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Quantum gas microscopes have revolutionized quantum simulations with ultracold atoms, allowing one
to measure local observables and snapshots of quantum states. However, measurements so far were mostly
carried out in the occupation basis. Here, we demonstrate how all kinetic operators, such as kinetic energy
or current operators, can be measured and manipulated with single-bond resolution. Beyond simple
expectation values of these observables, the single-shot measurements allow one to access full counting
statistics and complex correlation functions. Our work paves the way for the implementation of efficient
quantum state tomography and hybrid quantum computing protocols for itinerant particles on a lattice. In
addition, we demonstrate how site-resolved programmable potentials enable a spatially selective, parallel
readout in different bases as well as the engineering of arbitrary initial states.
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Analog quantum simulators offer a promising route
toward practical quantum advantage [1–4]. Among those,
neutral atoms in optical lattices are ideal candidates for
simulating a large variety of condensed matter models
[5,6], providing access to single-atom- and single-site-
resolved detection of (nonlocal) correlation functions and
counting statistics through quantum gas microscopy [7–9].
However, most measurements in these platforms so far
were carried out in the occupation basis, limiting the range
of state preparation and readout protocols that can be
implemented. A measurement of the current operator
would, for example, aid in the study of nonequilibrium
dynamics by allowing one to probe information scrambling
through bond-resolved local currents and off-diagonal
correlations [10,11], as well as in the simulation of
interacting topological phases that host equilibrium cur-
rents [12,13]. Furthermore, a measurement in a complete
basis would enable the implementation of Hamiltonian
learning, which is a promising approach to benchmark
analog quantum simulators [14–18].
In this Letter, we demonstrate how—in addition to the

density—the kinetic energy and the current operators, or
any linear combination of the two (“kinetic operators”), can

be measured and controlled with local resolution using
optical superlattices [19,20]. Optical superlattices enable
parallel high-fidelity nearest-neighbor manipulations,
which have been used, e.g., to generate a large number
of entangled atom pairs based on controlled collisions and
exchange interactions [21–25]. The idea behind our scheme
is to use superlattices to project a many-body system onto a
two-dimensional (2D) lattice of isolated double wells
(DWs), as depicted in Fig. 1(a). The sites of the DW form
a two-level system, where the tunnel coupling J and a
potential energy difference Δ can be interpreted as Pauli X
and Z operations [Fig. 1(b)]. This has been used in earlier
experiments to measure a spatially averaged current oper-
ator [26] and spin currents [27]. In this Letter we extend
these ideas and combine them with local resolution and
manipulation techniques. We further demonstrate arbitrary
rotations in the DWs by combining X and Z operations
[Fig. 1(c)]. This is used to measure kinetic operators with
local resolution and in a single experimental realization,
providing access to correlations and counting statistics
[28]. Additionally, we apply site-resolved programmable
potentials to perform coherent spatially selective basis
rotations and engineer states with variable density patterns,
which can also be used to generate various phase patterns or
coherent superpositions. Our technique is directly appli-
cable to interacting quantum systems given that interactions
can be switched off during the DW manipulations, as has
been demonstrated in a number of experiments, where
atomic beam splitter operations have been used to extract
information about particle-number statistics, indistinguish-
ability, or the second-order Rényi entropy [29–33].
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Experimental scheme—We create an optical superlattice
potential by superimposing a short and a long wavelength
lattice with a wavelength ratio of 2, realizing a periodic
array of tunable DWs [Fig. 1(b)] [20]. For a deep long-
period lattice, the inter-DW coupling is negligible and the
states jLi and jRi in each DW form a two-level system
with the Hamiltonian ĤDW ¼ −Jσ̂x − ðΔ=2Þσ̂z, where σ̂i
(i ¼ fx; y; zg) are the Pauli operators. For symmetric DWs
(Δ ¼ 0), an X rotation is realized [Fig. 1(b), left], while a
strongly tilted, decoupled DW (Δ ≫ J) implements a Z
rotation [Fig. 1(b), right].
Local site-resolved densities hn̂L;Ri are directly acces-

sible in experiments. Here, n̂i ¼ â†i âi is the bosonic number
operator and â†i is the bosonic creation operator for the
state i (i ¼ fL;Rg). A measurement in the Z basis
corresponds to probing the density difference within
one DW, i.e., Δn̂ ¼ n̂L − n̂R ¼ σ̂z. In contrast, the Y basis
encodes the local current between the two wells, defined for
a Hubbard model with real-valued tunneling J as
ĵ¼ iJ

