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The work intends to extend the moiré physics to three dimensions. Three-dimensional moiré patterns can
be realized in ultracold atomic gases by coupling two spin states in spin-dependent optical lattices with a
relative twist, a structure currently unachievable in solid-state materials. We give the commensurate
conditions under which the three-dimensional moiré pattern features a periodic structure termed a three-
dimensional moiré crystal. We emphasize a key distinction of three-dimensional moiré physics: In three
dimensions, the twist operation generically does not commute with the rotational symmetry of the original
lattice, unlike in two dimensions, where these two always commute. Consequently, the moiré crystal can
exhibit a crystalline structure that differs from the original underlying lattice. We demonstrate that twisting
a simple cubic lattice can generate various crystal structures. This capability of altering crystal structures by
twisting offers a broad range of tunability for three-dimensional band structures.
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Large-scale moiré patterns emerge when two identical
two-dimensional structures are overlaid with an offset.
During recent years, studies of double-layered two-dimen-
sional materials, such as twisted bilayer graphenes [1–6],
twisted transition metal dichalcogenides heterostructures
[7,8], and twisted cuprates [9,10], reveal that moiré patterns
can substantially alter the electronic properties of the
material. Many extraordinary phenomena, including flat
bands [11,12], unconventional superconductivity [13–15],
ferromagnetism [16,17], fractional Chern insulator [18–
23], and fractional quantum anomalous Hall effect [24–27],
have been predicted and discovered through creating moiré
patterns in two-dimensional materials by twisting. The
growing interest in twisted bilayer materials has developed
a new field in condensed matter physics known as twist-
ronics [28,29].
The impact of twistronics goes beyond condensed matter

physics. For instance, a moiré superlattice has been
achieved in photonic crystals [30–33] and optical lattices
[34], paving the way for studying moiré physics in
electromagnetic waves and ultracold atoms. Remarkably,
the recent experimental realization of a two-dimensional
moiré lattice in ultracold atomic gases utilizes the two

internal states (spins) of atoms instead of two spatially
separated layers [34,35]. In the experiment, ultracold 87Rb
atoms are loaded in two spin-dependent two-dimensional
optical lattices with a relative twisted angle. The wave-
lengths of these two optical lattices are carefully selected
such that each lattice only couples to one of the two spin
states of a 87Rb atom and is transparent to the other spin
component. Therefore, although atoms with different spins
coexist in the same space, their lattice potentials can be
viewed as two independent layers, and an external micro-
wave-induced coupling between the two spin states can
play the role of interlayer tunneling. In this way, a moiré
superlattice can be realized in an optical lattice setting,
leading to an intriguing new phase observed between the
conventional superfluid and Mott insulator transition [34].
This Letter proposes that this scheme of realizing

moiré physics in ultracold atoms can be generalized to
three dimensions. The flexibility in an ultracold atom
apparatus allows twisting two sets of spin-dependent three-
dimensional optical lattices along a generic axis L (not any
of the principle axes of the original lattice) at a generic
angle θ. Hence, it can create a three-dimensional moiré
crystal when L and θ satisfy the commensurate condition
discussed below. This generalization promotes moiré phys-
ics from two dimensions to three, presenting numerous new
possibilities and opening up a new avenue in twistronics.
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Here, we highlight a fundamental difference between the
moiré physics in two and three dimensions. The difference
stems from the non-Abelian nature of the SO(3) rotation
group, as opposed to the Abelian SO(2) group. A two-
dimensional twist, i.e., an element in SO(2), always
commutes with the rotation symmetry of the original
two-dimensional lattice, such as the C4 rotation of a square
lattice. Consequently, the moiré patterns of twisted bilayer
square lattices always retain the exact C4 symmetry. In
contrast, a three-dimensional twist belonging to the non-
Abelian SO(3) group generally does not commute with the
rotation symmetry of the original three-dimensional lattice.
As a result, a three-dimensional twist can disrupt the
rotational symmetry of the original lattice, resulting in a
distinct point group symmetry for the three-dimensional
moiré crystal. This property allows a wide range of crystal
structures to be generated by twisting the same lattice. It is
worth mentioning that there have been previous studies of
the moiré effect on three-dimensional solid-state systems
[36–39]. However, these studies focus on systems of
stacked multiple layers of twisted two-dimensional materi-
als. Thus, accessible rotations in these systems are intrinsi-
cally two dimensional and are different from the moiré
crystals considered in this Letter.
Physical model—A three-dimensional moiré crystal can

be described by the following Hamiltonian of ultracold
atoms with two spin components:

H ¼
 p2

2m0
þ VA þ δ

2
Ω

Ω p2

2m0
þ VB − δ

2

!
; ð1Þ

where m0 is the mass of atoms and p is the momentum, Ω
represents the coupling between two spin states with a
detuning δ, and VA;B are the optical lattice potentials for the
two spin states, respectively. For illustrative purposes, we
consider a three-dimensional cubic lattice, where VAðrÞ is
written as

VAðrÞ ¼ V½sin2ðπxÞ þ sin2ðπyÞ þ sin2ðπzÞ�: ð2Þ

Here, V stands for the lattice depth, and the recoil
momentum has been taken to be π for simplicity. The
optical lattice potential VBðrÞ is twisted with respect to
VAðrÞ by a three-dimensional rotation. This is characterized
by a rotation matrix R∈SOð3Þ and a displacement d∈R3

as follows:

VBðRrþ dÞ ¼ VAðrÞ: ð3Þ

An example of the three-dimensional twisted moiré crystals
is illustrated in Fig. 1(a).
Commensurate condition—Similar to the two-

dimensional moiré systems, the moiré crystal appears only

(a) (b) (c)

FIG. 1. (a) Schematic of an example of a three-dimensional moiré crystal. Two sets of cubic optical lattices represented by the purple
and yellow dots are twisted along the body diagonal (111) direction (dashed line). (b) Three-dimensional twists under which the moiré
crystal exhibits different rotational symmetry. Each rotation in SO(3) is represented by a point r ¼ jrjêr within a ball of radius π. Here,
êr represents the twisting axes, and jrj is the twist angle. The blue, red, and green lines indicate twists where the moiré crystals have C3,
C4, or C2 symmetry, respectively. The solid lines are positioned along the cubic lattice’s symmetry axes. Twists belonging to these lines
thus preserve the corresponding rotational symmetries. Additionally, twists represented by the dashed curves also lead to rotationally
symmetric moiré crystals. This is because every twist R on a dashed curve may be transformed into a twist R0 on a solid line by R ¼ R0g,
where g∈O. The lower right panel illustrates that the green line can intersect with the blue line, and these three lines can intersect at a
single point. Twists represented by these intersection points possess multiple rotational symmetries. (c) The Venn diagram describing the
crystal systems of different twists is presented in (b). The red, green, and blue areas represent the tetragonal, monoclinic, and trigonal
crystal systems of a moiré crystal generated by the respective twists in (b). The black area represents the cubic moiré crystal generated by
the intersection of these lines with different colors. Areas marked by dashed lines are empty sets. The gray area represents a triclinic
crystal system with no rotational symmetry.
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when the rotation R satisfies certain commensurate con-
ditions presented by the following theorem.
Theorem—The moiré pattern formed by overlapping two

cubic lattices VAðrÞ and VBðrÞ forms a three-dimensional
periodic lattice structure if and only if R∈SOð3;QÞ.
Here, SOð3;QÞ is the set of all three-dimensional special

orthogonal matrices with all entries being rational numbers
[40]. In Supplemental Material, we show that every rotation
matrix R∈SOð3;QÞ can be uniquely parametrized by the
axis of rotation L≡ ðl1; l2; l3Þ and the rotation angle [41]

θ ¼ arccos
m2 − n2jLj2
m2 þ n2jLj2 : ð4Þ

Here, ðl1; l2; l3Þ are three integers with gcdðl1; l2; l3Þ ¼ 1,
and ðm; nÞ are two integers with gcdðm; nÞ ¼ 1, where gcd
stands for the greatest common divisor. Note that if we
take the rotation axis L ¼ ð0; 0; 1Þ, Eq. (4) becomes
θ ¼ arccos½ðm2 − n2Þ=ðm2 þ n2Þ�, which coincides the
commensurate condition for a twisted bilayer square lattice
[34,52].
Proof—Note that all the lattice vectors of VA form a

three-dimensional Bravais lattice Z3; i.e., VAðrþ aÞ ¼
VAðrÞ for all r if and only if a∈Z3. Similarly, the lattice
vectors of VB form the set RZ3 ≡ fRaja∈Z3g. One thus
concludes that a vector u is a period of the moiré pattern if
and only if u∈Z3 ∩ RZ3. Furthermore, the moiré pattern
forms a three-dimensional lattice if and only if Z3 ∩ RZ3 is
a three-dimensional Bravais lattice.
To prove the theorem, we first show that if the rotation

