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Real networks are complex dynamical systems, evolving over time with the addition and deletion of
nodes and links. Currently, there exists no principled mathematical theory for their dynamics—a grand-
challenge open problem. Here, we show that the popularity and similarity trajectories of nodes in
hyperbolic embeddings of different real networks manifest universal self-similar properties with typical
Hurst exponents H ≪ 0.5. This means that the trajectories are predictable, displaying antipersistent or
“mean-reverting” behavior, and they can be adequately captured by a fractional Brownian motion process.
The observed behavior can be qualitatively reproduced in synthetic networks that possess a latent
geometric space, but not in networks that lack such space, suggesting that the observed subdiffusive
dynamics are inherently linked to the hidden geometry of real networks. These results set the foundations
for rigorous mathematical machinery for describing and predicting real network dynamics.
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Modeling and prediction of network dynamics, i.e., of
the connections and disconnections that take place in a
given network over different timescales, is perhaps the most
fundamental unresolved problem in complex networks [1],
listed also in the popular 23 Mathematical Challenges of
DARPA [2]. Accurate prediction of such dynamics can
unlock a plethora of applications across diverse domains,
ranging from early detection and prevention of critical
events in networked systems, to decision and policy
making in financial markets, to strategic interventions
for counterterrorism and public health [3,4].
We observe that the mathematical machinery and equa-

tions that describe the evolution of other complex dynami-
cal systems and temporal data, such as gravitational and
molecular systems, turbulence, and financial data, have
been well developed and known for decades [5–9]. Yet, the
underlying processes governing network dynamics and
their mathematics remain elusive. One of the main reasons
for this discrepancy is the fact that networks are discrete
topological structures, not inheriting the standard form of
temporal data met in other classical dynamical systems.
Advancements in network geometry during the past

years revealed that real networks can be meaningfully
mapped into continuous hyperbolic spaces [10–14]. In
these spaces, nodes have radial (popularity) and angular
(similarity) coordinates r, θ, and are connected in the
observed network with a probability that decreases with
their hyperbolic distance, determined by their coordinates
[10]. Therefore, if the mathematics describing the evolution
of the nodes’ coordinates was known—and importantly, if
this evolution were predictable—one could employ this
mathematics to describe and ultimately predict connectivity
dynamics. In essence, we observe that network geometry

provides a way to cast the problem of network dynamics to
a time series prediction problem—a well-mined problem in
other areas, such as finance [8,9,15,16], network traffic
modeling [17,18], and fluid dynamics [19,20].
Given these considerations, here we analyze, for the first

time, historical popularity and similarity trajectories of
nodes in hyperbolic embeddings of different real networks
and find that both types of trajectories exhibit subdiffusive
dynamics (see Table I for the considered data). Specifically,
we find that the trajectories are antipersistent with short-
term negative autocorrelations, and can be well described
by a fractional Brownian motion process [9].
In hindsight, these findings, and particularly the depar-

ture from the traditional law of Brownian motion, agree
with intuition. Indeed, real networks are characterized by
strong community structures and hierarchical organization
that persist over time [45]. The first characteristic implies
that similarity trajectories should remain confined within
specific regions of the similarity space. The second
characteristic signifies that popularity trajectories should
fluctuate around some expected values that reflect the node
positions in the network hierarchy or popularity space. For
instance, a nonhub in the US air transportation network is
expected to remain a nonhub even though its degree can
fluctuate. Further, since the popularity and similarity
trajectories are not generally independent, the dynamics
of one can influence the dynamics of the other. This picture
is analogous to subdiffusive phenomena found in crowded
biological systems, where particles diffuse in environments
with hierarchies of energy barriers or traps [46].
These findings have both practical and theoretical