�
â†RâL− â†LâR

�¼Jσ̂y [26,28]. Similarly, theX basis cor-
responds to the kinetic energy T̂¼−J

�
â†RâLþ â†LâR

�¼−Jσ̂x.
To measure the kinetic operators, we use the DW

dynamics to map them onto density imbalance Δn̂. As
illustrated in Fig. 1(c), the current can be mapped onto the

density via an Xπ=2 rotation [i.e., rotating for a time
t̃ ¼ h=ð8JÞ, with h Planck’s constant], giving
hΔn̂i ¼ −hĵi=J, and the kinetic energy by concatenating
a Zπ=2 [rotating for t̃ ¼ h=ð4ΔÞ] and an Xπ=2 rotation as
hΔn̂i ¼ −hT̂i=J [cf. Fig. 2(e), derivation in Supplemental
Material [34] ]. This realizes a single-shot readout of the
density, kinetic energy, and current with local resolution.
Results—The experimental sequence starts by loading

ultracold cesium atoms into a 2D optical lattice that consists
of a superlattice along x and a single-color lattice along y,
leading to an array of DWs along x [35,36]. The initial
state is a product state, with one particle per isolated
DW prepared in jLi. We obtain a maximum imbalance
I ¼ ðnL − nRÞ=ðnL þ nRÞ of typically 0.93(4) (see
Supplemental Material [34] for details).
We implement X rotations by suddenly lowering

the short lattice depth. As shown in Fig. 2(a), we
find imbalance oscillations corresponding to a tunnel
coupling J ¼ h × 484.3ð5Þ Hz, an experimental π time

tðexpÞπ ¼ 449ð3Þ μs (taking into account the finite ramp
time), and a 1=e decay constant τ ¼ 57ð13Þ ms. Using
the decay envelope, we estimate the fidelity of a single Xπ

pulse as F ¼ 99.2ð2Þ% (see Supplemental Material [34]
for details). This fidelity is mostly limited by spatially
inhomogeneous potential energy variations that detune the
DWs locally and modify the oscillation frequency accord-
ing to f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þ Δ2

p
=h.

Next, we demonstrate Z rotations using a Ramsey
sequence. After an Xπ=2 pulse, we jump the superlattice
phase away from the symmetric configuration, causing the
Bloch vector to rotate on the equator as the superposition of
jLi and jRi time evolves in the tilted DW potential
[cf. Fig. 1(b)]. This evolution is probed using a second
Xπ=2 pulse, yielding oscillations that reveal the rotation of
the state vector along the equator [Fig. 2(b)]. The oscil-
lations correspond to a tilt of Δ ¼ h × 2.406ð5Þ kHz and
exhibit a damping that is consistent with an on-site white
noise disorder uniformly distributed in ½−W;W� of ampli-
tude W ¼ h × 49ð2Þ Hz (see Supplemental Material [34]
for details). The envelope can also be approximated by a
single exponential, giving a T�

2 time of 6(1) ms (1=e decay).
Here, dephasing occurs faster compared to X rotations,

as local potential variations modify the tilt linearly, in
contrast to the quadratic correction for X rotations. To
cancel the dephasing due to static disorder, we employ a
spin-echo sequence as shown in Fig. 2(c). We determine a
T2 time of 113(10) ms [Fig. 2(d)], corresponding to around
270 cycles on the equator at the previously measured Δ.
The T2 time is more than an order of magnitude larger than
the T�

2 decay of the Ramsey signal and confirms that the
dephasing is dominated by static potential inhomogeneities
(see Supplemental Material [34] for an estimate of a
residual slowly varying disorder).

FIG. 1. Programmable rotations using double-well potentials.
(a) After evolving with a Hubbard Hamiltonian Ĥmod, the system
is projected onto isolated double wells, where programmable
local operations are applied before readout according to ĤDW
[defined in the main text and (b)], which rotates the measurement
basis. The occupation in the DWs is then frozen and read out with
local resolution. (b) Atomic operations in a DW potential,
forming a two-level system out of the states jLi and jRi. A
symmetric DW with tunnel coupling J realizes an X rotation
(left), while a strong tiltΔ implements a Z rotation (right). (c) The
rotations are used to map current ĵ and kinetic energy T̂ onto
density imbalance Δn̂ for readout, so that all Bloch-vector
components S ¼ ðσ̂x; σ̂y; σ̂zÞ are accessible.
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Next, we perform a global measurement of equatorial
states of the form ðjLi þ eiðφþπ=2ÞjRiÞ= ffiffiffi

