
microscopic parameter of the LMF model and examined the theoretical prediction on the macroscopic
order correlation γ ≈ α − 1. We discover that the LMF prediction agrees with the actual data even at the
quantitative level. We also discuss the estimation of the total number of the order-splitting traders from the
ACF prefactor, showing that microscopic financial information can be inferred from the LRC in the ACF.
Our Letter provides the first solid support of the microscopic model and solves directly a long-standing
problem in the field of econophysics and market microstructure.
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Introduction.—Can a statistical-physics approach help in
understanding macroscopic phenomena in financial mar-
kets from their microscopic dynamics [1,2]? In posing this
challenging thought, physicists have greatly benefitted
from recent high-frequency data for econophysics model-
ling of market microstructure [3,4], even at the level of
individual traders [5,6]. In this Letter, we provide the first
quantitative evidence of a historic econophysics theory
regarding the long-range correlation (LRC) in the market-
order flow [7–9].
Let us briefly review the trading rules in recent financial

markets, where traders have two options. The first option is
the limit order, by which traders provide the market
liquidity and show the potential prices at which they are
willing to transact. The second option is the market order,
by which traders immediately consume the liquidity and
transact at the best prices (i.e., the highest bid or the lowest
ask prices). This Letter tests an econophysics microscopic

model for the market-order flow, particularly on their
statistical persistence.
The strong persistence of the market-order flow under-

scores an established empirical law in financial markets
[3,8,9]: i.e., once a buy (sell) market order is observed, a
buy (sell) market order is likely to be observed (see Fig. 1).
This predictability regarding market orders is mathemati-
cally characterized by a power-law decay for the order-sign
autocorrelation function (ACF):

CðτÞ ≔ hϵðtÞϵðtþ τÞi ≈ c0τ−γ; 0 < γ < 1; ð1Þ

for large time-lag τ ≫ 1. Here ϵðtÞ is the market-order sign
at time t defined by ϵðtÞ ¼ þ1 [ϵðtÞ ¼ −1] for the buy
(sell) market order, h…i represents the ensemble average,
c0 is the prefactor, and γ is the power-law exponent for the
LRC. Because it is ubiquitously observed across broad
markets, the LRC is believed essential to a market
microstructure.
Then, what is the microscopic origin of the LRC as a

macroscopic phenomenon? One promising response is the
order-splitting hypothesis for individual traders’ behaviors
[7] [Fig. 1(a)]. This hypothesis claims the LRC appears
because some traders split large metaorders into a long
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series of small child orders. Because all the child orders
share for a while the same sign, there is weak predictability
of the future order sign, which is ultimately reflected in the
power-law decay of the ACF as summarized in Eq. (1)
[Fig. 1(b)]. Furthermore, Lillo, Mike, and Farmer (LMF)
proposed a simple microscopic theory based on the order-
splitting hypothesis. They assumed (i) the presence of
splitting traders (STs), and (ii) the power-law probability
density function (PDF) for the metaorder length L such
that PðLÞ ∝ L−α−1 with microscopic exponent α > 1. By
assuming random order submissions, the ACF macro-
scopically exhibits a power-law decay (1). Specifically,
they showed

γ ¼ α − 1; ð2Þ

which in this Letter we refer to as the quantitative LMF
prediction. The prediction (2) is beautiful and quantita-
tively powerful because it connects the macroscopic and
microscopic parameters in alignment with the central spirit
of statistical physics.
While the plausibility of this scenario was confirmed

qualitatively in [10] (i.e., a decomposition of the ACF into
an order-splitting component and the remainder), the
detailed verification of the quantitative prediction (2) has
been missing for 18 years. The original LMF paper [7]
reported an initial attempt to test their prediction. However,
they only confirmed a minimum consistency of their theory
(i.e., the theoretical line passes through the center of the
mass in the scatterplot; see Fig. 5 and Sec. III B in [11] for a
brief review) when lacking suitably large datasets.
In this Letter, together with companion paper [11], we

solve this long-standing econophysics problem precisely by
analyzing a large comprehensive microscopic dataset of the
Tokyo Stock Exchange (TSE). We accessed a special
microscopic dataset, including trading-account identifiers

