Dynamic and Topology of Symmetry Breaking with Skyrmions

J. Pišlar, A. Nych, U. Ognysta, A. Petelin, S. Kralj, and I. Mušević

1Condensed Matter Department, J. Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
2Department of Molecular Photoelectronics, Institute of Physics, Nauky Prospect 46, Kyiv 03680, Ukraine
3Complex Matter Department, J. Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
4Faculty of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroska cesta 160, 2000 Maribor, Slovenia
5Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

(Received 18 May 2023; revised 11 December 2023; accepted 11 January 2024; published 22 April 2024)

We observe that pretransitional order parameter fluctuations of a skyrmion-forming chiral nematic liquid crystal are slowed down for 4 orders of magnitude, if confined to \(\lesssim 100 \) nm thin layers. Fluctuating fragments of half-skyrmions are observed in a narrow temperature interval and are explained by thermally activated hopping between the various energy states. Skyrmion fluctuations are accompanied by imbalanced topological charge, positive charges appear at higher temperatures and dominate in the fluctuating region until skyrmions fully condense and negative charges appear at lower temperatures.

DOI: 10.1103/PhysRevLett.132.178101

Skyrmions are topologically protected structures of a particular field that cannot be smoothly removed or unwound into a homogeneous field. They were first proposed by Skyrme to describe particlelike excitations of the pion field [1]. Since then, skyrmions have been observed as magnetic vortices in chiral magnets [2,3], in spinor Bose-Einstein condensates [4], and chiral nematic liquid crystals (LCs) [5–10]. Here, they spontaneously emerge by cooling from the isotropic phase (I) into one of the 3D skyrmion phases, such as the Blue Phases (BPs) I, II, and III [11]. The phase transition into the BPs not only results in spontaneous formation of order through symmetry breaking, but gives birth to topologically protected skyrmions. This double nature of the isotropic-BP transition opens a question regarding how these topologically protected and complex 3D structures can spontaneously form.

In this Letter we report on direct observation and imaging of half-skyrmion (HS) condensation near the I-HS phase transition in \(\sim 80 \) nm thin BPI layers. The I-BPI transition is first order in bulk, but becomes gradual, when the material is confined to layers below the critical thickness \(d_c \) of capillary condensation [12–15]. We observe thermally excited formation and disappearance of individual HSs, when the thickness of BPI layer is lower than \(d_f > d_c \), \(d_f \sim 70 \) nm. The lifetime of skyrmions and their parts increases, as the temperature is lowered, until skyrmions fully condense into a liquid of HS. Chiral fluctuations in this region are slowed, compared to bulk [16], for more than 4 orders of magnitude by the effect of confinement, which enables us to image and measure the skyrmion fluctuations that were to our knowledge never observed before.

The experiments were performed in thin layers of chiral LC mixtures with a pitch of 360 nm and 710 nm [10,17]. To provide (weak) planar-degenerate anchoring conditions [18], bare and polymethyl methacrylate covered glass slides were used to producing wedgelike LC layers, with thickness from \(\sim 30 \) nm to a few 100 nm [11]. The LC was observed using a diffraction limited optical microscope in reflection mode with NA = 1.45 oil-immersion objective and narrow spectral band of illumination light centered around \(\lambda = 450 \) nm yielding optical resolution of \(\sim 150 \) nm. The temperature of the LC was controlled to \(\sim 4 \) mK.

Figure 1(a) shows a sequence of images of 360 nm-pitch LC at temperatures near the I-BPI transition and varying thickness between 60–90 nm (Supplementary Video (SV) 1). In thicker parts (\(\sim 90 \) nm) we observe a typical first-order transition, where the HS phase grows in form of plateletlike clusters, shown in Fig. 1(b). A single HS or a cluster of a few HSs appears instantaneously from the I phase and acts as nucleation site for further growth. The doughnutlike appearance of HSs with a dark center is a consequence of refractive index mismatch between the glass and the local molecular orientation (inset to Fig. 1(a)) [10,11,34].

Just below the thickness \(d_f \) (dashed vertical line), we observe pronounced visual flickering of round bright domains of \(\sim 100–300 \) nm size. It is on the timescale of \(\sim 10–100 \) ms, and is clearly visible to the bare eye. With decreasing thickness and lowering the temperature, the dynamically formed domains become elongated, spontaneously changing shape and closing into HS loops. They either decay back into a moonlike form or remain as individual HS within the I phase. The dashed squares 2...
and 3 in Fig. 1(a) denote regions with different thicknesses, with their details revealed in Fig. 1(b). For the thinnest regions in Fig. 1, the fluctuations are moonlike, but rarely form a doughnut. This means that the formation of HS becomes energetically less favorable with decreasing thickness. Indeed, below \(d \sim 70 \) nm the aerial density of HS drops rapidly [Fig. 1(a)], reminiscent of a dense HS liquid to gaseous HS phase transition.

