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Amorphous solids may resist external deformation such as shear or compression, while they do not
present any long-range translational order or symmetry at the microscopic scale. Yet, it was recently
discovered that, when they become rigid, such materials acquire a high degree of symmetry hidden in the
disorder fluctuations: their microstructure becomes statistically conformally invariant. In this Letter, we
exploit this finding to characterize the universality class of central-force rigidity percolation (RP), using
Schramm-Loewner evolution (SLE) theory. We provide numerical evidence that the interfaces of the
mechanically stable structures (rigid clusters), at the rigidification transition, are consistently described by
SLEκ , showing that this powerful framework can be applied to a mechanical percolation transition. Using
well-known relations between different SLE observables and the universal diffusion constant κ, we obtain
the estimation κ ∼ 2.9 for central-force RP. This value is consistent, through relations coming from
conformal field theory, with previously measured values for the clusters’ fractal dimension Df and
correlation length exponent ν, providing new, nontrivial relations between critical exponents for RP. These
findings open the way to a fine understanding of the microstructure in other important classes of rigidity
and jamming transitions.
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Introduction.—Predicting the mechanical behavior of
amorphous media, which have no long-range structural
order, remains a challenge. Significant progress has been
made in the last years to unify the description of disordered
solids [1–3] like grain packings [4] or gels [5]. A lot
remains to be understood though: indeed, very diverse
materials from molecular glasses [6] and gels [7,8] to
fibers [9–11] and living tissues [12–14] undergo a sudden
transition between a fluid and a rigid state as an external
parameter—e.g., the volume fraction of constituents—is
varied. Such ability proves crucial, for instance, in bio-
logical processes like embryogenesis [12]. However, a
quantitative understanding of the behavior of materials
near rigidity transitions remains generally elusive. Can we
find a unified description of rigidity transitions, predicting
both the structural and mechanical properties of amor-
phous media at and close to their solidification point?
Rigidity percolation (RP) [15] plays a key role in this

context, as a simple framework to model the emergence of
mechanical stability in a disordered network: as the density
of microscopic components is increased, they form struc-
tures, rigid under deformation, which eventually percolate
the whole system, ensuring resistance to macroscopic
constraints. The sudden change of mechanical state—from
fluid to rigid—gets recast in the well-known language of
percolation theory and controlled by the percolation order
parameter, the probability that a network component belongs
to the percolating rigid cluster. RP thus represents a general
framework to model the solidification of amorphous media
and has been successfully applied to understand the

mechanical behavior of the materials listed above [6–14].
A considerable amount of work has been devoted to the
onset of rigidity [7,9,10,16–29] corresponding in many
cases to second-order transitions defining new universality
classes. Their characterization remains, however, limited to
the numerical measurement of the main critical exponents,
e.g., ν and β controlling, respectively, the behavior of the
correlation length and the order parameter at the transition.
RP is notably found to be distinct from connectivity

percolation (CP) [19,28], which is simply defined by the
emergence of a (nonrigid) percolating cluster and features a
rich and well-studied critical behavior, with clusters
becoming random fractals [30]. RP adds the mechanical
dimension to the problem, making it intrinsically nonlocal,
where the removal of a bond may destroy rigidity over a
large region [19,22]. RP transitions remain, therefore, much
less understood: the computation of the critical exponents,
the possible connections with CP, and the possible uni-
fication of different RP universality classes are long-stand-
ing questions [16–18,22,23,28,29] still not fully resolved
to date.
Recently, deep connections between CP and RP were

