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The Mpemba effect is a counterintuitive phenomena in which a hot system reaches a cold temperature
faster than a colder system, under otherwise identical conditions. Here, we propose a quantum analog of the
Mpemba effect, on the simplest quantum system, a qubit. Specifically, we show it exhibits an inverse effect,
in which a cold qubit reaches a hot temperature faster than a hot qubit. Furthermore, in our system a cold
qubit can heat up exponentially faster, manifesting the strong version of the effect. This occurs only for
sufficiently coherent systems, making this effect quantum mechanical, i.e., due to interference effects. We
experimentally demonstrate our findings on a single 88Srþ trapped ion qubit. The existence of this
anomalous relaxation effect in simple quantum systems reveals its fundamentality, and may have a role in
designing and operating quantum information processing devices.
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Physical systems undergoing relaxation can exhibit a
wide range of rich and nontrivial phenomena. A prominent
example is the Mpemba effect (ME) [1,2], in which an
initially hot system cools down faster than a colder,
otherwise identical, system. Some systems manifest a
stronger version of this effect [3], in which the hotter
system relaxes exponentially faster. The ME has been
experimentally demonstrated in various classical systems,
e.g., water [2], Clathrate hydrates [4], magnetic alloys [5],
colloids diffusing in a potential [6], and a few others [7–9].
An inverse ME, in which an initially colder system heats up
faster than a warmer system, has been predicted [10,11] and
recently measured [12]. Much theoretical insight was
gained on this effect in recent years, using various
theoretical methods [13–23] and numerical results [24–27].
Theoretical quantum versions of the ME have been

recently proposed in various models, e.g., Ising model
[28], Anderson model [29], and a perturbative technique for
Markovian open systems [30]. Quantum Mpemba-like
theories, which are nonthermal, have also been suggested,
including accelerated relaxation of dissipative open sys-
tems [31,32] and relaxation of entanglement asymmetry in
spin systems [33–35]. The latter has been recently dem-
onstrated using trapped-ions [36].
Here, we propose and experimentally demonstrate the

existence of an inverse ME in the simplest quantum system
—a single qubit. Our analysis shows that a strong inverse
ME occurs for a sufficiently coherent qubit, making this
effect quantum mechanical, i.e., due to interference.
We consider a coherently driven qubit that is coupled to a

thermal Markovian bath, causing decoherence of the qubit
and its eventual relaxation to a nonequilibrium steady state.
Our only assumption on the qubit-bath coupling is that the
qubit’s decoherence rate is monotonically increasing with

the bath’s temperature. This occurs, e.g., for a black-body
photon-emitting bath, such that the emission rate increases
with temperature at every given wavelength, in particular,
at resonance with the qubit’s transition energy.
We demonstrate the inverse ME experimentally by

implementing it on the Zeeman qubit, defined on a single
trapped 88Srþ ion. Figure 1 shows our model and the
corresponding implementation on the ion’s energy levels,
detailed further below.

FIG. 1. Top left: the modeled quantum system exhibiting an
inverse Mpemba effect. A thermal source of photons (fire) is
coupled to coherently driven qubit (blue), causing it to relax to a
steady state. Bottom left: the resulting coupling between the
qubit’s levels, j↓i and j↑i, with a coherent drive (green) and
decoherence terms causing decay (γdecay) and dephasing (γdephase).
Right: the qubit is mapped to the 5S1=2 levels of the Zeeman
ground state manifold of a trapped 88Srþ ion. Coherent (green)
and incoherent (purple) dynamics are interlaced in order to
generate the overall system evolution (pulse sequence). The
incoherent dynamics are generated using states in the long-lived
4D5=2 and short-lived 5P3=2 manifolds with various transitions
(red, gray, pink, and cyan), detailed below.
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The qubit’s dynamics is given by the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) equation, ∂tρ ¼ L½ρ�, with L a
Lindblad superoperator, acting on ρ∈C2×2, the density
matrix representing a statistical ensemble of a single qubit.
Specifically, the operation of the superoperator is given by
(ℏ ¼ 1),

L½ρ�¼−
iΩ
2
½σx;ρ�þγdecayLj↑ih↓j½ρ�þγdephaseLj↑ih↑j½ρ�; ð1Þ

withΩ the rate of the coherent driving of the qubit, set by the
x-Pauli matrix σx. Open Markovian dynamics are generated
by LA½ρ�≡ AρA† − 1