(IDs) on the TSE, enabling us to track effectively the
behavior of trading accounts.Using ourmicroscopic dataset,
we first applied a strategy clustering of individual traders to
test assumption (i). In regard to market orders, and after
classifying all traders as STs or random traders (RTs), we
confirmed the presence of STs in most of the TSE markets.
We next studied the empirical metaorder-length PDF PðLÞ
to test assumption (ii), which we validated from our dataset.
With the measuredmicroscopic parameter α, we generated a
scatterplot between α and γ to test the quantitative LMF
prediction (2). Finally, we found the prediction (2) agreed
with our dataset, providing quantitatively the first solid
support for the LMF model as the minimal microscopic
description of the order-splitting behavior. As the last
discussion, we estimate the total number of the STs from
the observed prefactor c0. Our findings imply that the long
memory in the market-order ACF is useful in inferring
microscopic financial information.
Data description.—Let us briefly describe our dataset

provided by the Japan Exchange (JPX) Group, the platform
manager of theTSE.TheTSEbeing the biggest stockmarket
in Japan, our dataset covers all the order flows in the TSE
(market orders, limit orders, and cancellations), enabling us
to track their complete life cycle for all the stocks for nine
years (from the 4th January 2012 to the 30th December
2020). Furthermore, this dataset includes virtual server IDs
(VSIDs), a unit of trading accounts on the TSE. TheVSID is
not technically equivalent to the membership ID, because
any trader may have several VSIDs. However, we can effec-
tively define trader IDs to track individual trader behavior
with high resolution by appropriately aggregating VSIDs
[12,13] (e.g., if a limit order is submitted by VSID 1 and is
cancelled from VSID 2, both VSIDs are associated with the
same trader); see also [11] for more technical details.
Our study focused on the sign sequences of market

orders during double auctions from 09:00–11:30 and
12:30–15:00 Japan Standard Time. A yearly segmented

FIG. 1. Schematic of the LRC of the market-order flow and the order-splitting hypothesis (particularly, the LMF model); as a
shorthand notation forþ1 (−1), “þ” (“−”) signifies a buy (sell). (a) As a microscopic model, we assume the presence of STs. Also, STs
successively submit the child orders with the same sign for L times, where L is called the metaorder length and obeys power law
statistics, PðLÞ ∝ L−α−1. (b) Consequently, the LRC appears as a macroscopic phenomenon. The LMF theory predicts a quantitative
relation γ ¼ α − 1, which we empirically establish in this Letter through data analysis.
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order-sign sequence was extracted for each stock to obtain
one market data point. We only used data points with more
than 0.5 × 106 transactions and removed transaction data
from the opening and closing 10 min of auctions to
suppress the intraday-seasonality effect.
Assumptions of the LMF model.—As summarized in

Fig. 1, there are two key assumptions in the LMF model:
(i) the presence of STs who have large latent demand
(metaorders) and split them into small child orders, which
are assumed to share the same sign for L successive times,
and (ii) the metaorder length L obeys a power law PðLÞ ∝
L−α−1 with α > 1.
In previous literature, there was no solid direct evidence

of assumption (i), although [10] shows indirect but prom-
ising evidence based on the ACF decomposition. Also, the
plausibility of assumption (ii) was studied in [7] by
analyzing the off-book data for the London stock exchange
market as an “imperfect proxy.” However, with the absence
of appropriate datasets at that time, the precise estimation of
α became a technical problem for LMF verification. To
verify assumptions (i) and (ii) directly, it is necessary to
identify STs by strategy clustering at the level of individual
traders and then study their metaorder-length PDF to
measure α precisely.
Presence of STs.—We proceeded with strategy clustering

to identify STs. We studied the order-sign sequence
for each ST [Fig. 1(a)] to construct the metaorder length
L by defining L as a length of successively equal signs.
Concerning exceptional handling, if there was more than
one business day between two successive orders, we
assume they belong to different metaorders [14] to avoid
overestimating metaorder length.
For a given metaorder-length sequence, we apply the

binomial test for strategy clustering; the null hypothesis is
that the order-sign sequence is purely random (obeying a
symmetric Bernoulli process) and, thus, the trader belongs
to the RT set. The trader is regarded as an ST if the null
hypothesis is rejected with a significance level θ ≔ 0.01.
On the basis of this clustering scheme, we identified the

ST set for each market data point. With summary statistics
across all the markets during nine years, we evaluated
the empirical PDF for the ST percentage in each market
[Fig. 2(a)], and the contribution to market orders from the
ST set [Fig. 2(b)]. We concluded that typically a quarter of
all traders are STs, but they dominate the total market
orders. Via this strategy clustering, we thus validated
assumption (i) directly.
Metaorder-length PDF.—Having identified the set of

