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Domain decay is at the heart of the so-called evaporation-condensation Ostwald-ripening regime of
phase ordering kinetics, where the growth of large domains occurs at the expense of smaller ones, which are
expected to “evaporate.” We experimentally investigate such decay dynamics at the level of a single
spherical domain picked from one phase in coexistence and brought into the other phase by an
optomechanical approach, in a near-critical phase-separated binary liquid mixture. We observe that the
decay dynamics is generally not compatible with the theoretically expected surface-tension decay laws for
conserved order parameters. Using a mean-field description, we quantitatively explain this apparent
disagreement by the gradient of solute concentrations induced by gravity close to a critical point. Finally,
we determine the conditions for which buoyancy becomes negligible compared to capillarity and perform
dedicated experiments that retrieve the predicted surface-tension induced decay exponent. The surface-
tension driven decay dynamics of conserved order parameter systems in the presence and the absence of
gravity, is thus established at the level of a single domain.
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Phase ordering kinetics is a ubiquitous and fundamental
process [1,2], that characterizes the irreversible evolution of
a system initially out-of-equilibrium into well separated
coexisting phases. For conserved order parameter systems,
the nucleated domains usually evolve from an intermediate
free-growth regime to the so-called late stage Ostwald
ripening [3–5], where the larger domains grow at the
expense of the smaller ones which decay, or “evaporate”
due to interfacial tension, as nicely demonstrated by the
classical evaporation-condensation LSW theory of Lifshitz,
Slyozov [6], and Wagner [7]. This very general phenome-
non is at work in all phase transition dynamics involving
conservation of the order parameter and has consequently
huge implications in out-of-equilibrium liquids, soft matter,
and material sciences [8–10].
The decay of the smallest domains was clearly observed

in two-dimensional systems, such as metallic islands [11]
or during a liquid-solid transition triggered in confined
geometry [12] in order to illustrate the importance of
correlations between evolving domains. In three dimen-
sions, its investigation is essentially indirect as most
coarsening experiments, performed at the scale of a large
number of interacting droplets, and measured by scattering
techniques [13] or by direct visualization of droplet
assemblies [14,15], focus instead on the evolution of the
droplet distribution and its comparison to LSW predictions.
So, although at the basis of the evaporation-condensation
Oswald ripening, the surface-tension driven evaporation of
small droplets in conserved order parameter systems

remains almost unexplored. Conversely, standard experi-
ments [16,17] on the evaporation of single liquid drops
report the classical R-squared law, in which the drop radius
R evolves with time t as R ∼ ðtf − tÞα with α ¼ 1=2, where
tf is the final evaporation time. The involved mechanism is
nonetheless not driven by surface tension for scalar con-
served systems, for which theory [2] predicts instead
α ¼ 1=3 (unlike nonconserved systems, for which α ¼ 1=2
for surface-tension driven decay [2,18]). This exponent
α ¼ 1=3 has been observed in the different context of the
thinning dynamics of liquid necks [19,20]. However,
surprisingly, this domain decay prediction at the scale of
a single spherical drop has never been confronted to
experiments, whereas it plays a key role in evaporation-
condensation processes. This is the subject of the present
Letter.
Starting from a near-critical phase-separated liquid

mixture at equilibrium to keep the universality of Ising
models, we use the optical radiation pressure of a laser wave
to destabilize the meniscus separating the two phases in
equilibrium and produce a size-controlled single drop of one
phase immersed into the other, at a chosen altitude. Then, we
turn off the laser and look at the drop evaporation. While we
expected the R ∼ ðtf − tÞ1=3 scaling, our observations firmly
indicate a richer dynamics due to gravity [21,22].
We build a dedicated mean-field model which incorporates
gravity and confront our measurements to predictions.
Finally, we “close the loop” by determining from the
modeling the conditions for which buoyancy becomes
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negligible compared to capillarity and performing dedicated
experiments that retrieve the expected gravity-free decay
exponent α ¼ 1=3. We thus characterize the surface-tension
driven decay dynamics of conserved systems, at the level of a
single spherical domain.
Experimental system.—We consider a water-in-oil micel-