2
fA†A; ρg. We consider decoherence

due to decay (dephasing), generated by j↓ih↑j (j↑ih↑j), with
rates,

γdecay ¼ αγðTÞ; γdephase ¼ ð1 − αÞγðTÞ; ð2Þ

where α∈ ½0; 1� is the relative occurrence of decay with
respect to the decoherence rate and γðTÞ is the overall
temperature-dependent decoherence rate due to coupling to
thebath [37]. Throughout thiswork, the qubit’s temperature is
defined once it reaches a steady state with the bath. We note
that γðTÞ is assumed to be monotonically increasing with T,
e.g., via Planck’s law, such that we can characterize the bath
and the steady state temperature by T or γ interchangeably.
The dynamics is conveniently analyzed using the Bloch

vector, r⃗ ¼ ðx; y; zÞ, with ρ ¼ ð1=2Þð1þ r⃗ · σ⃗Þ [see deri-
vation in Supplemental Material (SM) [38] ]. Since the
system is driven, its fixed points correspond to non-
equilibrium steady states that do not obey detailed balance,
e.g., the qubit continuously scatters photons and its long-
time limit is not ∝ e−βH. The collection of steady states,
r⃗ssðγÞ, form a right half of an ellipse in the y–z plane,
with its center at ð0; 0;−1=2Þ and semiaxes ðry; rzÞ ¼� ffiffiffiffiffiffiffiffi

α=2
p

; 1=2
�
, shown in Fig. 2 (left). Each point on this

curve, known as the steady state locus, corresponds to a
steady state at a given γ0 ≡ γ=Ω, with γ0 → 0ð∞Þ corre-
sponding to the center (south pole) of the Bloch sphere.
Consider the relaxation path of an initial condition given

by the steady state solution of a cold temperature r⃗ssðγiÞ
when coupled to a hot bath characterized by γf. The
solution of Eq. (1) is then given by

r⃗ðt; γi; γfÞ ¼ r⃗ssðγfÞ þ
X

n∈ fþ;−;xg
anðγi; γfÞv⃗nðγfÞeλnðγf Þt; ð3Þ

where v⃗nðγfÞ are the relaxation modes of the system, λnðγfÞ
their rates, and anðγi; γfÞ the corresponding coefficients,
determined by the overlap between the initial state and
v⃗nðγfÞ.
We note that the x coordinate has a stable fixed point at

x� ¼ 0, making the x direction trivially vanish throughout
the system’s evolution.

The decay rates in the y-z plane are given by the real part
Re½λ��, with

λ� ¼ −γf
�
αþ 1=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − 1=2Þ2 − 1=γ02f

q �
: ð4Þ

TheME can exist only when Re½λ�� are distinct, allowing for
slow and fast relaxation modes. This occurs for final temper-
atures γ0f > γ0b, with the bifurcation point γ0b ≡ jα − 1=2j−1.
The relaxation at long times is determined by the slowest

relaxation mode λ− and its coefficient a−, which clearly
vanishes for γi ¼ γf. Fixing γ0f , one might expect a− to be
monotonic in the range 0 ≤ γ0i ≤ γ0f . However, for an
inverse ME to take place, a cold system must reach the
steady state faster than a hotter one, i.e., ja−j is smaller for a
cold system, compared to a hotter system. It is therefore the
nonmonotonic behavior of a− as a function of γi which
enables the existence of the ME [3]. Indeed, the coefficient
a−ðγi; γfÞ displays such a behavior, implying the existence
of an inverse ME. An example with γ0f ¼ 15 is plotted in
Fig. 2 (right).
A strong ME occurs in the special case in which a−

vanishes at an initial temperature, γi;SME ≠ γf . In that case,
the relaxation time is determined by the fast rate λþ, and
as a result, it is exponentially faster [3]. In other words,
defining the distance to steady state, dγissðtÞ≡ jr⃗ðt; γi; γfÞ−
r⃗ssðγfÞj, then dγi≠γi;SME

ss ðtÞ=dγi;SME
ss ðtÞ is asymptotically expo-

nentially increasing in time.
Here, a− vanishes at γ0i;SME ¼ γ0f

�
ðα − 1=2Þ−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðα − 1=2Þ2 − γ0−2f

q �
. For example, for γ0f ¼ 15, a− van-

ishes at γ0i;SME ≈ 0.07 as seen in Fig. 2 (right). The strong
ME in this system is experimentally optimal to achieve the