uncovered. Liu et al. [28] studied minimal rigidity perco-
lation (MRP), where the number of network’s degrees of
freedom matches exactly the number of constraints, and
argued that it falls in the CP universality class. Even more
recently [29], it was found, based on a numerical study of a
particular set of observables, that central-force RP clusters
are conformally invariant at the critical point. This opens
the possibility to describe RP in the framework of
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conformal field theory (CFT), in which scaling limits of
observables are expressed as appropriate correlation func-
tions [31]. Conformal invariance—the invariance of the
statistical properties under local rescalings of the system—
appears in many critical phenomena [32,33], but its
emergence in RP is quite remarkable given the high
nonlocality of the problem. Conformal symmetry has
been used with great success to predict the universal
properties of critical points [34–37] and notably allowed
to determine exactly the critical exponents and other
universal quantities in percolation [38–43]. For rigidity
transitions too, exploiting conformal invariance can give
access to the fine universal properties of the medium’s
microstructure. In addition to achieving a more complete
characterization of the RP universality classes and their
potential interconnections, this is also especially impor-
tant regarding the prediction of the mechanical aspects of
rigidity transitions. Indeed, the interplay between micro-
structure and elastic behavior at and near criticality has
been recently highlighted in particulate materials [8];
although not systematically understood [9], it reveals that
characterizing the microstructure near the transition—
where structural heterogeneities develop at all length
scales—is crucial to understand the mechanical response.
In this Letter, we investigate the RP universality class

using Schramm-Loewner evolution (SLE) theory, a power-
ful framework to exploit conformal symmetry, which
proved notably extremely successful to understand con-
nectivity percolation [44]. We focus for simplicity on the
case of purely central forces and consider the interfaces
separating rigid clusters from floppy regions at criticality,
known as the complete perimeters or hulls [30] of rigid
percolating clusters (see inset of Fig. 3). In CP [45,46], as
well as in diverse critical phenomena [47–54], the scaling
limits of random interfaces are very interesting objects, as
their probability measure possesses two remarkable proper-
ties, conformal invariance and a domain Markov property,
which together yield powerful results about the universal
class through the theory of SLE (see, e.g., [44,55,56] for
introductions to the topic). The basic idea of SLE [45] is that
a curve γt in a planar domain, parametrized by the time t can
be equivalently encoded in a real function (the driving) ξt
through a series of conformal maps gt, such that the tip of
the growing curve is γt ¼ g−1t ðξtÞ. For a conformally
invariant curve ξt ¼

ffiffiffi
κ

p
Bt, with Bt a standard Brownian

motion and κ a universal parameter known as the diffusion
constant [45]. As a consequence of such remarkable
equivalence, the scaling limit of the curve is determined
by the value of κ only and many observables can be
predicted exactly. This provides a classification of physi-
cally relevant random curves according to their value of
κ [47,48,57–65]. The central charge c of the corresponding
CFT is related to κ [66],

c ¼ ð8 − 3κÞðκ − 6Þ
2κ

: ð1Þ

c encodes how conformal symmetry manifests itself in the
system and gives, e.g., the change in free energy when
conformally transforming the system’s geometry [67–69].
Its value is needed to compute physical observables and
represents, therefore, crucial information about the univer-
sality class.
As we will argue, interfaces in RP are numerically

consistent with SLE. In addition to giving access to more
universal observables, this finding reveals the existence of a
nontrivial algebraic structure in the underlying CFT through
the existence of a so-called degenerate field [44,66]. This
places the CFT of rigidity percolation in a more restricted
class of field theories, to which connectivity percolation also
belongs, and allows one to express RP critical exponents
solely in terms of κ.
Model and methods.—We study central-force rigidity

percolation on the site-diluted model with local correlations
introduced in [7]: we populate randomly the sites of a
triangular lattice of L1 columns and L2 rows with proba-
bility pðsiteÞ ¼ ð1 − c̃Þ6−NnðsiteÞ, where Nn is the number of
occupied nearest neighbors of that site. The short-range
correlations introduced by taking c̃ > 0 decrease the rigidity
percolation threshold [7], allowing one to generate critical
configurations of lower density, hence reducing the com-
putation time, without affecting the long-range behavior so
that universal quantities keep the same values as in the
uncorrelated case [7,29]. We take c̃ ¼ 0.3, corresponding to
a rigidity threshold pc ∼ 0.657 [7]. Rigid clusters are
identified by the so-called pebble game [19] which, by
efficient constraint counting, allows one to test the mutual
rigidity of the bonds connecting occupied sites. We select
the configurations where at least one rigid cluster percolates
from bottom to top and construct, for each percolating
cluster, its complete perimeter defined on the dual (hex-
agonal) lattice, as shown in the inset of Fig. 3; the hull of the
rigid cluster (in blue) is highlighted as a dark line.
We stress that such unidirectionally percolating clusters