lar solution of critical composition (water, 9% wt, toluene,
70%wt, SDS, 4%wt, butanol, 17%wt) constituted of water
nanodroplets coated by surfactant (the micelles, of radius
r ≃ 4 nm) homogeneously dispersed in an oil continuum
(the toluene) [23,24], see the Supplemental Material for
details [25]. As a pseudobinary liquid mixture, where the
micelles behave as the solute, it shows an Ising (d ¼ 3,
n ¼ 1) low critical point at TC ≃ 38 °C, see Fig. 1(a).
The microemulsion is contained inside a tight fused-quartz
cell of 2 mm thickness thermally controlled with a PID
in a homemade brass oven. When ΔT ≡ T − TC > 0, the

solution separates into two phases of respective micellar
volume fractions Φ1 and Φ2 (with Φ2 < Φ1), separated at
equilibrium by an horizontal interface, called hereafter the
meniscus. To produce thermodynamically metastable drop-
lets, we use the optical radiation pressure of a continuous
laser wave focused at the meniscus to induce a liquid
jet [38,39] of the phase Φ2 into the phase Φ1, see
Fig. 1(b). When the laser is turned off, drops are produced
through the Rayleigh-Plateau instability [24]. Then, using
again the radiation pressure at lower beam intensity,we force
some of these drops to coalesce into a single one which is
further pushed optomechanically to a chosen altitude, see
Fig. 1(c). Thermodynamically out of equilibrium due to its
finite size, the produced droplet immediately starts to
evaporate while buoyancy makes it rise toward the
meniscus.
The droplet decay is captured using ×20 or ×50 long

working distance Olympus® microscope objectives and a
Phantom® VEO340L camera. A custom-made ImageJ®

code is used to detect the intensity gradient maxima at
the drop edges to extract the droplet radius R, and we
checked the calibration with other detection methods, see
Supplemental Material [25]. The altitude zd of the center of
mass of the droplet is also recorded, with the convention
that zd increases in the downward direction, and zd ¼ 0 at
the meniscus. An example of droplet evaporation dynamics
is shown on Fig. 1(d).
On Fig. 2(a), we present several examples of individual

droplet dynamics RðtÞ for ΔT ¼ 4 K. While conservation
of the order parameter predicts a regime RðtÞ ∝ ðtf − tÞ1=3,
these measurements clearly demonstrate that this scaling is
not verified. Instead, experimental data show a regime
RðtÞ ∝ ðtf − tÞα, with α ≃ 0.5–0.6. This behavior is con-
firmed down to ΔT ¼ 0.2 K [Fig. 2(b)]. As the decay
amplitude varies from drop to drop (Fig. 2) and is correlated
to the mean altitude hzdi [defined as the temporal average
of the spanned zdðtÞ], a natural candidate for an additional
physical effect impacting the evaporation could be gravity.
Indeed, gravity is well known to affect the statics [40] and
dynamics [2,21] of phase transitions. We thus develop a
theoretical framework to understand the impact of gravity
and surface tension on the evaporation dynamics of single
droplets.
Theory.—We consider the free-energy functional

H½ϕ� ¼
Z

dx
n
VðϕÞ þ κ

2
ð∇ϕÞ2 − ρegzϕ

o
; ð1Þ

where the order parameter ϕ is the local micellar volume
fraction, VðϕÞ is a double-well potential, and κ gives the
energy cost of local gradients of ϕ. Also, z is the vertical
coordinate (increasing in the downward direction, with
z ¼ 0 at the meniscus), ρe ¼ ρmicelle − ρsolvent is the effec-
tive mass density of the micelles, and g is the earth
gravitational acceleration. Next, we assume that the