FIG. 2. Left: steady state locus. We measure the qubit’s steady-
state position (points) on the y-z plane of the Bloch sphere (black
line) at different temperatures and compute the corresponding α’s
(see the main text). Our datasets (points) are fitted yielding α ¼
0.21� 0.03 (orange), α ¼ 0.51� 0.04 (brown), and α ¼ 0.94�
0.07 (blue), used hereafter. The steady state locus corresponding
to the latter is presented in color, showing values of γ0 (log scale).
Error bars correspond to �2σ confidence intervals due to the
quantum shot noise of 300 experimental repetitions. Right:
coefficient of the slow-decaying eigenstate a− as a function of γ0i,
for γ0f ¼ 15 (green star). The coefficient shows a nonmonotonic
behavior, implying the existence of a ME. Furthermore, the curve
is shown to vanish at γ0i ¼ 0.07, proving the existence of a strong
ME. The highlighted points correspond to the γ0is in Fig. 3.
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most pronounced signal. Indeed, in our experimental
demonstrations we make use of values γi ≈ γi;SME. We
mathematically prove the strong ME can only appear in a
heating process, i.e., as an inverse ME (see SM [38]).
Since γ0i;SME > 0, the required α for a strong ME is

bounded by α > 1=2þ 1=γ0f ≥ 1=2. When α satisfies this
condition, there exists a strong ME for every final temper-
ature above the bifurcation point, at γ0i;SME. Thus, an
exponentially faster relaxation occurs only in a sufficiently
coherent system, i.e., with a low excess dephasing on top of
that induced by the decay channel. Specifically, a classical
bit, with no coherence between its two states, cannot
exhibit this strong effect.
This model describes, for example, a single trapped

88Srþ ion qubit in a small-scale quantum computer [39].
Specifically we encode the j↓i (j↑i) qubit state on the
5S1=2;−1=2 (5S1=2;1=2) state in the Zeeman ground state
manifold, shown in Fig. 1 (right). The two states are
coherently coupled with a magnetic field (green), oscillat-
ing at the Zeeman splitting frequency in the 5S1=2 manifold,
generating the qubit’s Hamiltonian, H ¼ Ωσx=2, with Ω
the field’s Rabi frequency.
As shown in Fig. 1, we combine the coherent and open

dynamics in discrete steps, by interlacing small durations of
coherent (green pulse) and open Markovian evolution
(purple pulse), i.e., by Trotterization. Markovian open
dynamics are generated by coupling the qubit levels via
fast decaying states [40]. Control over γ and α is gained
by making use of the sequential cascade of pulses and
transitions.
Specifically, we use a narrow linewidth laser at 674 nm

[41] (red) in order to selectively couple the j↑i state to the
j4D5=2;5=2i state in the 4D5=2 metastable manifold. An
additional laser at 1033 nm (pink) couples the 4D5=2

manifold to the short-lived 5P3=2. Because of selection
rules, only the j5P3=2;3=2i state is populated, which quickly
decays back to the j↑i state (blue), resulting in full
dephasing, i.e., α ¼ 0. By using an additional π pulse in
the 4D5=2 manifold (gray), between the 674 nm and the
1033 nm pulses, we map the j4D5=2;5=2i state to the
j4D5=2;−5=2i, which will ultimately decay to the j↓i state,
yielding α ≈ 1. The value of γ is determined by the 674 nm
pulse amplitude and length, as these control the relative
population that is excited outside of the 5S1=2 qubit
manifold in each pulse cycle.
We demonstrate this control experimentally by initial-

izing the system to the j↑i state and letting it relax to a
steady state under n ¼ 100 repetitions of interlaced dynam-
ics, analogous to a decay time of 7γ−1f . After this evolution
we perform state tomography to determine the location of
the steady state on the Bloch sphere. Figure 2 (left) shows
the measured steady states for various values of γ0, forming
the elliptically shaped steady state locus (blue points), with
a fitted value of α ¼ 0.94� 0.07 (gradient line).

Intermediate values of α can be formed by replacing the
π pulse in the 4D5=2 manifold (gray) with, e.g., a π=2 pulse
or a π=5 pulse, yielding a thinner steady state loci, fitted as
α ¼ 0.51� 0.04 and α ¼ 0.21� 0.03 (brown and orange),
respectively.
A canonical experimental protocol for measuring the ME

comprises letting the system relax to the steady state r⃗ssðγ0iÞ,
then quenching it to a final temperature γ0f while performing
tomography of the relaxation dynamics to r⃗ssðγ0fÞ. The
measurements are then used to obtain the Euclidean
distance on the Bloch sphere from the final steady state,
dssðtÞ. This protocol raises a technical challenge, namely,
the relaxation time to an initial cold system, with γ0i ≪ 1,
requires a long evolution duration, which may surpass the
system’s natural coherence time, leading to an effectively
reduced and uncontrolled value of α.
We mitigate this challenge by measuring the ME using

two complementary techniques: performing the experimen-
tal protocol with large Trotter steps, thus reducing the total
duration of an experiment, or by effectively preparing the
qubit in the initial state, r⃗ssðγ0iÞ, thus circumventing the long
initial relaxation time.
The results obtainedby the former technique, largeTrotter

steps, are shown in Fig. 3. Specifically, we evolve the system
to t ¼ 4γ−1f in 14 Trotter steps (horizontal) and present dssðtÞ
(vertical) for various γ0i’s (color). These steps form a less
accurate approximation of the continuous model. Indeed,

