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Topological wave structures—phase vortices, skyrmions, merons, etc.—are attracting enormous attention
in a variety of quantum and classical wave fields. Surprisingly, these structures have never been properly
explored in the most obvious example of classical waves: water-surface (gravity-capillary) waves. Here, we
fill this gap and describe (i) water-wave vortices of different orders carrying quantized angular momentum
with orbital and spin contributions, (ii) skyrmion lattices formed by the instantaneous displacements of the
water-surface particles in wave interference, and (iii) meron (half-skyrmion) lattices formed by the spin-
density vectors, as well as (iv) spatiotemporal water-wave vortices and skyrmions. We show that all these
topological entities can be readily generated in linear water-wave interference experiments. Our findings can
find applications in microfluidics and show that water waves can be employed as an attainable playground
for emulating universal topological wave phenomena.
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Introduction.—Wave vortices are universal physical enti-
ties with nontrivial topological and dynamical properties:
quantized phase increments around point phase singularities
and quantumlike angular momentum (AM). Examples of
wave vortices have been known since the 19th century; these
have been observed and explored in tidal [1], quantum-fluid
[2,3], optical [4–6], sound [7–9], elastic [10], surface-
plasmon [11,12], exciton-polariton [13], quantum-electron
[14], neutron [15], and atom [16] waves.
Strikingly, wave vortices have not been properly studied

in the most obvious example of classical waves: water-
surface (gravity-capillary) waves. Only a recent series of
experiments [17–20] described the generation of a square
lattice of alternating vortices in the interference of orthogo-
nal standing water waves.
However, the theoretical description of these experi-

ments lacks the identification with wave vortices, very
different from the usual hydrodynamical vortices. It was
indicated that the hydrodynamical vorticity appears due
to nonlinearity [17,18] and that these vortices are closely
related to the Stokes drift and AM [19,20], but no quantized
topological and dynamical properties have been indicated.
Furthermore, only the simplest first-order vortices were
produced (cf., e.g., quantum-electron vortices of higher
orders ∼102–103 [21,22]).
In this Letter, we describe water-wave vortices (WWVs)

in gravity-capillary waves. We reveal their topological
properties and show that circularly symmetric vortices
are eigenmodes of the total AM operator, including the

spin and orbital parts. In the linear approximation, WWVs
have zero vorticity. Nonetheless, the quadratic Stokes drift
produces slow orbital motion of water particles and
nonzero nonlinear vorticity. Importantly, water particles
experience two kinds of circular motions with different
spatial and temporal scales: (i) local linear-amplitude-
scale circular motion with the wave frequency in the linear
regime and (ii) slow wavelength-scale circular motion due
to the nonlinear Stokes drift. These two motions are
responsible for the spin and orbital contributions to the
quantized total AM.
Moreover, water waves have inherent vector properties:

The local Eulerian displacement of water-surface particles
is a counterpart of the 3D polarization in optical or
acoustic wave fields [23,24]. Therefore, following great
recent progress in the generation of topological vector
entities—skyrmions [25]—in classical electromagnetic
[26–32], sound [33,34], and elastic [35] waves, here we
describe water-wave skyrmions. We show that the inter-
ference of three plane water waves can generate a hexagonal
lattice of (i) WWVs, (ii) skyrmions of the instantaneous
water-particle displacements, and (iii) merons (half-
skyrmions) of the local spin density. This field configuration
is just one step from the recent experiments [17–20] and is
quite feasible for the experimental implementation.
Finally, following enormous current interest in spacetime

structured waves [36,37], in particular, spatiotemporal
vortices [38–42], we show that, by detuning the frequency
of one of the interfering waves, one can readily produce
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moving lattices of spatiotemporal WWVs and spatiotem-
poral skyrmions.
Thus, we reveal new structures with remarkable topo-

logical and dynamical properties in linear water waves.
We argue that water waves offer a perfect classical
platform for emulating universal quantum and topological
wave phenomena, which can also find useful applications
in microfluidics [43,44].
Water-wave vortices.—We first consider monochromatic

gravity-capillary waves on a deep-water surface. The 3D
Eulerian displacement of the water particles from the z ¼ 0

surface is Rðr2; tÞ ¼ Re½Rðr2Þe−iωt� ¼ ðX ;Y;ZÞ, where
R ¼ ðX; Y; ZÞ is the complex displacement wave field,
r2 ¼ ðx; yÞ, and ω is the frequency. Separating the vertical
and in-plane components of 3-vectors as a≡ ðax; ay; azÞ ¼
ða2; azÞ, the wave equations of motion can be written
as [20,45]