Figure 2(a) shows a 1 s long sequence of a single region within the fluctuating regime of a highly chiral LC. Scale bar 500 nm. (b) Autocorrelation functions (left) for three different temperatures at \(\bar{q} = 6.7 \mu m^{-1} \), showing critical slowing down of skyrmion fluctuations due to symmetry breaking when cooling from the I phase. The images on the right were rescaled for contrast. Scale bar 500 nm. (c) Temperature dependence of effective relaxation rates \((1/\tau_{\text{eff}}) \) at two different image wave vectors: \(\bar{q} = 6.7 \mu m^{-1} \) (long wavelength limit) and \(\bar{q} = 22.7 \mu m^{-1} \) (comparable to HS size). The inset shows relaxation rate dispersion at three temperatures in (b), also marked with vertical dashed lines in (c).

Fig. 2(b) (see also SV 2). The functions were fitted to stretch-exponential function \(f(t) = a e^{-(t/\tau_{\text{eff}})^{\lambda}} \), which takes into account different relaxation events in the entire field of view [18] and the temperature dependencies of the fluctuations’ relaxation rates \(1/\tau_{\text{eff}} \) are shown in Fig. 2(c). The inset of Fig. 2(c) shows the \(1/\tau_{\text{eff}} \) dependence on the image wave vector \(\bar{q} \) for the three temperatures indicated in Fig. 2(b).

The observed \(\sim 10^{1} - 10^{2} \) Hz fluctuation rates [Fig. 2(c)] are 4 orders of magnitude slower compared to the \(\sim 10^{6} \) Hz nematic order parameter (OP) fluctuation rates at the I-BP transition [16]. This indicates a critical region with extremely flat OP thermodynamic potential, as discussed by H. Yokoyama [13], or a thermally activated hopping mechanism between local energy minima. The Landau de

FIG. 1. (a) Each panel shows the same region of BPI LC in a wedge cell at different temperatures compared to the I-BPI transition in bulk. The thickness ranges from 60 nm (left) to 90 nm (right). The dashed vertical line denotes \(d_f \), where fluctuations are first observed at the transition. The top inset shows the structure of a HS. Scale bar 5 \mu m, images are taken with right-handed circularly polarized light and rescaled for contrast. Sequence is shown in SV 1. (b) Subfigures 1-3 depict enlargements of regions in (a) at the thickness of (1) \(\sim 80-82 \) nm, (2) \(\sim 72-74 \) nm, and (3) \(\sim 62-64 \) nm. Scale bar 1 \mu m.

FIG. 2. (a) Different types of events occurring in a single second within the fluctuating region of a highly chiral LC. Scale bar 500 nm. (b) Autocorrelation functions (left) for three different temperatures at \(\bar{q} = 6.7 \mu m^{-1} \), showing critical slowing down of skyrmion fluctuations due to symmetry breaking when cooling from the I phase. The images on the right were rescaled for contrast. Scale bar 500 nm. (c) Temperature dependence of effective relaxation rates \((1/\tau_{\text{eff}}) \) at two different image wave vectors: \(\bar{q} = 6.7 \mu m^{-1} \) (long wavelength limit) and \(\bar{q} = 22.7 \mu m^{-1} \) (comparable to HS size). The inset shows relaxation rate dispersion at three temperatures in (b), also marked with vertical dashed lines in (c).
Gennes free energy of a chiral nematic is a sum of volume and surface contributions: $F = \{f_e + f_s\} d^3 r + \int f_d d^3 r$, where f_e and f_s are the condensation and elastic volume terms, and f_d is the surface free energy density, respectively [36].

When the LC is confined between two walls separated by d that enforce identical surface ordering, the spatially averaged dimensionless free energy density $g(s)$ becomes [20]