FIG. 1. (a) Schematic phase diagram of the critical micellar
solution, with Φ the micellar volume fraction, and ðTc;ΦcÞ the
coordinates of the critical point. A cartoon of the water-in-oil
micelles, of typical size 4 nm, is also shown (inset). (b) Sche-
matics of the optical bending and jetting instability of the
meniscus (T > Tc) induced by a laser beam focused at the
meniscus (green). (c) Typical image sequence of the optical
jetting instability. We show (i),(ii) the jet formation, (iii) the
Rayleigh-Plateau instability when the laser is turned off the first
time, (iv) the radiation pressure effect at lower laser power to
force droplet coalescence, and (v) the resulting final evaporating
droplet optically pushed to a given altitude. (d) Decay dynamics
forΔT ¼ 4 K, including snapshots, of the produced droplet when
the laser is permanently turned off. tf is the first time when the
droplet cannot be detected any longer. Scale bars: 5 μm.
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dynamics satisfies the equations of the (noiseless) model
H [41]:

∂tϕþ u · ∇ϕ ¼ λ∇2μ; μðxÞ ¼ δH=δϕðxÞ; ð2Þ

η∇2u ¼ ∇pþ ϕ∇μ; ∇ · u ¼ 0; ð3Þ
with λ a kinetic coefficient, μ the chemical potential, η the
viscosity and p the pressure. Here, the transport equa-
tion (2) for the conserved order parameter ϕ is coupled to
Stokes’ equation (3) describing the flow field u in the fluid
(assumed to be incompressible) with an additional stress
induced by chemical potential gradients. To ensure the
conservation of the number of micelles, we impose that u
and ∇μ vanish at the boundaries of the system.
Sharp interface limit.—We consider the sharp-interface

limit, in which κ is large enough so that, in each bulk phase
i, the field ϕ is close to its equilibrium value (ϕ ≃Φi þ ϕi,
with small ϕi), while ϕ varies sharply across interfaces.
Here, Φ1 and Φ2 are the equilibrium values of ϕ on each
side of the meniscus. In the sharp interface limit, following
the arguments of Ref. [2] and adding gravity, an effective
dynamics is obtained for ϕi with effective boundary
conditions at the interface [25]. In the bulk phases, at
equilibrium, ϕ̄i ≃ ρegz=V 00

i , where V 00
i ≡ ∂

2
ϕVjΦi

, so that,
due to gravity, the concentration of micelles varies with the
altitude z and differs from its standard value at coexistence
equilibrium [42]. The dynamics for ϕ̄ obeys the advection
diffusion equation

∂tϕ̄i þ u · ∇ϕ̄i ¼ Di∇2ϕ̄i; Di ¼ λV 00
i : ð4Þ

Next, the boundary conditions at an interface read

ϕ̄i¼
−γC
ΔΦV 00

i
; ½ΔΦðv−uÞ−D2∇ϕ̄2þD1∇ϕ̄1�n̂¼0; ð5Þ

where ΔΦ ¼ Φ1 −Φ2, v is the interface velocity, n̂ is
the unit vector normal to the interface (pointing towards

phase 1) and C is the total interface curvature. The first
equation in Eq. (5) is a form of Gibbs-Thomson relation,
while the second one expresses the conservation of the
number of micelles.
Further assuming that advective and instationary terms in

Eq. (4) are negligible (so that ∇2ϕ̄i ≃ 0), these equations
can be solved by requiring that the equilibrium solution
should be recovered far from the droplet. This leads to