implications. From a practical perspective, the subdiffu-
sivity of the trajectories implies that they are predictable
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(cf. [26], Sec. X), thereby satisfying a necessary condition
for predicting connectivity dynamics in real networks. In
contrast, as shown, trajectories obtained from synthetic
networks that lack an underlying geometry resemble tradi-
tional Brownian motion, and are thus unpredictable. From a
theoretical perspective, our findings guide the potential
development of dynamical models for the nodes’ similarity-
popularity motion, akin to Langevin equations in molecular
dynamics or Newtonian equations in gravitational mechan-
ics [1,7]. Any such equations for networks, to reflect reality,
should give rise to the observed subdiffusive dynamics.
More precisely, for each real network, we consider

consecutive snapshots of its topology,G1; G2;…; Gτ, span-
ning the period shown in Table I. We independently map
each snapshot Gt; t ¼ 1;…; τ, to an underlying hyperbolic
space using Mercator [13] and extract for each node i its
popularity and similarity trajectories, i.e., the evolution of its
popularity and similarity coordinates, friðtÞ; θiðtÞg; t ¼
1;…; τ ([26], Sec. II). We choose to independently map
the snapshots in order to avoid possible artificial biases
between node coordinates across embeddings, and apply
Procrustean rotations [47] to eliminate global rotations and
reflections (see Ref. [26], Sec. III).
We note that for each node i its coordinates riðtÞ and

θiðtÞ are inferred from the observed network topology at
time t, Gt, and represent estimates for some underlying or
“hidden” true coordinates that determine network connec-
tivity [11]. When Gt changes, these estimates also change.
Furthermore, for each node iwe also consider the trajectory
of its expected degree κiðtÞ, which is related to riðtÞ and
provides a more direct view on individual node popularity
(see Ref. [26], Sec. II). Figures 1(a), 1(f), and 2(a) show the
popularity and similarity trajectories of the Charlotte
Douglas International Airport (CLT) in the US air trans-
portation network (see Ref. [26], Sec. IX, for other
examples).
We find that the obtained trajectories constitute well-

defined time series, exhibiting universal properties.
Particularly, their velocities (or increments, i.e., differences
between consecutive observations) manifest negative auto-
correlations with short-term memory [see Figs. 1(b), 1(c),
2(b), and 2(c) and [26], Sec. V]. Furthermore, the velocities
exhibit self-similar scale laws of fractional order, i.e., they
are of fractal nature [see Figs. 1(d) and 2(d) that are
explained below, and [26], Sec. IX, for more examples].

A way to quantify the self-similarity and the type of
memory inherited by the trajectories is by computing their
Hurst exponent H∈ ð0; 1Þ [48]. A value of H in (0.5,1)
indicates a persistent time series with long-range positive
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FIG. 1. Properties of the popularity trajectory of CLT in the US
air (in blue). (a) Radial popularity trajectory. (b) Trajectory
increments (velocity). (c) Sample autocorrelation of the velocity.
(d) Variance-time plot of the velocity. (e) Probability density
function (PDF) of the velocity. The dashed curve shows a
Gaussian PDF with the same mean and variance. (f) Expected
degree trajectory. The estimated Hurst exponents for the trajec-
tories in (a) and (f) are 0.0004 and 0.02. The plots show also
results for a simulated counterpart of the trajectory (in red)
constructed using the model of Eq. (3).

FIG. 2. Properties of the similarity trajectory of CLT in the US
air (in blue). (a)–(e) show the same as (a)–(e) in Fig. 1, but for the
similarity trajectory. The y axis in (a) is in radians. (f) Angular
distribution of the trajectory. The estimated Hurst exponent for
the trajectory is 0.03.

TABLE I. Overview of the considered networks, obtained from
Refs. [21–25] (see Ref. [26], Sec. I, for details).