$$g(s) = r(d,T) s^2 - 2s^3 + s^4 - \sigma s. \quad (1)$$

s is the dimensionless amplitude of the OP and we consider single elastic constant and uniaxial approximation, with homogeneous s—see Ref. [18] for an extended derivation. In Eq. (1), $r(d,T) = (T - T^*)/(T_\text{IN} - T^*) + (\xi_\text{IN}^2/d^2) g_e + (2\xi_\text{IN}^2)/(d \cdot d_e^{(2)})$ is the effective dimensionless temperature that drives the transition into the ordered phase, ξ_IN is phase transition correlation length, $d_e^{(2)}$ are the ordering ($i = 1$) and disordering ($i = 2$) surface extrapolation lengths [36], and $\sigma = (\xi_\text{IN}^2/d^2) g_2 + (2\xi_\text{IN}^2)/(d \cdot d_e^{(1)})$ is the dimensionless effective ordering field. Dimensionless parameters g_e and g_2 quantify elastic distortions in the director field: $g_e = (1/2d) \int (|\nabla \cdot n|^2 + (n \cdot \nabla \times n - q)^2 + (\nabla \times n|^2))d^3 r$ is the energy penalty for deformation deviating from simple splay, twist, and bend in confinement, and $g_2 = (1/2d) \int \nabla \cdot (\nabla \cdot n - (\nabla \cdot n)d^3 r$ is the energy penalty for saddle-splay deformation. The shift $\Delta T(d)$ of the order-disorder phase transition (coexistence) temperature in confinement is [18]

$$\Delta T(d) = (T_\text{IN} - T^*) \left[\frac{\xi_\text{IN}^2}{d^2} (g_2 + \xi_\text{IN}^2) + 2\xi_\text{IN}^2 \left(\frac{1}{d_e^{(1)}} - \frac{1}{d_e^{(2)}} \right) \right]. \quad (2)$$

If the surface prefers ordered nematic ($d_e^{(1)} < d_e^{(2)}$), $\Delta T(d)$ is positive, and is negative for surfaces preferring disorder [13,20]. The generic (T,d) phase diagram in the inset of Fig. 3(a) shows a first-order phase boundary that ends in a critical point CP (marked with a red point), determined by $\sigma = \sigma_c = 0.5$, below which the transition is gradual—see also Fig. 4(b) in [18]. The experimentally determined (d,T) phase diagram is shown in main Fig. 3(a), with the black curve of the form $T(d) = T_0 - A/d$. The blue color gradient marks a region in which the transition from the high-temperature phase becomes gradual with reducing thickness, including the fluctuating region. It is not possible to say in this case the transition disappears at a sharply defined critical thickness, but rather the transition into the critical region is gradual itself, with the critical thickness $d_c \lesssim 50$ nm. Figure 3(b) shows the three different transition regimes: in thick regions (right), stable HS clusters nucleate in bulk or at the surfaces that grow quickly once the transition temperature is reached [see Fig. 1(b) (1)].

Local minima at $s = s_n \sim 1.0$ and $s = s_p \sim 0$ here represent the ordered (nematic) and disordered phase (confined isotropic—paranematic), respectively. In the fluctuating region (central schematic), the condensation energy density barrier Δg_{cond} is strongly reduced due to confinement, while the barrier disappears completely at lower $d \lesssim d_c$ (shown left)—this point is discussed in more detail below.

We calculated the relaxation rates τ^{-1} of the OP fluctuations around the equilibrium, given by the local curvature of $g(s)$ minima, $\tau^{-1} = \tau_0 \cdot g_i^{(2)}$, where $g_i^{(2)} = \partial^2 g/\partial s^2 |_{s_i}, i = n, p$. Next, τ_{OP}^{-1} is the OP relaxation rate in bulk, which is of the order of 10^9 Hz for a typical I-N/BP transition. The calculated temperature dependence of the
OP relaxation rates τ^{-1} are shown in Fig. 3(c) for various d—see Table 1 in [18] for values of numerical parameters used. The relaxation rates drop down to ~ 10 Hz only in a very narrow (~ 1 µK) interval and around the critical thickness ($d_c = 79$ nm) for selected set of parameters. This is 4 orders of magnitude narrower than observed in the experiments and in apparent discrepancy to the simple Landau theory and the soft mode approach for the bulk phase transition [37].

The clue to this puzzle is hidden in the size of the fluctuating HS fragments, which is around ~ 200 nm, as seen from Fig. 1(b). For a local thickness of ~ 60–80 nm, the fluctuating HS fragments are actually chiral capillary bridges stochastically forming between the two surfaces. Capillary condensation in very thin nematic layers has been observed by Kočerav et al. [15,38,39].