Ṙ ¼ −λ
RΔΦ

�
2γ

RΔΦ
þ zdρeg

�
; żd ¼ −

4ρeΔΦgR2

15η
; ð6Þ

where Ṙ≡ ∂tR. The latter equation corresponds to
Hadamard’s formula for the sedimentation velocity of a
liquid drop. Equations (6) describe the coupling between
the evaporation dynamics and gravity. Two effects are at
work: (i) first, if the droplet is at an altitude zd, its
evaporation dynamics is accelerated due to the increased
micelle concentration at this altitude, and second (ii) a
droplet moves and experiences different micelle concen-
trations due to Hadamard’s law.
According to Eq. (6), when R → 0, żd vanishes and the

final stage of evaporation occurs at constant zd. In this case,
integrating the equation for Ṙ leads to

f

�
zdRðtÞ
L2
c

�
¼ λΔΦðtf − tÞðρegzdÞ3

γ2
; ð7Þ

where fðuÞ ¼ ½ðu − 4Þu=2� þ 4 ln ½ðuþ 2Þ=2� and Lc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ðρegΔΦÞp

is the gravitational capillary length. As
limiting cases, we retrieve, for small radii, the law for
surface-tension dominated decay

RðtÞ ≃
�

6λγ

ðΔΦÞ2 ðtf − tÞ
�
1=3

; ð8Þ

whereas when R ≫ L2
c=zd, one obtains the gravity-

dominated regime

RðtÞ ≃ ½aðtf − tÞ�1=2; a ¼ 2
λρegzd
ΔΦ

: ð9Þ

This behavior looks similar to the classical R-squared laws,
but here evaporation is driven by the difference between ϕ
at the drop altitude and its value at which phase coexistence
is allowed.
Experimental evidence of gravity effects.—On Fig. 3(a),

we show experimental curves R2 as a function of time.
These curves are compatible with a linear relation
R2ðtÞ ¼ aðtf − tÞ. The mean slope a is then reported as
a function of zd on Fig. 3(b), over a large variation of
ΔT ¼ 0.2–16 K. A linear dependence of a on zd is
obtained, as predicted in the gravity dominated regime,
see Eq. (9). The experimental values of a=hzdi are reported
on Fig. 3(c) and show a weak temperature dependency.

FIG. 2. Droplet radius R as a function of tf − t for (a)
ΔT ¼ 4 and (b) ΔT ¼ 0.2 K. The legend indicates the average
altitude hzdi.
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Theoretically, the diffusion coefficient Di ¼ λV 00
i is usually

believed to scale as Di ∝ V 00
i , as demonstrated for spin

exchange dynamics [43]. In our case, we conclude that λ
does not depend on T near the critical point. Then, we
expect a=zd ∝ 1=ΔΦ ∼ 1=ðΔTÞβ with β ≃ 0.325. Such
scaling is compatible with the experiments, if one takes
into account the dispersion of the data [Fig. 3(c)]. Thus,
observations point towards gravity as being responsible for
the acceleration of the evaporation dynamics from the
expected exponent α ¼ 1=3 to the observed one α ≃ 1=2.
Small drops near the meniscus: Surface-tension domi-

nated dynamics.—Nonetheless, the model indicates that
the decay exponent α ¼ 1=3 should be retrieved when
R ≪ L2

c=zd, i.e., when evaporating drops are small, close to
the meniscus (where zd ¼ 0) and far from criticality (as Lc
vanishes at the critical point). Since the gradient edge-
detection method may be intrinsically limited for small
radii [25], we conduct our measurement procedure as
follows. Starting from calibrated silica beads of radii
1.15 and 2.18 μm in a water-glycerol mixture to reach
refractive index contrasts close to those of our phase-
separated system, a complementary image analysis method
is developed, in agreement with the previously mentioned
method [25]. On Fig. 4(a), we show the decay dynamics at