R∈SOð3;QÞ, then Z3 ∩ RZ3 is a three-dimensional
Bravais lattice. Consider vectors Rê1, Rê2, and Rê3, where
ê1 ¼ ð1; 0; 0ÞT , ê2 ¼ ð0; 1; 0ÞT , and ê3 ¼ ð0; 0; 1ÞT . These
three vectors are linearly independent and have rational
components if R∈SOð3;QÞ. One can then find integers ni,
such that all components of niRêi are integers for each
i ¼ 1, 2, 3. This demonstrates that there exist three linearly
independent vectors niRêi ∈Z3 ∩ RZ3, i ¼ 1, 2, 3, and
hence, Z3 ∩ RZ3 is a three-dimensional Bravais lattice.
To prove the converse, we note that if Z3 ∩ RZ3 is a

three-dimensional Bravais lattice, there must exist three li-
nearly independent integer vectors u1;u2;u3 ∈Z3 ∩ RZ3.
Since u1;u2;u3 ∈RZ3, there exist linearly indepen-
dent integer vectors v1, v2, v3 such that Rðv1; v2; v3Þ ¼
ðu1;u2;u3Þ. By writing U ¼ ðu1;u2;u3Þ and V ¼
ðv1; v2; v3Þ, we thus have R ¼ UV−1 ∈SOð3;QÞ. This
completes the proof.
The above proof shows that the periodicity of a moiré

crystal is determined solely by the twist R; i.e., it is not
affected by the displacement d. Furthermore, it also
provides an algorithm for calculating the unit cells and
unit vectors of a three-dimensional moiré crystal. Note that
a vector u∈Z3 is a lattice vector if and only if there exists
v∈Z3 such that Ru − v ¼ 0. This equation can be viewed

as a set of linear Diophantine equations for six integer
variables ui; vi; i ¼ 1, 2, 3, where ui and vi are the ith
components of u and v. Given that R∈SOð3;QÞ, it can be
shown that every solution ðu; vÞT can be uniquely
expressed as an integer linear combination of three solu-
tions ðu1; v1ÞT , ðu2; v2ÞT , and ðu3; v3ÞT . Therefore, u1, u2,
u3 span the Bravais lattice Z3 ∩ RZ3 and can be chosen as
the unit lattice vectors of the three-dimensional moiré
crystal [41].
Symmetry of moiré crystal—We now examine the crystal

structures of moiré crystal by investigating its chiral point
group, i.e., the set of all the proper rotational symmetries of
the lattice. For simplicity, from this point forward, we will
focus on the case where the displacement d ¼ 0, unless
specified otherwise.
It is well known that the rotational symmetry of a cubic

lattice VA is described by the chiral octahedral group O.
This group consists of 24 rotations [53]. As VB is a lattice
generated by twisting VA by a rotation R, its chiral point
group is then ROR−1 ≡ fROiR−1jOi ∈Og. Consequently,
the chiral point group of the moiré crystal can be directly
inferred as O ∩ ROR−1.
At this point, we can further elaborate on the distinction

between the moiré lattice in two and three dimensions. In
two dimensions, because the rotation group SOð2;RÞ is
Abelian, one has RgR−1 ≡ g for any g; R∈SOð2;RÞ.
Therefore, O ∩ ROR−1 ≡O, and the moiré lattice always
maintains the same rotational symmetry as the original
lattice. In three dimensions, however, one generically has
RgR−1 ≠ g because of the non-Abelian nature of SOð3;RÞ.
The chiral point group of a three-dimensional moiré crystal
is thus different from that of the original lattice and, more
crucially, can be tuned by choosing an appropriate twist R.
In Fig. 1(b), we illustrate different classes of twists that lead
to different rotation symmetries of the moiré crystals. We
use a three-dimensional ball with radius π to represent all
SO(3) rotation symmetry, where the direction êr of a given
point denotes its rotation axis, and the length jrj denotes its
rotation angle.
In the first plot, the blue lines represent all the twists that

can lead to a C3 symmetric moiré crystal belonging to the
trigonal crystal system. Note that the blue solid lines
contain all the rotations along the body diagonals such
as the (1,1,1) direction. As these body diagonals are the C3