FIG. 3. The inverse ME is demonstrated by relaxing qubits to a
steady state at various initial temperatures, γ0i (color), and tracking
their relaxation as a function of time (horizontal) to a final steady
state at a fixed temperature, γ0f ¼ 15 > γ0i and α ¼ 0.94. We
consider the qubit’s Euclidean distance to the final steady state,
dssðtÞ (vertical). We highlight an initially cold (thick blue) and
hot (thick red) systems, dCss and dHss, analyzed further below. Error
regions correspond to �2σ confidence intervals due to the
quantum shot noise of 400 experimental repetitions. Top: dss
exhibits oscillations, not captured by the model above, which
occur due to the relatively large time steps used in the evolution.
Bottom: postprocessing the same data by polynomial smoothing
reproduces the inverse ME. Specifically, dCss > dHss at t ¼ 0,
however, their values cross at t ≈ 2γ−1f , after which dCss < dHss.
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Fig. 3 (top) exhibits oscillations which are common to
nonadiabatic digitized evolution. We compensate for the
oscillations by employing simple polynomial smoothing of
the data, shown in Fig. 3 (bottom).
We highlight an initially cold system, γ0Ci ¼ 0.116 (blue)

and an initially hot system, γ0Hi ¼ 0.776 (red). These
demonstrate an inverse ME, as the curves of the cold
and hot systems cross, with the cold system reaching the
steady state before the hot system.
Figure 4 presents the distance between these two systems

during relaxation, dCssðtÞ − dHssðtÞ, for the raw data (orange)
and smoothed data (blue). Indeed, dCssð0Þ−dHssð0Þ>0, indi-
cating the cold system is initially at a larger distance from
steady state. However, during the relaxation we observe a
crossing time tcross after which dCssðtÞ − dHssðtÞ < 0, beyond
�2σ error bars due to quantum shot noise. The theoretical
prediction for this distance at α ¼ 0.94 is shown (green),
with a well correspondence to the data. Furthermore we
show the theoretical prediction for the case, α ¼ 1=3,
outside of the strong-ME regime, in which no crossing
is observed (red).
Next, we directly prepare the qubit at an initial steady

state. We write the initial steady state density matrix, ρssi , as
a linear combination of two pure states. Here, the steady
states are all of the form, ρssi ¼ ½ð1 − pÞ=2�j þ θihþθjþ
½ð1þ pÞ=2�j − θih−θj, with θ and p representing the
direction and distance of the steady state from the Bloch
sphere origin and j � θi≡ exp f−ði=2Þ½θ � ðπ=2Þ�σxgj↑i
[38]. Then, the evolution of ρssi is equivalent to the same
linear combination of evolved pure states. Observables
stemming from the evolution of ρssi , are recovered by
measuring the same observables on the evolution of j � θi,
and using a weighted linear combination of the results, with
weights ð1 ∓ pÞ=2.
Figure 5 shows the dynamics of system initialized at

steady states with respect to various γ0i’s, and tracks their
evolution as a function of time (horizontal) toward a fixed
γ0f ¼ 100 > γ0i. Similarly to Fig. 3, we show the distance to

the final steady state dss and highlight an initially cold,
γ0Ci ≈ 0 (blue) and hot, γ0Hi ¼ 0.390 (purple) systems. As
above, dCssð0Þ > dHssð0Þ, indicating the cold system is
initially at a larger distance from steady state, yet during
the relaxation we observe a crossing time tcross after which
dCssðtÞ < dWss ðtÞ, beyond error bars. This is also reflected in
the inset which shows dCss − dHss (vertical) initially positive
and at later times negative, beyond the error bars.
In conclusion, we have proposed and experimentally

demonstrated the inverse ME on as single qubit.
Furthermore, we have proven that a strong, i.e., exponen-
tially faster relaxation, ME exists only for a sufficiently
coherent qubit. As our findings pertain the simplest
quantum system, one expects to find the ME in larger
quantum systems, such as quantum computers, in which
maintaining a low temperature for long times is crucial.
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