have the same fractal structure as the cross-percolating ones,
which ensure mechanical stability under global deforma-
tion. To study the random geometry of RP it is therefore
sufficient to restrict to the former type of clusters, which are
most adapted to the SLE analysis as detailed below.
We use the strip geometry, namely a large enough aspect

ratio L1=L2 ¼ 4, with periodic horizontal boundary con-
ditions and open vertical boundary conditions, and systems
as large as L2 ¼ 1024; sample averages, denoted E½� � ��, are
performed over N ≥ 40 000 curves. Curves start from a
point on the lower boundary and grow until they hit the
upper boundary, and we therefore choose the framework of
dipolar SLE [70], consistent with such a setup. In that case,
the conformal maps gt satisfy the Loewner equation [70]
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dgtðzÞ
dt

¼ π=Ly

tanh
h

π
2Ly

ðgtðzÞ − ξtÞ
i ; g0ðzÞ ¼ z; ð2Þ

where Ly ¼ L2

ffiffiffi
3

p
=2 is the width of the strip.

In the following sections, we (i) establish that the
complete perimeters of the spanning rigid clusters are
SLEκ by showing that the statistics of their driving functions
is compatible with a Brownian motion and (ii) obtain
independent numerical estimates of the value of the dif-
fusivity κ from the measurement of universal properties of
the curves: their fractal dimension, winding angle, and left-
passage probability. The results are summarized in Table I.
Driving function.—To extract numerically the driving ξt

of a given curve, the idea is to solve Eq. (2) for each short
time interval δt on which ξt is approximated as constant,
obtaining the slit map gt (see, e.g., [44,71]). Then, for each
lattice curve fz00 ¼ 0; z01;…; z0l g of length l starting at the
origin, we compute iteratively the Loewner times tj and
the driving function ξtj by successive applications of gtj ,
such that t0 ¼ 0, ξt0 ¼ 0, and at each step the sequence�
zj−1j ;…; zj−1l

�
, j ≥ 1 is mapped to the reduced sequence�

zjjþ1 ¼ gtjðzj−1jþ1Þ;…; zjl ¼ gtjðzj−1l Þ�. For dipolar SLE, the
gtj are given by [48]

gtjðzÞ ¼ ξtj þ
2Ly

π
cosh−1

2
4cosh

�
π

2Ly
ðz− ξtjÞ

�
cosΔj

3
5; ð3Þ

where ξtj ¼ Reðzj−1j Þ, tj ¼ tj−1 − 2
�
Ly=π

�
2 log ðcosΔjÞ,

Δj¼ðπ=2LyÞImðzj−1j Þ, and we compute the complex inverse
hyperbolic cosine as cosh−1z ¼ log

�
zþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−z2 þ 1

p �
. Each

curve of length l is unzipped in this way for l=2 steps and
yields an instance of the driving function ξt at sample-
dependent, nonequally spaced Loewner times t0;…; tl=2. We
linearly interpolate each instance of the driving function
to have all instances defined for a same, equally spaced
time sequence.
Loewner’s equation (2) holds for generic curves, and to

claim that the rigid perimeters are indeed SLEs, we must
ensure that the extracted driving function is a Brownian
motion. The insets of Fig. 1 show the distributions of ξt at
different times and the corresponding quantile-quantile
plots, both consistent with Gaussian distributions. How-
ever, as studied by Kennedy [71], Gaussianity at fixed times

alone is not an accurate test as it is passed by non-SLE
processes as well, and one must test also the independence
of the driving function’s increments. Following [71] we pick
n equally spaced times 0 < t1 < � � � < tn and define the n
increments Xj ≡ ξtjþδ − ξtj . We set δ ¼ 5, but choosing a
different value does not affect our conclusions as long as
δ ≪ τ≡ tjþ1 − tj (see also [48,63,65] where the correlation
between two such consecutive increments is seen to decay
for τ ≫ δ ¼ 1). The joint distribution of ðX1;…; XnÞ is
tested by defining m ¼ 2n cells, each corresponding to the
possible sign sequence of ðX1;…; XnÞ, counting the number
Oj of samples falling in each cell and comparing with the
expected value, Ej ¼ N=2n for independent and Gaussian
distributed variables. To this end, one defines