axes of the original cubic lattice VA, any rotation along one
of these axes preserves the corresponding rotation sym-
metry. However, these rotations do not cover all the twists
resulting in C3 symmetry. We emphasize that two rotations
R and R0 should yield the same moiré crystal if R ¼ R0g for
some g belonging to the chiral octahedral group, i.e., the
rotation symmetries of VA. This equivalence generates
other dashed blue lines in the plot which cover all the
rotations leading to moiré crystals with C3 symmetry.
Similarly, in the other two plots of Fig. 1(b), we illustrate

the twists that result in a moiré crystal with C4 symmetry
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(red lines) belonging to tetragonal crystal system, or C2

symmetry (green lines) belonging to monoclinic crystal
system, assuming no other rotational symmetry exists. The
last plot of Fig. 1(b) gives examples of how a green line
could intersect with a blue line, where the intersection
points denote a twist resulting in both C3 and C2 symmetry,
also belonging to the trigonal crystal system. Moreover,
three lines of different colors can also intersect at the same
point, representing a twist that can recover the cubic
symmetry. Finally, other twists in SOð3;QÞ that do not
belong to the lines in Fig. 1(b) lead to a moiré crystal with
no rotational symmetry, belonging to the triclinic class.
The classification of the moiré crystal systems is shown

in Fig. 1(c) by the Venn diagram. Notably, a rich set of
crystal structures, i.e., five out of a total of seven possible
crystal systems in three dimensions, emerge through twist-
ing two simple cubic lattices. In Fig. 2, we present three
examples of different moiré crystals belonging to the
trigonal, tetragonal, and monoclinic crystal systems,
respectively. The gray points denote the lattice sites shared
by the A and B lattices, clearly illustrating unit cells with
diverse geometries.

Band structures—The ability to control the crystal-
line symmetry through three-dimensional twists offers
increased flexibility for engineering band dispersion.
Here, as a first demonstration of such a tunability in three
dimensions, we focus on a specific rotation parametrized
by twisting along L ¼ ð1; 1; 1Þ by θ ¼ π=3. The real-space
moiré crystal structure is shown in Fig. 2(a), and its moiré
Brillouin zone is depicted in Fig. 2(d). This is reminiscent
of the Brillouin zone of many materials with symmetry-
protected nodal lines or nodal points [54–60]. Therefore, it
inspires us to examine the topological feature in this moiré
crystal.
In Fig. 3, we plot the band structures of this moiré crystal

under a tight-binding approximation [41,43,61,62].
Interestingly, it is discovered that the dispersion can support
nontrivial gapless lines between the third and the fourth
bands [41], as shown in Figs. 3(b) and 3(c). These two
gapless lines in the k3 ¼ 0 and k3 ¼ π=

ffiffiffi
3

p
planes are

topological nodal lines [45–49] protected by either the PT

(a) (b)

(c) (d)

FIG. 2. (a)–(c) Lattice structures of twisted cubic lattices with
different twisting axes L and twisting angle θ. (a) L ¼ ð1; 1; 1Þ
and θ ¼ π=3 with ðm; nÞ ¼ ð3; 1Þ. (b) L ¼ ð0; 0; 1Þ and θ ¼
arccos 3

5
with ðm; nÞ ¼ ð2; 1Þ. (c) L ¼ ð1; 1; 0Þ and θ ¼ arccos 7

9

with ðm; nÞ ¼ ð4; 1Þ. They belong to the trigonal, tetragonal, and
monoclinic crystal systems, respectively. The blue, red, and gray
dots represent the lattice sites of lattice A, lattice B, and those
shared by both lattices, respectively. The unit cell is denoted by
the shaded prism. (d) The first Brillouin zone (shaded hexagonal
prism) and high-symmetry points for the reciprocal lattice of the
moiré crystal are presented in (a). The cube formed by the black
edges represents the first Brillouin zone of the original cubic
lattice A.