Name Nodes No. of snapshots

US air US airports 10 000 (daily, 1988–2015)
Bitcoin Bitcoin addresses 1292 (daily, 2012–2016)
PGP WoT PGP certificates 1500 (daily, 2003–2007)
IPv6 internet Autonomous systems 300 (weekly, 2011–2017)
arXiv Authors 3977 (daily, 2011–2022)
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autocorrelation (a superdiffusive process). On the other
hand, a value of H in (0,0.5) indicates an antipersistent or
“mean-reverting” time series with negative autocorrelation
(a subdiffusive process); in this case, positive (negative)
increments tend to be followed by negative (positive)
increments, and the dependence between increments is
short ranged. The strength of antipersistence increases asH
approaches 0. The case H ¼ 0.5 corresponds to a random
process with no dependence between its increments (typ-
ical diffusion).
Figure 3 shows the distribution of H across the trajecto-

ries in the US air and IPv6 internet (similar results hold for
the other real networks, see Ref. [26], Sec. VI). To calculate
H we use the method of absolute moments [49,50] (see
Ref. [26], Sec. IV). We see that, in general, the distributions
are concentrated over values of H well below 0.5, indicat-
ing that the trajectories are generally strongly antipersistent.
The strongest antipersistence (lowest average H) is
observed in the US air and Bitcoin, followed by PGP,
IPv6, and arXiv (Fig. 3 and [26], Sec. VI). We note that
values ofH close to 0 have also been observed in other real
data [51,52]. In general, we find that the popularity
trajectories are more antipersistent than the similarity
trajectories. Figure 3 shows also the distributions of H
in randomized counterparts of the trajectories, obtained by
randomizing the sign of the velocities, which breaks
correlations ([26], Sec. V). As expected, these distributions
are concentrated around H ¼ 0.5.
To further support our findings, we also construct the

variance-time plot [17]. Specifically, let XðmÞ
k ¼ðXkm−mþ1þ

���þXkmÞ=m, k ¼ 1; 2; 3;…, denote an aggregated point
series of the velocities over nonoverlapping blocks of size

m ≥ 2. Self-similarity implies that the variance of XðmÞ
satisfies

VarðXðmÞÞ ¼ σ2m2H−2; ð1Þ

where σ2 is the variance ofX. We find that the variance-time
plots of the velocity processes, i.e., the empirical plots
of logVarðXðmÞÞ against logm, indeed follow closely
Eq. (1) [see Figs. 1(d), and 2(d) and [26], Sec. IX]. We
also note that qualitatively similar results hold if we consider
network snapshots over coarser time intervals such as
weekly or monthly intervals (see Ref. [26], Sec. XI).
To understand the origin of the observed antipersis-

tence, we consider a simple network model where snap-
shots Gt, t ¼ 1; 2;…; τ, undergo link rewirings (see
Ref. [26], Sec. XII). In the geometric version of the
model, the snapshots are constructed according to random
hyperbolic graphs (RHGs) [10]. Here the nodes are
assigned fixed similarity coordinates θh and target
expected degrees κh, called “hidden variables,” and are
connected with a probability that decreases with their
effective distance, Δθh=ðκhκ0hÞ, where Δθh is the similarity
distance and κh; κ0h are the nodes’ expected degrees. In the
nongeometric version, the snapshots are constructed
either according to the configuration model (CM) [53]
or to random graphs (RGs) [54]. In CM the connection
probability depends only on the nodes’ expected degrees
κh; κ0h, which are heterogeneous ([26], Sec. XII), while in
RGs all nodes have the same expected degree and
connected with the same probability. The link-rewiring
process involves deleting at random a number of links
from snapshot Gt and subsequently reinserting an equal
number of links to generate the next snapshot Gtþ1,
according to the connection probability in the correspond-
ing model ([26], Sec. XII). Once the snapshots are created,
we embed them into hyperbolic spaces and extract the
nodes’ expected degree and similarity trajectories, κðtÞ
and θðtÞ, following the same procedure as in the real
networks.
We find that the trajectories in RHGs exhibit negative

autocorrelations and strong antipersistence, as in real net-
works [see Figs. 4(a) and 4(b) and [26], Figs. S43 and S46].
Further, as in real networks, the similarity trajectories tend
to be confined within specific regions of the similarity
space [see Figs. 4(c), 4(d), 2(a), and 2(f)]. In contrast, the
similarity trajectories in CM and RGs resemble Brownian
motion, having Hurst exponents close to 0.5 and spreading
throughout the similarity space [see Figs. 4(b), 4(e), and
4(f) and [26], Figs. S44 and S45]. Further, the antipersis-
tence of the degree trajectories weakens [Fig. 4(a) and [26],
Figs. S47 and S48].
These results can be explained as follows. In RHGs,

even though the snapshots Gt change, they are all created
using the same set of underlying node coordinates.
Consequently, the inferred coordinates κðtÞ and θðtÞ for