χ2 ¼
Xm
j¼1

ðOj − EjÞ2
Ej

ð4Þ

and computes the associated p value. Taking increasing
numbers n of increments, with tk ∈ ½9.103; 29.103�, we find
pn¼5 ¼ 0.95, pn¼7 ¼ 0.78, and pn¼9 ¼ 0.81.
These p values are not small, indicating that one cannot

reject the hypothesis that ξt is a Brownian motion. This
leads to our first main result, that the statistics of the hulls of
rigid RP clusters are consistent with SLE.
The driving function straightforwardly gives a first

estimate of the diffusion constant, since by definition
var½ξt� ¼ κt. The main plot of Fig. 1 shows the variance
of ξ as a function of time, and a fit gives the value κdriving
reported in Table I.
It was observed, however, that the estimation of κ from

the driving function comes with non-negligible error [63].
In the next sections, we therefore use standard results on
SLE to obtain independent and more accurate estimations
of κ from more directly measurable quantities.

TABLE I. Values of κ obtained from the fractal dimension,
winding angle, left-passage probability (LPP), and zipper algo-
rithm, as described in the text.

κfractal κwinding κLPP κdriving

2.84(8) 2.88(5) 2.91(1) 2.7(1)

FIG. 1. Variance of the driving function ξt as a function of time.
Bottom right inset: rescaled probability density function of ξt at
four different times; in gray is the Gaussian distribution. Top left
inset: quantile-quantile plots of ξt versusN ð0; 1Þ at four different
times. Gray lines have slopes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κdrivingt

p
.
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Fractal dimension.—For a spanning curve of lattice
length l the fractal dimension can be defined as l ∼ L

df
2 .

For SLEs, df is related to the diffusivity by df ¼ 1þ κ=8
[72]. The inset of Fig. 2 displays the average length E½l� of
the spanning perimeters versus the lattice system height
L2 ∈ ½32; 1024�; fitting gives df ¼ 1.355� 0.01, corre-
sponding to the value κfractal given in Table I.
Winding angle.—How tortuous an SLE is can be exactly

predicted: the winding angle measured between two typical
points along the curve is Gaussian distributed, with a
variance that grows logarithmically with the distance
between the points [45,57,59,73]. On the lattice we define
θj ¼

Pj
i¼1 αi, the sum of the local turns αi that the curve

takes at each step of its growth. In the scaling limit, we
expect that, at distance x along the curve from the starting
point, the variance of θ is [59,60]

var½θðxÞ� ¼ aþ 2κ

8þ κ
log x: ð5Þ

The inset of Fig. 2 shows the rescaled distribution of θ at
different distances x, falling on the Gaussian distribution,
while the main plot shows its variance as function of x.
Fitting according to (5) we obtain the estimation κwinding
of Table I.
Left-passage probability.—A famous result on SLE is

the probability of the curve passing to the left of a given
point in the upper-half plane. With the curve starting at the
origin, this probability for a point z ¼ ρeiϕ depends only on
ϕ and reads [74]

PκðϕÞ¼
1

2
þ Γð4κÞffiffiffi

π
p

Γð8−κ
2κ Þ

cotðϕÞ2F1

	
1

2
;
4

κ
;
3

2
;−cot2ðϕÞ



; ð6Þ

where 2F1 is the ordinary hypergeometric function.
This prediction is seen to hold as well for dipolar curves

not too far from their starting point, i.e., ρ ≪ Ly [48,61].
We measure the left-passage probability PðzÞ for a fixed
set S of about 300 points in the semiannulus ðρ;ϕÞ∈
½Ly=16; Ly=4� × ð0; πÞ. We estimate κ as the value mini-
mizing the mean-square deviation QðκÞ [62],