(a)

(b) (c)

(d) (e)

FIG. 3. (a) Band structures of the moiré crystal with twis-
ting axes L ¼ ð1; 1; 1Þ and twisting angle θ ¼ π=3 with
ðm; nÞ ¼ ð3; 1Þ, whose real-space structure is shown in Fig. 2(a).
The displacements between VA and VB are d ¼ ð0; 0; 0Þ for solid
lines, and d ¼ ð0; 0.1;−0.1Þ for dashed lines. The calculations
are based on the tight-binding approximation for Hamiltonian (1)
with parameters V ¼ 6π2=ð2m0Þ, Ω ¼ π2=ð2m0Þ, and δ ¼ 0, and
t is the tight-binding tunneling coefficient for the square lattice.
(b) Schematic plots showing two topological nodal lines for
displacement d ¼ ð0; 0; 0Þ and (d) eight Weyl points for dis-
placement d ¼ ð0; 0.1;−0.1Þ. The blue and red points indicate
the positions for the Weyl points with Chern number þ1= − 1.
(c) Band gaps E4ðkÞ − E3ðkÞ for displacement d ¼ ð0; 0; 0Þ, and
(e) d ¼ ð0; 0.1;−0.1Þ. Left, k3 ¼ 0 plane; right, k3 ¼ π=

ffiffiffi
3

p
plane. Note that the dark spots denote the positions of the gapless
points.
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symmetry or the Mσx symmetry simultaneously. Here, P
represents the inversion against the origin, T represents the
(spinless) time reversal operation, M stands for the reflec-
tion against the plane perpendicular to the body diagonal
(111) direction, and σx is the spin-flip operation for the two
hyperfine spins. Both symmetries are maintained when
d ¼ 0. When we introduce a finite perturbation in d, e.g.,
along the ð0; 1;−1Þ direction, both symmetries are simulta-
neously broken, which partially gaps the topological nodal
lines and results in four pairs of gapless Weyl points
[41,63,64], as shown in Figs. 3(d) and 3(e). These Weyl
points all carry nonvanishing Chern numbers with C ¼ �1,
suggesting they are stable against perturbations that preserve
the lattice translation symmetries.
Conclusion and outlook—In summary, we propose to

generalize the moiré physics to three dimensions. We
present the commensurate condition for the moiré crystal
and highlight that different crystal structures of the moiré
pattern can be realized by twisting the same cubic lattice
along different axes and angles. The specific features of
three-dimensional moiré lattices will bring many oppor-
tunities for future research.
First, the complexity of the three-dimensional rotation

group allows more flexible band engineering, which can
lead to nontrivial band topologies or flat bands. In this
Letter, we have shown the example of generating topo-
logical nodal lines and Weyl points through a three-
dimensional twist. Yet, given the extensive parameter space
of the SOð3;QÞ group, more systematic studies of band
structures are required for future investigations. Second,
two-dimensional moiré systems can exhibit a variety of
highly nontrivial correlation effects by introducing inter-
actions [6,34,65–69]. Similar or even more sophisticated
correlation effects could occur in three dimensions. Third,
we have focused on commensurate crystals, while incom-
mensurate twists can also reveal intriguing physics in three
dimensions. Finally, we have discussed the potential for
realizing a three-dimensional moiré crystal in ultracold
atoms, and a similar realization may also be possible in
photonic systems [70–72].
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End Matter

Appendix—In this section, we report the band
structures and topologies of the other two moiré crystals
that are shown in Fig. 2. The results reveal that
nontrivial topological features, specifically, nodal lines
and Weyl points, can also exist in such lattices.
The monoclinic moiré crystal In this subsection, we

analyze the band structure and topology of the mono-
clinic moiré crystal with parametrization ðm; n; l1; l2; l3Þ ¼
ð4; 1; 1; 1; 0Þ.
The real-space unit cell of this lattice is shown in

Fig. 2(c) of the main text. In Fig. 4, we plot the first
Brillouin zone and the band structure of this lattice without
displacement, i.e., d ¼ ð0; 0; 0Þ. There are 18 bands in
total, as both lattice A and lattice B contribute nine lattice
sites to one moiré crystal unit cell.
We find that the monoclinic lattice can also support

topological nodal lines protected by crystalline symmetry
just like the trigonal lattice. For example, in Figs. 5(a)–5(d),
we plot the gapless lines between the 13th and 14th bands
in the Brillouin zone, i.e., the solutions to the equation
E14ðkÞ − E13ðkÞ ¼ 0. We find two types of nodal lines as
indicated by the blue dashed and the red solid lines in
Figs. 5(a) and 5(c). Both types are protected by the PT
symmetry. Additionally, the blue dashed (red solid) nodal
lines are also protected by the M1σx (M3σx) symmetry.
Here, Miði ¼ 1; 2; 3Þ represents the reflection operation
with respect to Pi ¼ fr∈R3jbi · r ¼ 0g, i.e., the plane
perpendicular to bi and go through the origin.