ω2R2 ¼
�
g −

α

ρ
Δ2

�
∇2Z;

ω2Z ¼ −
�
g −

α

ρ
Δ2

�
∇2 ·R2: ð1Þ

Here, g is the gravitational acceleration, α is the surface-
tension coefficient, ρ is the water density, Δ2 ¼ ∇2 · ∇2,
and Eqs. (1) with the plane-wave ansatz ∇2 → ik (k is the

wave vector) yield the dispersion relation ω2 ¼
gkþ ðα=ρÞk3.
The vortex solutions of Eqs. (1) are obtained as a

superposition of plane waves with wave vectors uniformly
distributed along the k2x þ k2y ¼ k2 circle with the azimuthal
phase increment 2πl, l∈Z [Fig. 1(b)]. Constructing the
complex vertical displacement in this way, we obtain

Z ¼ A
2π

Z
2π

0

eik·r2þilϕdϕ ¼ AJlðkrÞeilφ: ð2Þ

Here, A is a constant wave amplitude, Jl is the Bessel
function of the first kind, and ϕ is the azimuthal angle in the
ðkx; kyÞ plane, whereas ðr;φÞ are the polar coordinates in
the ðx; yÞ plane.
Equation (2) describes 2D scalar cylindrical Bessel

waves [Fig. 1(c)]. However, water waves have a vectorial
nature, and the other two components of the wave field can
be found from the first Eq. (1). It is convenient to write
these in the basis of “circular polarizations” [46,47]:

R� ≡ X ∓ iYffiffiffi
2

p ¼ � Affiffiffi
2

p Jl∓1ðkrÞeiðl∓1Þφ: ð3Þ

In this basis, the z component of the spin-1 operator,
universal for classical vector waves, reads Ŝz ¼ diagð1;
−1; 0Þ, while the z component of the orbital AM (OAM)

FIG. 1. (a) Instantaneous water surfaces Zðx; y; 0Þ and Eulerian water-surface particle trajectories Rðx; y; tÞ for circular WWVs with
different topological charges l [Eqs. (2) and (3)]. The spin density S is directed normally to the elliptical particle trajectories and
quantifies the AM of this elliptical motion. (b) The plane-wave spectrum of a circular WWV with color-coded phases for l ¼ 1. (c) The
complex vertical-displacement field Zðx; yÞ for WWVs from panel (a), with the phases and amplitudes coded by the colors and
brightness, respectively. The white arrows indicate the second-order Stokes drift U [Eq. (6)], characterizing the wave momentum
density.
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operator is L̂z ¼ −i∂φ [5]. Introducing the “wave function”
jψi ¼ ðRþ; R−; ZÞ, one can see that the WWVs (2) and (3)
are not the OAM eigenmodes, but these are eigenmodes of
the z component of the total AM with the quantized
eigenvalue l:

Ĵzjψi ¼ ðL̂z þ ŜzÞjψi ¼ ljψi: ð4Þ

Such behavior (which can be interpreted as the
inherent spin-orbit coupling) is a common feature of all
cylindrical vector waves: optical [46,48,49], quantum [50],
acoustic [51], and elastic [47].
Figure 1(a) shows instantaneous water surfaces Zðr2; 0Þ

and water-particle trajectories Rðr2; tÞ for WWVs with
different l. The water-particle trajectories are 3D ellipses,
entirely similar to the electric-field polarization in optical
fields [24]. The normal to the ellipse and its ellipticity
determine the cycle-averaged AM of the particle, i.e., spin
density in water waves [20,52]: S ¼ ðρω=2ÞImðR� ×RÞ.
One can see that WWVs are characterized by inhomo-
geneous polarization textures. In the vortex center r ¼ 0,
the polarization is purely vertical, jψi∝ ð0;0;1Þ, for
l ¼ 0; it is purely circular, jψi ∝ ð1; 0; 0Þ and
jψi ∝ ð0; 1; 0Þ, for l ¼ �1; and the vector wave field
vanishes, jψi∝ ð0;0;0Þ, for jlj > 1 (the vanishing of all
vector wave field components requires a higher-order
degeneracy [46,47,49–51,53]).
Importantly, WWVs are not the usual hydrodynamical

vortices, which are formed by steady water motion with a
nonzero circulation of the velocity V ¼ ∂tR and vorticity
∇ × V ≠ 0 [54]. In contrast, linear monochromatic gravity-
capillary waves have zero vorticity: ∇ × V ¼ 0, where
V ¼ −iωR is the complex velocity field. This follows from
Eqs. (1) and the incompressibility equation ∇ · V ¼ 0.
Wave vortices are topological entities with quantized phase
singularities in the center. The “topological charge” can be
defined in two equivalent ways [55,56]:

1

2π

I
∇2ArgðZÞ ·dr2¼

1

4π

I
∇2ArgðR ·RÞ ·dr2¼l; ð5Þ

where the contour integral is taken along a circuit
enclosing the vortex center. These relations show that
the center of the first-order jlj ¼ 1 WWV can be con-
sidered as the first-order phase singularity in the scalar
field Zðx; yÞ or the second-order polarization singularity
(C point of circular polarization) in the vector field
Rðx; yÞ [24,55–57]. Any perturbation breaking the cylin-
drical symmetry splits the second-order C point into a
pair of the first-order C points, with topologically robust
Möbius-strip orientations of the polarization ellipses
around these points [24,34,56,58,59].
Nonzero vorticity and circulation do appear in

WWVs but in the quadratic corrections to linear wave

solutions. Namely, water particles experience a slow Stokes
drift, i.e., the difference between the Lagrangian and Euler
velocities [20,60,61]:

U ¼ ω

2
Im½R� · ð∇2ÞR�: ð6Þ

Multiplied by the mass density, it yields the canonical
wave momentum (“pseudomomentum”) density [20,62–65]:
P ¼ ρU.
Figure 1(c) shows the azimuthal Stokes-drift flow in

WWVs. It is mostly localized near the first radial maximum
of the Bessel function JlðkrÞ and determines the z-directed
OAM density: L ¼ r2 × P, Lz ¼ ðρω=2ÞImðR� · ∂φRÞ.
Notably, the local circular motion of water particles (spin)
and the global Stokes-drift circulation (OAM) have very
different space and timescales: the linear-wave amplitude A
and angular frequency ω vs the wavelength k−1 ≫ A and
angular velocity U=r ∼ ωk2A2 ≪ ω. The spin and OAM
densities in the WWVs (2) and (3) satisfy the relation
following from Eq. (4) [47,51]:

Jz ¼ Lz þ Sz ¼
ρω

2
ljRj2 ¼ 2

l
ω
T; ð7Þ

where T ¼ ρjVj2=4 is the cycle-averaged kinetic energy
density.
Thus, WWVs are naturally described by a quantum-

like formalism and possess nontrivial topological pro-
perties. Recent experiments [17–20] generated square
lattices of alternating first-order vortices with l ¼ �1 by
interfering orthogonal standing waves with the π=2
phase difference. The orbital Stokes drift and circular
polarization (spin) in the vortex centers were clearly
observed in Refs. [19,20], but quantized topological
properties of these vortices have not been described.
Higher-order WWVs with jlj > 1, which have never
been observed, could provide areas of unperturbed water
surface surrounded by intense circular waves and orbital
Stokes flows.
Water-wave skyrmions and merons.—The 3D vector

nature of water waves allows the generation of topo-
logical vector textures, such as skyrmions or merons
[25–28,30–35]. Such textures can be produced by inter-
fering several plane waves with the same frequency and
wave vectors kj ¼ kðcosϕj; sinϕj; 0Þ, j ¼ 1;…; N:

R¼
XN
j¼1

R0jeikj·rþiΦj ; R0j¼Ajðicosϕj;isinϕj;1Þ; ð8Þ

where Aj and Φj are the real-valued amplitudes and phases
of the interfering waves, respectively.
Consider, for example, N ¼ 3 waves, uniformly distrib-

uted with ϕj ¼ 2πðj − 1Þ=N, Aj ¼ A, and vortex phases
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Φj ¼ ϕj [Fig. 2(c)]. These waves form a hexagonal
periodic lattice with the displacement field

0
B@

X

Y

Z

1
CA ∝ A

0
BBBBB@

ieikx þ ie−iðkx=2Þ sin
� ffiffi

3
p

ky
2

þ π
6

�

−
ffiffiffi
3

p
e−iðkx=2Þ cos

� ffiffi
3

p
ky
2

þ π
6

�

eikx − 2e−iðkx=2Þ sin
� ffiffi

3
p

ky
2

þ π
6

�

1
CCCCCA
: ð9Þ

This field exhibits a number of topological features. First, it
contains a lattice of WWVs with alternating topological
charges l ¼ �1 [Fig. 2(d)]. Such vortex lattices are well
known in optics [66].
Second, Fig. 2(a) shows the instantaneous water surface

Zðr2; 0Þ and the surface-particle displacements Rðr2; 0Þ
for the field (9). The displacements in a hexagonal unit
cell of the lattice contain all possible directions and can
be mapped onto a unit sphere. This is a signature of a
skyrmion, which can be characterized by the topological
number

Q ¼ 1

4π

Z Z
u:c:

R̄ · ½∂xR̄ × ∂yR̄�dxdy; ð10Þ

where R̄¼R=jRj. In the case under consideration,Q ¼ 1
at t ¼ 0, but it can change its sign over time, because the

displacement evolves and becomes opposite after half a
period, t ¼ π=ω [34]. Figure 2(b) displays another repre-
sentation of the skyrmion lattice, where colors and black
vectors indicate the z and ðx; yÞ components, respectively,
of the displacement-direction field R̄. Moving from
the center of the cell toward its boundary, the vector R̄
undergoes a rotation, where its z component changes sign,
resulting in a nontrivial winding captured by the nonzero
skyrmion charge Q. Similar skyrmion lattices have been
observed in electromagnetic [26], sound [33,34], and
elastic [35] vector wave fields.
Third, instead of the instantaneous vector field R, one

can trace the spin-density vector S (normal to the local
polarization ellipse). Figure 2(e) displays the distribution
of the unit spin vector S̄ ¼ S=jSj in the field (9). The unit
hexagonal cell is split into triangular zones with S̄z > 0

and S̄z < 0 separated by S̄z ¼ 0 lines and singular S ¼ 0
vertices. The centers of these triangles with S̄z ¼ �1 (i.e.,
circular in-plane polarizations) correspond to the centers
of WWVs with l ¼ �1 [Fig. 2(d)] [20]. Calculating the
topological charges (10) for the spin field S̄, we obtain
QS ¼∓ 1=2 for the triangular zones with S̄z ≶ 0. Such
topological textures are called merons or half-skyrmions,
because the spin directions in each zone covers the upper or
lower semisphere. Similar spin merons have been observed
in electromagnetic waves [28,31,67,68].