STs, we measured the aggregated empirical PDF for
the metaorder length of all STs. Most of the aggregated
complementary-cumulative distribution functions (CCDFs)
for the metaorder length of STs obey a power law P>ðLÞ ∝
L−α with the CCDF defined by P>ðLÞ ≔

R∞
L PðL0ÞdL0. As

a typical example, we plotted the metaorder-length CCDF
for the Toyota Motor Corporation (with ticker number

7203) in 2020 [Fig. 3(a)]; it features a power-law asymp-
totic tail for large L. We then evaluated α using Clauset’s
algorithm [15,16] to plot the empirical PDF of α [Fig. 3(b)]
across all the stocks. Typically, the exponent α is distributed
over values 1 < α < 2, in agreement with the standard as-
sumption for the LMF model. We thus validated assump-
tion (ii) for our dataset.
Power-law exponent in the ACF.—Having measured the

microscopic power-law exponent α, we next measured the
macroscopic power-law exponent γ of the ACF, which we
did by fitting directly the sample order-sign ACF as follows
(see Ref. [11] for details of the method): We first calculated
the sample ACF from CsampleðτÞ ≔

PNϵ−τ
t¼1 ϵðtÞϵðtþ τÞ=

ðNϵ − τÞ with time-lag τ and total number of market orders

FIG. 2. Presence of the STs by our strategy clustering.
(a) Empirical PDF for the percentage of STs in each market,
showing direct evidence of the presence of STs. Typically, 25% of
all traders were STs. (b) Empirical PDF for STs contribution to
market orders in each market. Typically, 80% of all the market
orders were issued by the STs, implying their overwhelming
contribution to market orders.

FIG. 3. The aggregated CCDFs for STs with our strategy
clustering. (a) Empirical CCDF aggregated regarding metaorder
length L among STs using data for the Toyota Motor Corporation
in 2020 as a typical example. The CCDF obeys the power law
P>ðLÞ ∝ L−α with α ≈ 1.62. Likewise, most empirical aggre-
gated CCDF for STs obey similar power laws. (b) Empirical PDF
of the power-law exponent α for all the markets. The power-law
exponents were evaluated systematically using Clauset’s algo-
rithm [15,16] across all the markets. The exponent α typically
satisfies 1 < α < 2, consistent with the standard assumption for
the LMF model.
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Nϵ. We fixed the fitting range ½τ−th; τþth� automatically such
that only the power-law decay is observed in the ACF for
½τ−th; τþth�. We applied logarithmic smoothing and a final
fitting CðτÞ ¼ C0τ

−γNLLS for the range ½τ−th; τþth� employing
the relative nonlinear least square (NLLS) estimation.
Although the NLLS estimator γNLLS gives numerical

consistency for the LMF model, we noticed that the
NLLS estimator γNLLS has a finite-sample-size bias. To
remove this bias, we constructed heuristically an approxi-
mate unbiased estimator γunbiased based on the LMF model
(see companion paper [11] for details). For this Letter, we
used this unbiased estimator γunbiased for the final scatter plot.
As a robustness check, we also measured the power-law

exponent γ via the power-spectral density (PSD) method
(see Ref. [11]). The exponent measured by the ACF and

PSD fittings are, respectively, denoted by γðaÞunbiased and

γðsÞunbiased. Both methods exhibit reasonable and consistent
results, implying the statistical robustness of our results.
Scatter plot.—Having evaluated the microscopic and

macroscopic power-law exponents α and γ using our huge
TSE dataset, we are ready to draw the scatter plot between
α and γ and test the LMF prediction (2). As the main result,
we provide the scattered box plots [Figs. 4(a) and 4(b) for
the ACF and PSD methods, respectively] between α and
γunbiased with focus on the range 1 < α < 2 in accordance
with the standard LMF assumption [17]. These figures
exhibit excellent agreement with the theoretical line (2).
From these figures, we conclude that with our microscopic
dataset the LMF prediction (2) has quantitative validity.
Discussion on the prefactor.—While we extracted the

microscopic information α from the ACF power-law
exponent γ via Eq. (2), is it possible to extract other
microscopic information from the prefactor c0? The LMF
theory predicts c0 ≃ Nα−2

ST =α with the total number of the
STs NST, implying that NST can be estimated by the LMF
estimator