It is worth noting that the two types of nodal lines may
intersect with each other. For example, one can see that the
red solid nodal circles on the k3 ¼

ffiffiffi
2

p
π=3 plane [i.e., the

right purple plane in Fig. 5(c)] intersect the right blue-
dashed semiarc in Fig. 5(a). These intersections of nodal

(a) (b)

FIG. 4. (a) The first Brillouin zone (shaded hexagonal prism)
and high-symmetry points for the monoclinic moiré crystal
parametrized by ðm; n; l1; l2; l3Þ ¼ ð4; 1; 1; 1; 0Þ. We adopt the
same convention as Ref. [73]. The unit reciprocal vectors are
represented by b1 ¼ ½ð4π=9Þ;−ð4π=9Þ;−ð2π=9Þ�, b2 ¼ ½ð8π=9Þ;
ð10π=9Þ;−ð4π=9Þ�, and b3 ¼ ½ð2π=9Þ;−ð2π=9Þ; ð8π=9Þ�, respec-
tively. (b) Band structure of the monoclinic lattice based on tight-
binding approximation. The parameters V, Ω, and δ are identical
to the ones used in the previous calculation of the trigonal lattice.
The displacement d is set to zero.

(e)

(c)

(a)

(f)

(d)

(b)

FIG. 5. Plots showing the topological nodal lines for d ¼
ð0; 0; 0Þ [(a)-(d)] and the Weyl points for d ¼ ð0.01; 0.01; 0Þ [(e),
(f)] between the 13th and the 14th bands of the monoclinic moiré
crystal parametrized by ðm; n; l1; l2; l3Þ ¼ ð4; 1; 1; 1; 0Þ. (a) Sche-
matic plots showing the three nodal lines (blue dashed) on the
high-symmetry (green) planes of the M1σx symmetry. (b) Band
gaps E14ðkÞ − E13ðkÞ on the high-symmetry planes displayed in
(a). Note that the dark lines represent the nodal lines. (c) Sche-
matic plots showing the three nodal lines (red solid) on the high-
symmetry (purple) planes of the M2σx symmetry. (d) Band gaps
E14ðkÞ − E13ðkÞ on the high-symmetry planes displayed in (c).
The dark lines represent the nodal lines. (e) Schematic plots
showing the eight Weyl points. The blue and red points indicate
the positions of Weyl points with Chern number þ1= − 1. Note
that all the Weyl points are on the high-symmetry axes corre-
sponding to certain rotational symmetry, e.g., the C2 rotation
along the (1,1,0) axis. These symmetries are not essential to
protect these Weyl points, but help us locating their positions
numerically. (f) Band gaps E14ðkÞ − E13ðkÞ on the high-
symmetry planes displayed in (e). The dark points indicate the
actual positions of the eight Weyl points.
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lines do not fall in the paradigm of the “tenfold-way”
classification of band topologies based on K theory, but are
still topologically nontrivial in the sense of non-Abelian
band topology [74]. Consequently, even perturbation in the
parameters that respect all the system symmetry can break
an intersection between two nodal lines of the 13th and
14th bands. Yet, the intersection point does not disappear
but is transferred to other bands. For example, two nodal
lines of the 14th and 15th bands can become intersecting
after the perturbation, which leaves the total number of
intersection points conserved in the entire band struc-
ture [74].
Similar to the trigonal case studied previously, these

symmetry-protected nodal lines may be gapped by intro-
ducing a finite displacement between the A and B lattices.
For instance, a finite d along the direction (1,1,0) breaks the
M1σx, the M3σx, and the PT symmetries simultaneously
[75], and hence should gap all the nodal lines. Indeed, in
Figs. 5(e) and 5(f), we see that a small displacement in this
direction gaps all the nodal lines except a few nodal points,
i.e., the Weyl points with nonvanishing Chern numbers.
The tetragonal moiré crystal In this subsection, we

analyze the band structure and topology of the tetragonal
moiré crystal with parametrization ðm; n; l1; l2; l3Þ ¼
ð2; 1; 0; 0; 1Þ.
The real-space unit cell of this lattice is shown in