We consider a cylindrical capillary bridge of radius r and height d [Fig. 3(b)] as the state in a local minima at s_p and the absence of the capillary bridge corresponding to local minimum with $s_p < s_n$. The maximum between the minima appears at s_m. The times for hopping between the two free-energy minima, separated by a barrier of height ΔG^\pm, are $\tau_h^\pm = \tau \cdot e^{\beta (\Delta G^\pm)}$, where $\beta = 1/k_B T$ and τ is the relaxation time in the currently occupied minimum. ΔG^\pm, and consequently τ_h^\pm, are different for $N \to I (-)$ and $I \to N (+)$ jumps. ΔG^\pm is composed of two parts: (i) the free energy needed to condense an ordered capillary bridge (and vice versa), G_{cond}^\pm and (ii) the energy cost of the formation of the interface between the nematic bridge and surrounding paranematic phase G_{interf} (and vice versa). The free energy related to condensation of the nematic bridge is $G_{\text{cond}} = a_0 (T_{\text{IN}} - T_s) S_0^2 \Delta g^\pm \pi r^2 d$, with $\Delta g^+/\pm = g(s_m) - g(s_p/n)$ and the corresponding energy for the creation of (chiral) N-paranematic interface is $G_{\text{interf}} = g_{\text{i}}^{(2)} (s_m - s_p)^2 2 \pi r d \sqrt{g_{\text{i}}^{(2)}}$ [18,21,40]. Here, a_0 is the leading coefficient of the Landau expansion, T_{IN} the bulk transition temperature, S_0 the energy density of OP at the transition in bulk, and $g(s_i), i = n, p$, are the free-energy densities in the nematic and paranematic phases. γ_{IN}^0 is bare I-N interfacial tension. The hopping times τ_h^\pm are

$$\frac{\tau_h^\pm}{\tau_{\text{IN}}} = \exp\left[\beta (G_{\text{cond}}^\pm + G_{\text{interf}}^\pm) / g_{\text{i}}^{(2)}\right].$$

Figure 3(d) shows the temperature dependence of the two hopping rates $1/\tau_h^\pm$, calculated for $d = 85$ nm and $r = 12 \gamma_{\text{IN}}^0$, which are now 1000 times slower compared to OP fluctuations, shown in Fig. 3(c), and comparable to experiments. Also, the temperature interval of high hopping rates is now of the order of few mK for this set of parameters [18]. This temperature range depends strongly on the surface anchoring strength, and even small local variation of the surface anchoring strength [41,42] of $\sim 5\%$, results in shifting the local temperature of phase transition for ~ 40 mK, thereby broadening the temperature window of vivid skyrmion fluctuations.

The paranematic-skyrmion phase transition not only breaks the continuous symmetry of the disordered phase, but also changes the topology of the orientational field considered topologically charge-neutral at all times. Figure 4(a) shows a formation of a single HS in a longer pitch material at thickness of $d = 120$ nm, following a temperature quench: elongated domains form (1–2), develop a kink (3) and bend (4) inward until a HS is formed (5). Considering the paranematic surrounding, each new HS carries a topological charge $+1$ and there is an excess of positive charge, because the $-1/2$ disclination lines are not observed at this stage. Further, Fig. 4(b) presents a formation of a pair of HSs, starting as a wavy, moonlike feature (1–2) that closes into a pair of tightly bound HSs (3–4) on both sides. Two dark indentations (3–4) on the surface of the connecting neck are the seeds of two $-1/2$ disclination lines that become clearly visible (5). The $-1/2$ charge disclination lines are generated only via collision and merging of individual HSs, reducing the positive charge of a cluster to $+1$. This imbalance is also observed in other events, as shown in Fig. 4(c). Once two or more HS clusters collide (1), strong bending of the director at the touching surfaces occurs (2), which is relieved through the formation of $-1/2$ disclinations (3–5),
balancing the total winding number to $+1$. In the fluctuating regime observed in a shorter pitch material, such events are reversibly driven by thermal energy, changing the total charge on a millisecond timescale. The excess positive charge is neutralized at lower temperatures via HS merging that generates negative charge. This behavior does not violate the conservation of topological charge, but simply classifies topological charges into two classes: (i) the “real charge” is observable as a singularity in the centers of individual HSs and (ii) the “evanescent charges” remain undetected in the paranematic phase, as the amplitude of the order is below the detection limit of the instrumentation used. For details see Ref. [18].

We note that the fluctuations of skyrmions shown in Figs. 1, 2, and 4 can be viewed as fluctuations and slowing down of double-twist-eigenmode, considered by Long and Selinger [43] as the lowest energy mode in chiral nematic LCs in cylinders with free boundary conditions.

In conclusion, the results reveal an extremely slowed-down dynamics of topologically nontrivial double-twisted structures—skyrmions in confinement, and surprising imbalance of skyrmion topological charge in a narrow temperature interval exhibiting strong fluctuations. This may be of fundamental importance for topological phase transitions in general and for symmetry-breaking dynamics in nonequilibrium first-order phase transitions in particular [44].

This work was supported by Slovenian Research Agency (ARRS) through Contracts No. P1-0099 (I. M.), No. PR-08332 (J. P.). A. N. and U. O. acknowledge support from NAS Ukraine (Grant No. 1.4.B/209).