ΔT ¼ 20 K, relatively far from the critical point. It is
observed that some droplets decay with an exponent
α ¼ 1=3, either over a large temporal window or only at
the end of the dynamics, when t → tf . Figure 4(b) repre-
sents the trajectories of the same drops in the ðR; zdÞ plane,
where one distinguishes between a region where drops
reach the meniscus with a finite size, and a region where
drops fully evaporate before reaching the meniscus, in
agreement with the flow lines of the dynamical system (6).
The comparison with Fig. 4(a) shows that the drops
displaying α ¼ 1=3 during the longest time range are near
the meniscus (small zd, see, e.g., blue symbols), as expected
theoretically. We also observe that α ¼ 1=2 appears when
drops are far from the meniscus (large zd, see, e.g., brown
symbols). To quantify this effect, we rescale our data
according to Eq. (7) on Fig. 4(c). The rescaled datasets fall
onto a master curve, in agreement with the expression (7),
with a fitted parameter a=zd compatible with other experi-
ments [square on Fig. 3(c)], with a capillary length
Lc ¼ 20 μm. While within the correct order of magnitude,
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FIG. 4. Experimental and theoretical dynamics for ΔT ¼ 20 K.
(a) R as a function of tf − t, (b) same trajectories in the ðR; zdÞ
plane and (c) RðtÞ in rescaled coordinates, with zf ≡ zdðtfÞ.
Symbols: experimental values for six different drops, with an
additional drop in (b) (red triangles). Dash-dotted black lines:
solutions of Eq. (6). In (c), the continuous black line represents
the scaling form (7), and dash-dotted blue and red lines indicate,
respectively, the regimes with α ¼ 1=3 and α ¼ 1=2. Parameters
of the theory: Lc ¼ 20 μm, λγ=ðΔΦÞ2 ¼ 0.07 μm3=s, and
ρeΔΦg=η ¼ 0.19 μm−1 s−1 [25].

FIG. 3. (a) R2 as a function of tf − t for different droplet mean
altitude hzdi for ΔT ¼ 2 K. Error bars are shown for one out of
four data points for visibility issues. Dashed lines correspond to
the linear fit R2 ¼ aðtf − tÞ. (b) Fitted slope a as a function of
hzdi, for ΔT ¼ 0.2, 2, and 16 K. The horizontal “error bars”
indicate the range of zd sampled during the evaporation, while
vertical error bars show the standard deviation on a. Dashed lines
are linear fits. (c) a=hzdi as a function of ΔT. Blue continuous
line: best fit with the law a=hzdi ¼ v0ðΔT=TCÞ−0.325 with
v0 ¼ 0.25 nm=s. Black dashed lines: same law with the coef-
ficients v0 ¼ 0.17; 0.33 nm=s. Square symbol: a=hzdi obtained
from the theoretical analysis at ΔT ¼ 20 K (see text).
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this value is 3–4 times smaller than expected. This under-
estimation could be attributed to the use of a simplified
mean-field, isothermal, and quasistatic model, with an
a priori assumed model H dynamics, which could describe
real dynamics only at the cost of using renormalized
coefficients. Nonetheless, even if refined theoretical ingre-
dients may be needed, our model not only predicts the
surface-tension (α ¼ 1=3) and the gravity-driven (α ¼ 1=2)
evaporation regimes and their crossover, but also enables a
full rescaling of the dataset and a semi-quantitative com-
parison with experiments, as shown in Fig. 4(c).
Conclusion.—With the aim of investigating the surface-

tension driven decay at work in Ostwald-ripening mech-
anisms, we used an optomechanical strategy to produce the
model situation of a single drop of one phase immersed into
the other one. Our observations indicated a decay exponent
α ≃ 1=2, which was attributed to a gravity-induced con-
centration gradient. However, focusing on experimental
conditions predicted by a theoretical analysis, we indeed
measured the decay exponent α ≃ 1=3 characteristic of
surface-tension driven decay for conserved systems. Thus,
even if the relative variation of concentration due to gravity
is weak (see estimates in Supplemental Material [25]), it
can still influence the domain decay, depending of the
droplet size R, so that the decay exponent usually starts to
be 1=2 and may crossover to 1=3when R decreases enough
due to evaporation. The smallness of the concentration
gradient is a necessary condition to get the exponent 1=3
but not sufficient. Consequently, our work raises exper-
imentally and theoretically new insights on the decay
component of the evaporation-condensation mechanism,
so important in material sciences.
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