Fig. 2(b) of the main text. In Fig. 6, we plot the first
Brillouin zone and the band structure of this lattice without
displacement, i.e., d ¼ ð0; 0; 0Þ. There are ten bands in
total, as both lattice A and lattice B contribute five lattice
sites to one moiré crystal unit cell.
The tetragonal moiré crystal can also support nodal line

structures with d ¼ ð0; 0; 0Þ. For example, as shown in
Figs. 7(a) and 7(b), there exist two nodal lines (black solid)
along the ΓZ and the MA axes between the third and the
fourth bands. However, it is worth noting that these two

nodal lines are not topological. They are protected by the
non-Abelian crystalline symmetry of the lattice. To see this,
note that besides the obvious C4 symmetry, the lattice also
contains a reflection symmetryM3 and a combined reflec-
tion and spin-flip symmetry M1σx. Similar to the previous
subsection, here Miði ¼ 1; 2; 3Þ represents the reflection
operation with respect to Pi ¼ fr∈R3jbi · r ¼ 0g, i.e., the
plane perpendicular to bi and go through the origin. The C4

rotational symmetry together with the M3 and the M1σx
generate a symmetry group isomorphic to D4 × Z2. This
group is non-Abelian, and thus allows high-dimensional
irreducible representations at the corresponding high-sym-
metry axes of the Brillouin zone, i.e., the ΓZ and the MA
axes. The nodal lines at these two axes between the third
and the fourth bands are thus a consequence of the two-
dimensional irreducible representations of the non-Abelian
D4 × Z2 group.
The D4 × Z2 can be broken by introducing a finite

displacement between the A and B lattices, e.g., along the
b1 ¼ ½ð4π=5Þ; ð2π=5Þ; 0� direction. In Figs. 7(c) and 7(d),
we plot energy difference E4ðkÞ − E3ðkÞ of a finite dis-
placed tetragonal moiré crystal. As one can see, theD4 × Z2

symmetry-protected nodal lines are completely gapped by
the displacement d. Moreover, there emerge two topological
nodal lines (red solid) near the MA axes. These two nodal
lines are topologically protected by the remaining M1σx

(a) (b)

FIG. 6. (a) The first Brillouin zone (shaded rectangular cuboid)
and high-symmetry points for the tetragonal moiré crystal para-
metrized by ðm; n; l1; l2; l3Þ ¼ ð2; 1; 0; 0; 1Þ. We adopt the same
convention as Ref. [73]. The unit reciprocal vectors are repre-
sented by b1 ¼ ½ð4π=5Þ; ð2π=5Þ; 0�, b2 ¼ ½−ð2π=5Þ; ð4π=5Þ; 0�,
and b3 ¼ ð0; 0; 2πÞ, respectively. (b) Band structure of the
tetragonal lattice based on tight-binding approximation. The
parameters V, Ω, and δ are identical to the ones used in previous
calculations of the trigonal and monoclinic lattices. The dis-
placement d is set to zero.

(a) (b)

(c) (d)

FIG. 7. Plots showing the nodal lines protected by the non-
Abelian D4 × Z2 symmetry for d ¼ ð0; 0; 0Þ [(a),(b)] and the
topological nodal lines for d ¼ ð0.16; 0.08; 0Þ [(c),(d)] between
the third and the fourth bands of the tetragonal moiré crystal
parametrized by ðm; n; l1; l2; l3Þ ¼ ð2; 1; 0; 0; 1Þ. (a) Schematic
plots showing the two nodal lines (black solid) on the high-
symmetry axes of the D4 × Z2 symmetry. The two degenerate
eigenstates on these lines form a two-dimensional irreducible
representation of the group. (b) Band gaps E4ðkÞ − E3ðkÞ on the
high-symmetry planes displayed in (a). Note that the dark lines
represent the nodal lines. (c) Schematic plots showing the two
topological nodal lines (red solid) on the high-symmetry (purple)
plane of the M1σx symmetry. (d) Band gaps E4ðkÞ − E3ðkÞ on
the high-symmetry planes displayed in (c). The dark lines
represent the nodal lines.
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symmetry and have a nonvanishing topological number
ζM1σx as defined in Refs. [41,46]. If we decrease jdj, the
two topological nodal lines keep moving toward the MA
axes and finally meet each other and merge into theD4 × Z2

protected nodal lines along MA when jdj ¼ 0.

We have also searched for the possible Weyl points in the
tetragonal lattice by introducing a further displacement
which breaks the M1σx symmetry. However, for a large
range of parameters, we do not see any signature of a nodal
point in this tetragonal moiré crystal.
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