2
p

in all three Pauli
bases [Fig. 2(e)]. The states are prepared by concatenating
an Xπ=2 pulse and a Z pulse of variable duration to tune the
equatorial angle φ. We then measure all three components
of the Bloch vector S ¼ ðσ̂x; σ̂y; σ̂zÞ. As expected, we find
that hσ̂zi ¼ 0 and is time independent [Fig. 2(f)], while the
expectation value of the current σ̂y and the kinetic energy σ̂x
show high contrast oscillations with a relative phase shift of
π=2. The measured average length of the Bloch vector

jSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ̂xi2 þ hσ̂yi2 þ hσ̂zi2

q
is 0.81(6), which is mostly

limited by the Z rotation used for state preparation.
We extend the global manipulations demonstrated above

with local control using a digital micromirror device
(DMD) to project programmable repulsive potentials and
locally tilt selected DWs. As an example, we perform
global X rotations and simultaneously tilt every other DW
[Fig. 3(a)]. The tilted DWs indeed oscillate at a higher
frequency and smaller amplitude, as expected from detuned
Rabi oscillations. The maximum possible tilt is limited by
the available power of the DMD light and the resolution,
which causes light to spill over to adjacent sites, hence
reducing the differential tilt. A spatially resolved evaluation
reveals that local manipulations can be realized in parallel
over extended regions of the system (see panel on right-
hand side of Fig. 3(a)].

The DMD addressing further enables locally program-
mable Z rotations, which we demonstrate with a Ramsey-
type sequence [Fig. 3(b)]. To this end, we locally imprint a
π relative phase via a Zπ rotation on every other DW.
Scanning the duration of the first X pulse results in strong
out-of-phase oscillations with a fitted phase shift of
Φ ¼ 1.04ð2Þπ. This demonstrates a local rotation of the
measurement basis, paving the way toward measurements
of more complex observables, such as correlators between
current and kinetic energy.
Local rotations can also be used for precise, coherent

engineering of spatially structured initial states. As an
example, we use locally detuned X rotations, where the tilt
value is chosen such that a minimum in the detuned DW
imbalance coincides with a maximum in the bare DWs
[e.g., around tX ¼ 1.3 ms in Fig. 3(a), see Supplemental
Material [34] for details on the sequence]. Choosing this
point, we can coherently transfer an initial j…10101010…i
state to j…01100110…i (here, the notation refers to the
occupation of the underlying short lattice structure, i.e.,
jLi ¼ j10i, jRi ¼ j01i). In Fig. 3(c), this is demonstrated
using a DMD mask that is translationally invariant in the
direction perpendicular to the DWs. The average occupa-
tion [Fig. 3(d)] indicates a filling of 86(4)% in the occupied,
and 7(2)% in the empty stripes, which is close to the initial-
state quality, suggesting a high preparation fidelity (see
Supplemental Material [34] for details on the initial state).

FIG. 2. Global double-well operations and rotations of the measurement basis. (a) X rotation starting with the DWs initialized in jLi.
Vs denotes the depth of the short lattice, which sets the tunnel coupling J inside the well. The solid line is a fit to an exponentially
damped sine. (b) Measurement of a Z rotation using a Ramsey sequence. The solid line is a fit to a numerical model accounting for on-
site potential disorder (see Supplemental Material [34] for details). The nonzero initial phase of the oscillations in (a) and (b) stems from
the finite ramp times of Vs and Δ. (c) Spin-echo sequence. Example trace for tZ ¼ 30 ms, recorded by varying the time offset Δt in the
second Z rotation. The solid line is a sine fit with a Gaussian envelope function. (d) Measurement of the T2 time using the spin-echo
sequence. For each data point, the imbalance contrast was evaluated by varying the pulse offset and fitting the resulting imbalance
oscillation. The solid line represents an exponential fit to the data that omit the initial data point, from which we derive T2 as the duration
at which the contrast decreases to 1=e of its initial value. The error bars are the standard errors of the fit. (e) Scheme to determine the
density, current, and kinetic energy of the states lying on the equator of the Bloch sphere. (f) Measurement result as a function of the
equatorial angle φ. The solid lines for the current (yellow) and the kinetic energy (purple) are fits to a sine. The solid line for the density
is a fit to a constant function. The gray data points show the length of the Bloch vector jSj, which averages to 0.81(6) (solid gray line).
The zero of the horizontal axis has been calibrated on the first minimum of the σ̂y trace.
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Similarly, we can choose a DMD mask that has an
alternating pattern in the direction perpendicular to the
DWs. This realizes a checkerboardlike state made up of
(4 × 2)-site blocks [Figs. 3(e) and 3(f)] with similar average
fillings of 84(5)% in the occupied blocks and 8(3)% in the
empty blocks. The attainable preparation fidelities are
mostly limited by the resolution and alignment of the
DMD imaging system, which is particularly challenging
due to our rather small lattice spacing of as ¼ 383.5 nm.
Even higher fidelities could easily be achieved for larger
lattice spacings or higher imaging resolution.
Finally, we would like to highlight that the single-shot