NLMF
ST ðc0; γÞ ≔

1

½ðγ þ 1Þc0�
1

1−γ
; ð3aÞ

where γ and c0 can be observed from publicly avail-
able data.
Note that original LMF work made an assumption of the

homogeneiety of order-splitting intensities fλðiÞgi among
traders in [7], such that λðiÞ ¼ 1=NST for all i. While we
noticed that this homogeneiety assumption is unrealistic,
we tested this prediction in our dataset by drawing the
scattered box plots [Figs. 4(c) and 4(d) based on the ACF
and PSD methods, respectively] between log10N

1−γ
ST and the

LMF estimator log10
�
NLMF

ST

�
1−γ with the finite-sample size

bias removed (see Ref. [11]). We find that the LMF
estimator NLMF

ST is highly correlated with the true value
NST, implying that the ACF prefactor is a useful resource to
infer NST. At the same time, the LMF estimator NLMF

ST
systematically underestimates the true value NST, such
that NLMF

ST ≲ NST.
Interestingly, our finding is consistent with a generalized

LMF model with the heterogeneous intensity distribution
fλðiÞgi. Indeed, Ref. [18] shows the ACF formula (3a) is
nonrobust but sensitive to the heterogeneous intensity
distribution, while the power-law-exponent formula (2) is
robust. Furthermore, the LMF estimator NLMF

ST is shown to
provide the lower bound of the true value of NST, such that

NLMF
ST ≲ NST; ð3bÞ

showing the consistency with Figs. 4(c) and 4(d). Thus, we
have successfully confirmed the qualitative validity of the
LMF picture even for the estimation ofNST, while for better
quantitative understanding it might require theoretical
updates regarding the heterogeneity of trading strategies.
Conclusion.—Although the power-law memory charac-

ter in the order-sign ACF has been a central issue in

FIG. 4. (a),(b) Scattered box plots between α and γ with the median, the first and third quartiles for (a) the ACF and (b) the PSD
methods, exhibiting excellent agreement with the LMF prediction (2) (black line). γ was evaluated using the approximate unbiased
estimator γunbiased, based on the NLLS estimator and the LMF model. (c),(d) Scattered box plots between the LMF estimator NLMF

ST and
the actual total number of the STs NST for (c) the ACF and (d) the PSD methods for the datapoints with α < 2. The LMF estimator is
highly correlated with the true value of NST as the classical theory predicts, but systematically underestimates NST, such that
NLMF

ST ≲ NST. This observation is consistent with a generalized LMF theory [18] with heterogeneous intensities fλðiÞgi.
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econophysics, and with the absence of an appropriate huge
microscopic dataset, no quantitative evidence had been
provided for the corresponding microscopic model (the
LMF model). In this Letter, we have provided the first solid
evidence for the LMF model at the quantitative level (2) at
least for the TSE market and, thus, solved this long-lasting
problem.
Let us briefly discuss the implication of our findings. Our

Letter shows that the microscopic parameters α and NST
(usually unobservable because its direct estimation requires
special microscopic datasets like ours) can be inferred
via the LMF predictions (2) and (3b), where γ and c0 are
observable even for public data. This is reminiscent
of Einstein’s theory for physical Brownian motions:
Avogadro’s number NA (unobservable) was indirectly esti-
mated from the thermal fluctuations via the Einstein relation
for the diffusion constant. TheLMF theory can play a similar
role in inferring microscopic financial parameters from
financial fluctuations.
The microscopic parameter set ðα; NSTÞ quantifies how

the latent demand is hidden in the long term. For markets
with small α, the revealed liquidity on the limit-order book
is insufficient for liquidity takers, and takers have no choice
but to split their large metaorders into a longer series of
child orders (see also [3] for a standard interpretation of the
order-splitting behavior from the viewpoint of practi-
tioners). In this sense, markets with smaller α and large
NST might not be liquid enough because many large
institutional investors are waiting for the liquidity to
replenish during their order splitting. This characteristic
of liquidity has not been captured in practice through
conventional metrics such as market spread (the difference
between the best bid and ask prices), market depth (the
typical volume size at the best prices), and market impact
(the average price movement after a market order). Thus,
the parameter set ðα; NSTÞ is a new measure quantifying
how the market is potentially illiquid due to the hidden
demand by large institutional investors.
Remarkably, successful strategy clustering was the key

to our data analysis at the individual trader level in
revealing the market ecology from a microscopic view-
point. This research direction aligns with the previous
literature [19–21] proposing the need of market-ecology
analyses. We believe that this direction of research holds
promise, particularly for econophysics and sociophysics
modeling [4] as it benefits from recent microscopic
financial datasets.
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