FIG. 3. Distribution of Hurst exponents in US air and IPv6
(in blue). (a) and (b) The expected degree trajectories. The
average Hurst exponents are, respectively, 0.01 and 0.13. (c) and
(d) The similarity trajectories. The average Hurst exponents are
0.08 and 0.25. We consider trajectories with at least 300 points.
The distributions for the randomized counterparts are shown in
yellow. Similar results hold for the radial trajectories ([26],
Sec. VI).
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each node should remain close to their respective under-
lying coordinates κh and θh at all times t. Further,
whenever the inferred coordinates happen to deviate
significantly from their underlying coordinates, then in
the subsequent time step it is more likely that they will be
closer to them; otherwise, the inferred coordinates would
eventually diverge from their underlying coordinates.
Additionally, the inferred coordinates never settle onto
their underlying ones, which means that whenever they
are sufficiently close to them, then in the subsequent time
step they are likely to drift away due to probabilistic
network changes. In essence, the underlying coordinates
of a node can be seen as “attractors” that pull the inferred
coordinates close to them. These attractors are in com-
petition with connectivity changes that push the inferred
coordinates away from them. This competition explains
the observed reversal nature of the trajectories, i.e.,
antipersistence [Fig. 4(c)].
Nongeometric networks lack underlying similarity

attractors, and thus θðtÞ changes freely, leading to diffusive
dynamics [Figs. 4(e) and 4(f)]. Further, although there are
still popularity attractors κh, degree antipersistence is
weaker than in RHGs, as degree trajectories depend on
similarity trajectories [13], which are no longer antipersis-
tent. When the attractors κh are heterogeneous, tighter
constraints are imposed on individual degrees, supporting

the stronger degree antipersistence in CM compared to RGs
in Fig. 4(a).
Taken altogether, these results indicate that the observed

antipersistence of the real-world trajectories is inherently
linked to the latent geometry of real networks, i.e., to their
intrinsic similarity-popularity space [12]. We note that the
underlying popularity and similarity attractors do not have
to remain fixed as in the RHGs model, but can change
over time, reflecting long-term popularity and similarity
shifts. We also note that subdiffusive and self-similar
phenomena, explainable through network geometry, have
been previously observed in processes running on networks
and in the characteristics of network structure, cf. [14].
These phenomena are unrelated to our findings here,
which are about the dynamics of networks. Next, we
show that the trajectories can be well described by a
fractional Brownian motion process, and explain how their
strong antipersistence favors plausible predictions for their
evolution.
Fractional Brownian motion (fBm) indexed by a Hurst

exponent H, BHðtÞ; t ≥ 0, is a popular stochastic process
often used as basis in the modeling of real-world time series
[9]. The increment process of fBm, XHðtÞ ¼ BHðtþ 1Þ−
BHðtÞ, is called fractional Gaussian noise (fGn) and has the
following autocorrelation function [9]:

ρðlÞ ¼ 0.5ðjlþ 1j2H − 2jlj2H þ jl − 1j2HÞ; ð2Þ

where l is the time lag.
Figures 1(c) and 2(c) show that Eq. (2) closely follows

the empirical autocorrelation function of the velocities.
However, Figs. 1(e) and 2(e) show that the velocity
distribution is not Gaussian, in contrast to fGn (seeRef. [26],
Sec. IX, for other examples). Further, the velocities are
characterized by time-varying variances [cf. Figs. 1(b)
and 2(b), and [26], Sec. IX]. These facts suggest that
standard fBm is rather too simplistic to fully capture the
trajectory characteristics. Instead,we find below that an fBm
with time-varying noise-induced variance adequately cap-
tures the trajectories.
Specifically, we consider a modification of the Riemann-