and locally resolved nature of the presented measurements
furthermore enable the extraction of correlation functions.
This is crucial, for example, when spatial features are not
stationary between individual shots. To demonstrate this
capability, we prepare a 2D lattice of isolated symmetric
DWs with complex-valued tunnel couplings Jeiφi;j ; here
(i, j) labels the DW location in the 2D lattice. The spatially
varying phases φi;j are realized using a laser-assisted
tunneling scheme based on a 1D running-wave lattice
(see Supplemental Material [34] and Refs. [37–39] for
details). We prepare a single particle in the ground state of
each DW, i.e., jψii;j ¼ ðjLi þ eiφi;j jRiÞ= ffiffiffi

2
p

. For the exper-
imental geometry chosen in this Letter, the phase φi;j

increases by about π=2 per bond in both spatial directions
[see Fig. 4(a)].

To resolve the local phase φi;j and its spatial dependence,
we measure the expectation value of the current operator
ĵi;j, which is given for a DW at location ði; jÞ by
hĵi;ji=J ¼ sinφi;j. However, while the laser-assisted tun-
neling scheme fixes the periodicity of the phase distribution
φi;j, there is a global phase shift φ0 between the pattern and
the underlying lattice, which varies randomly between
different experimental realizations. As a consequence,
the expectation value of the current operator vanishes
[Fig. 4(b)]. Nonetheless, the phase pattern can be detected
by evaluating the connected 2D current-current correlation
function Cc

x;y ¼ hĵi;jĵiþdx;jþdyi − hĵi;jihĵiþdx;jþdyi.
Figure 4(c) shows the experimentally measured 2D

correlation function (left panel), which, focusing on small
distances (dx;y ≲ 4), matches our expectation given the
phase pattern in Fig. 4(a). For larger distances, we find
Moiré fringes, which arise from a slight angular misalign-
ment between the lattice base vectors and the running-wave
lattice. The resulting phase pattern hence does not evolve
exactly by a factor of π=2 between neighboring bonds. As
can be seen in Fig. 4(c) (middle and right panels), we find
excellent agreement with a theoretical model that accounts
for relative angles (see Supplemental Material [34] for
further details on the fitting model). The measured corre-
lator amplitude is around 78% of the ideal value, which we
believe to be mostly limited by an imperfect adiabatic
ground-state preparation.

FIG. 3. Local programmable double-well operations. (a) Locally detuned X rotations. Using a digital micromirror device, we project a
repulsive potential that locally tilts every other DW in a one-dimensional (1D) superlattice potential. The DMD mask consists of bright
stripes with a width of 0.6as, which is broadened by the point-spread function to ∼1–2as. The solid lines are fits to a sine, yielding a
differential tilt of Δ ¼ h × 797ð13Þ Hz. Right: spatially resolved oscillation, averaged over the perpendicular direction. (b) Local Z
rotations, implemented by tilting every other DWalong a 1D chain. The Z pulse area was chosen to be around π, which is visualized by
scanning the duration of the first X pulse, resulting in out-of-phase imbalance oscillations. The solid lines are fits to a sine, yielding a
relative phase shift of 1.04ð2Þπ. Evaluation details as in (a). (c) State engineering using locally detuned DW oscillations with the
programmed mask shown on the left (the red shading marks the sites that are lifted in energy). The panel on the right shows a single
fluorescence image of the resulting state with alternating pairs of empty and occupied rows. (d) Averaged occupation for the state in (c).
(e) State engineering in 2D (mask on the left), resulting in a checkerboardlike state of 4 × 2 site blocks. The panel on the right shows a
single fluorescence image. (f) Averaged occupation for the state in (e).
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Conclusion—We have demonstrated how optical super-
lattices can be used to enhance the capabilities of quantum
gas microscopes through spatially resolved single-shot
measurements of kinetic operators. This will be essential
for the detection of exotic many-body states with trivial
signatures in density observables, such as strongly inter-
acting topological phases with equilibrium currents
[12,13,28]. In addition, local manipulations can be used
to engineer tailored initial states to study initial-state
dependent thermalization in the presence of constraints,
e.g., in the context of Hilbert-space fragmentation [40–42]
or lattice gauge theories [6,43–46]. Moreover, local
manipulation of the measurement basis can be used to
enhance the measurement sensitivity for metrology appli-
cations [47], as well as to access further nontrivial
observables [48] and correlators, e.g., between current
and kinetic energy.