FIG. 2. Hexagonal lattice produced by the interference of three waves with equal frequencies, amplitudes, and color-coded phases
shown in (c). (a) Instantaneous water surface Zðx; y; 0Þ and water-surface particle displacements Rðx; y; 0Þ for the field (9). The
displacement directions in the unit hexagonal cell is mapped onto the unit sphere, providing a skyrmion with the topological charge
Q ¼ 1 [Eq. (10)]. (b) The unit displacement-direction field R̄ðx; y; 0Þ represented by colors (vertical component Z̄) and black arrows
(in-plane components R̄2). (d) The complex vertical-displacement field Zðx; yÞ and the Stokes drift U indicating the lattice of
alternating WWVs with l ¼ �1. (e) The unit spin-density field S̄ðx; yÞ represented similar to (b). The hexagonal unit cell is split into
triangular zones of spin merons (half-skyrmions) with topological charges QS ¼ �1=2 and centers with S̄z ¼ �1 corresponding to the
l ¼ �1 vortices in (d).
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Here, we showed only one simple example of the water-
wave interference field. WWVs, field skyrmions, and spin
merons are rather universal topological entities and appear
in many other fields. A square lattice formed by two
standing waves [17–20] contains vortices and spin merons
(cf. [31,67]), a hexagonal lattice formed by three standing
waves produces field skyrmions [45], and the zero-order
l ¼ 0 Bessel mode [Eqs. (2) and (3) and Fig. 1] contains a
field skyrmion (cf. [26,32]).
Spatiotemporal vortices and skyrmions.—Finally, we

demonstrate another class of topological entities which can
be readily generated in water waves: spatiotemporal vortices
[38–42] and skyrmions. It is sufficient to slightly detune the
frequency of one of the three interfering plane waves in
Fig. 2: ω1 → ωþ δω, k1 → kþ δk ¼ ðωþ δωÞ2=g (for
simplicity, here we neglect capillarity, α → 0) [Fig. 3(b)].
This transforms thewave field (8) asΦ1 → Φ1 − iδωt, so that
the spatial lattice in Fig. 2 becomes moving along the x axis,
and the field becomes a function of space and time:Rðr2; tÞ.
The real displacement field is Rðr2; tÞ ¼

Re½Rðr2; tÞe−iωt�, but we will analyze the field R0ðr2; tÞ ¼
Re½Rðr2; tÞ� subtracting the common fast oscillations e−iωt.
Plotting the complex field Z and real field R0 in the
spacetime domain ðt; yÞ at fixed x ¼ 0, we find that they
exhibit a scaled hexagonal lattice of vortices and skyrmions
(Fig. 3). These spatiotemporal WWVs and skyrmions have
opposite topological charges l and Q compared to their
spatial counterparts in Fig. 2.

Conclusions.—We have analyzed the fundamental
topologically nontrivial objects in linear water-surface
(gravity-capillary) waves, namely, WWVs, surface-particle
displacement skyrmions, and spin-density merons, as well as
spatiotemporal WWVs and skyrmions. All these objects are
universal across different types of waves and require only
standard wave-interference ingredients: relative phases and
amplitudes, polarizations, and spectral detuning, to control
the geometry and topology of the field. For simplicity, we
considered the deep-water approximation; the finite-depth
effects in monochromatic water waves produce global
scaling of the vertical component on the surface:
Z → tanhðkHÞZ, where H is the water depth [45].
Notably, the vector features of water waves (displacement

fields) are directly observable, while in other fields these are
usually measured via various indirect methods. Therefore,
water waves offer an attractive platform for emulating
topologically nontrivial field structures and wave pheno-
mena in a unified fashion. Furthermore, nontrivial dynamical
properties of topological water-wave objects—circulating
Stokes-drift currents, fast circular motions (spin) in the
centers of the first-order WWVs, vanishing fields in the
centers of higher-order WWVs, etc.—can be attractive for
fluid-mechanical applications, such as manipulations of
particles [43,44]. Finally, we note that, while most of the
attention in water-wave physics has focused on nonlinear
and high-amplitude effects [69–71], our study shows that
wave structures around field zeros and linear-wave interfer-
ence exhibit a rich variety of largely unexplored phenomena.

Note added.—After the submission of this work, more
publications on WWV lattices, related to Refs. [17–20],
came to our attention [72–74].
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