Liouville multifractional Brownian motion model of
Ref. [16], where instead of varying the Hurst exponent
over time, we vary the noise-induced variance (see
Ref. [26], Sec. VII, and Sec. VIII for discussion on
multifractality). The model aims to capture trajectories
that behave only locally, i.e., within intervals of variance
stationarity, as an fBm. Further, we note that trajectories
may exhibit both trends and a mean-reverting behavior in
their increments. Therefore, we also adjust the model to
account for possible trends in the trajectories that can also
change with time. The final equation for the considered
fBm model takes the form

FIG. 4. Expected degree and similarity trajectories in synthetic
temporal networks constructed according to RHGs, the CM, and
RGs. (a) and (b) The distribution of Hurst exponents for the
expected degree and similarity trajectories in the three cases. (c)
and (d) A similarity trajectory in RHGs and its distribution in the
similarity space. The red line in (c) indicates the underlying
attractor, i.e., the node’s hidden similarity coordinate θh ¼ 4.9.
(e) and (f) The same as in (c) and (d), but for the CM case. There
is no underlying attractor here. The Hurst exponents for the
trajectories in (c) and (e) are, respectively, 0.16 and 0.42.
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B̃HðtÞ¼B0þ
Z

t

0

μðsÞds

þ 1

ΓðHþ 1
2
Þ
Z

t

0

ðt− sÞH−1=2σðsÞdBðsÞ; t≥ 0; ð3Þ

where BðsÞ is the standard Brownian motion, B0 is the
initial position, H∈ ð0; 1Þ is the Hurst exponent, Γ is the
gamma function, and μðsÞ and σðsÞ are, respectively, the
trend and noise-induced volatility at time s. In [26],
Sec. VII, we provide the discrete-time analog of the model
and explain how to tune its parameters to create simulated
counterparts of real trajectories.
Figures 1(a) and 2(a) show that the model can adequately

capture the popularity and similarity trajectories of CLT in
the US air. In general, we find that the model can capture
the trajectories of all the considered networks (see [26],
Figs. S10–S34, for other examples), apart from some cases
(present mainly in PGP and arXiv) where similarity
trajectories appear to exhibit jumps. Such cases suggest
that extensions that also account for jumps may be
desirable as part of future work [55].
Finally, given the ability of the considered fBm model to

simulate trajectories resembling real ones, a natural next
question is whether the model can also be used for
predicting the future evolution of the trajectories. While
a comprehensive assessment of the model’s predictive
capabilities is beyond the scope of the present work, we
provide a glimpse on the model’s ability for predictions
in [26], Sec. X. We show that predictions are possible, even
with simple educated guesses on the model’s parameters for
the prediction period, based on historical data. This
predictability can be explained by the fact that the variance
of the considered model grows with time t as t2H [9].
Therefore, as real trajectories are typically characterized by
low values of H ≪ 0.5, their variance grows slowly with
time, remaining even approximately constant for cases
where H ≈ 0, favoring their predictability.
Our results pave the way towards the ultimate goal of

predicting connectivity dynamics in real networks over
different timescales. To accomplish this goal, robust meth-
odologies for trajectory prediction should be developed
through automated approaches for fine-tuning the param-
eters of the proposed model or of possible variations of it.
Of particular interest are techniques that can predict
changes in the expected trends of the trajectories. In this
vein, an interesting direction involves analyzing many
trajectories simultaneously, instead of individually, which
could identify possible synchronization phenomena across
the trajectories and guide the development of dynamical
models. Predicting connectivity dynamics would then be
equivalent to predicting the evolution of hyperbolic dis-
tances among node pairs and deciding on their temporal
connectivity based on their distance.

Datasets and code used in the Letter are available at [56].
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