QðκÞ≡ N − 1

jSj
X
z∈ S

�
PðzÞ − Pκ½ϕðzÞ�

�
2

PðzÞ½1 − PðzÞ� : ð7Þ

Q is plotted in the inset of Fig. 3; minimizing the
interpolating function, we find the estimate κLPP reported
in Table I. The main plot of Fig. 3 shows the data points
for PðzÞ averaged over ρ for each value of ϕ, together with
the prediction PκLPP of Eq. (6).
Critical exponents.—Interfaces in RP being SLEs have

consequences on the structural properties. It implies the
existence of a so-called degenerate field Φ2;1 of dimension
h2;1 ¼ ð6 − κÞ=ð2κÞ [44,66], whose correlation functions
satisfy differential equations [34,35], leading, in particular,
to relations involving the clusters’ critical exponents
[75,76]. We find that the previously measured RP fractal
dimension Df ¼ 1.86ð2Þ [7,19] is indeed consistent with
the prediction [77] DfðκÞ ¼ 1þ 3=ð2κÞ þ κ=8 ∼ 1.88,
where we used our value κRP ∼ 2.9. Moreover, there is
also good agreement between the value of the correlation
length exponent ν ¼ 1.21ð6Þ [19] and the expression
[77] νðκÞ ¼ ð2 − 2h2;1Þ−1 ¼ κ=ð3κ − 6Þ ∼ 1.1. These two
expressions give, for generic κ ≥ 4, the critical exponents of
the Q-state Potts model geometric clusters [49,50,77].
Conclusion.—Using SLE theory, we first gave numerical

evidence that the perimeters of spanning central-force RP
clusters are SLEκ processes. We obtained independent
estimates of the universal diffusion constant κRP ∼ 2.9,
which by (1) corresponds to a central charge cRP ∼ 0.37.
These findings, along with the ones in [29], show that the

FIG. 2. Variance of the winding angle θ as function of the
distance x along the curve. Top left inset: mean length E½l� of the
curves as function of the system height L2. Bottom right inset:
rescaled probability density function of the winding angle at
different distances x; in gray is the Gaussian distribution.

FIG. 3. Left-passage probability of spanning perimeters and the
prediction (6) for κ ¼ κLPP. Top right inset: weighted mean-
square deviation Q given by (7). Bottom left inset: example of a
rigid cluster (blue) and its left and right hulls (black thick lines).
The right hull passes to the left of the point located at z ¼ ρeiϕ

from its origin, marked as a red vector.
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rigorous approaches of SLE and CFT can be applied to the
study of random geometry in a mechanical percolation
transition such as RP. Notably, SLE and CFT allow one, by
exploiting symmetry constraints, to express critical expo-
nents solely in terms of κ, finding good numerical agree-
ment with the values measured by standard techniques
[7,19]. Whether the value of κRP corresponds to some
simple fraction, which would lead to exact predictions for
the RP critical exponents, remains a tantalizing possibility.
At this stage, it seems important to understand better the

connection between RP and CP. Simulations of site- or
bond-diluted RP show that a typical RP cluster consists of
overconstrained regions and isostatic (minimally rigid)
dangling ends [19,20,22]. According to [28], clusters
without overconstrained regions would fall in the CP
universality class, so we expect that the latter drive the
system to the distinct RP critical point. It would be useful,
therefore, to tune the fraction of overconstrained regions
(e.g., cutting redundant bonds [25]), to interpolate between
RP and MRP (CP), and analyze these transitions using the
methods of the present Letter. One could also check if rigid
hulls in MRP are indeed equivalent to CP hulls: in that
case, we expect correspondence with the percolation
accessible perimeters [30] that are SLE8=3 [78,79].
More generally, our results open the way to applying the

SLE analysis to other important classes of rigidity tran-
sitions besides central force, providing a new tool to
analyze in detail the microstructure of disordered media
at the onset of rigidity. A case particularly worth inves-
tigating is the frictional jamming transition [26,28], where
rigid clusters can be identified. It would be very interesting
to examine if conformal invariance remains unbroken and
whether the critical exponents can be correctly predicted
from SLE.
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