The fidelity of local rotations can be further enhanced
using composite pulse sequences [49–51]. This paves the
way for the implementation of efficient quantum state
tomography schemes [52–57], lattice-based quantum com-
puting protocols [25], measurements of the (many-body)
energy spectrum [58,59], Hamiltonian learning [14,16–18],
and hybrid quantum computing approaches, such as varia-
tional algorithms [60–64].
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End Matter

Appendix—The superlattice potential realized in the
experiment can be described by VslðxÞ ¼ Vscos2ðksxÞ þ
V lcos2ðklxþ ϕsl=2Þ [20]. Here VsðlÞ is the lattice depth,
ksðlÞ ¼ π=asðlÞ is the wave vector of the short-period
(long-period) lattice [with asðlÞ being the lattice constant
of the short-period (long-period) lattice, where
as ¼ 383.5 nm ¼ al=2] and ϕsl is the superlattice phase.
Further information about the experimental apparatus is
available in Supplemental Material [34] and in earlier
work [35,36,66].
For the initial-state preparation, we load a Mott-

insulating state with one particle in each double well. At
the end of the loading ramp, both short lattices (x, y) are at a
depth of 45Er;s and the long lattice in x is at a depth of
45Er;l [Er;sðlÞ ¼ h2=ð8ma2sðlÞÞ is the recoil energy of the
short (long) lattice, h is Planck’s constant, and m is the
atomic mass of cesium].
To implement an X rotation, the short lattice in the x

direction is lowered to 12Er;s in 200 μs. After a variable
hold time, the short lattice depth is increased back to 45Er;s
with the same ramp duration.
To implement a Z rotation, we work in a regime where

the two wells of each DW are approximately isolated
(J ≈ 0) and then jump the superlattice phase away from
the symmetric point to the target tilt Δ over 100 μs using a
feed-forward trick (see Supplemental Material [34] for
details). After a variable hold time, the phase jump is
inverted back to the symmetric configuration. Note that
following each jump, the tilt needs around 500 μs to fully
stabilize.
For the measurement of the current-current correlator in

Fig. 4, we used the following sequence: We first prepare the
same initial state as in the previous experiments, i.e., a 2D
lattice of isolated DWs, each filled with one particle
localized in jLi. The superlattice phase is chosen to realize

a tilt of Δ ≈ 4.2 kHz. Next, the short lattice in the x
direction is decreased to 9Er;s over 100 ms. This realizes a
bare tunnel coupling of J ≈ h × 650 Hz, but the particle
mostly stays localized in jLi since Δ ≫ J. We then
adiabatically ramp up the strength of the running-wave
lattice to an induced coupling magnitude of around
h × 150 Hz, where the frequency difference of the indi-
vidual laser beams is set equal to the DW energy gap. At
this point, each double well will be in its respective single-
particle ground state together with a complex phase factor
that depends on its location in the lattice. To resolve the
phase distribution, we perform a current measurement,
which is initiated by suddenly switching off the running-
wave modulation, isolating the wells by increasing the short
lattice along x to 30Er;s over 500 μs and simultaneously
moving the superlattice phase to the symmetric point using
the feed-forward trick. Immediately after, the measurement
basis is rotated by evolving in symmetric, coupled DWs to
realize a rotation of Xπ=2.
Table I shows details on the averaging and region of

interest (ROI) used for evaluation of the different sub-
figures in the main text. Unless otherwise noted, the error
bars are the standard error of the mean.

TABLE I. Details on the averaging and region of interest (ROI)
used for evaluation of the different subfigures in the main text.

Figures ROI Repetitions

2(a) 28 × 32 6
2(b) 16 × 30 4
2(c), 2(d) 40 × 40 5
2(e) 18 × 36 3
3(a), 3(b) 24 × 24 3
3(d), 3(f) � � � 30
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