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Quantitative simulation of electronic structure of solids requires treating local and nonlocal electron
correlations on an equal footing. We present a new ab initio formulation of Green’s function embedding
which, unlike dynamical mean-field theory that uses noninteracting bath, derives bath representation with
general two-particle interactions in a systematically improvable manner. The resulting interacting-bath
dynamical embedding theory (ibDET) utilizes an efficient real-axis coupled-cluster solver to compute the
self-energy, approaching the full system limit at much reduced cost. When combined with the GW theory,
GW þ ibDET achieves good agreement with experimental spectral properties across a range of semi-
conducting, insulating, and metallic materials. Our approach also enables quantifying the role of nonlocal
electron correlation in determining material properties and addressing the long-standing debate on the
bandwidth narrowing of metallic sodium.
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Introduction—Predictive description of material-specific
electronic properties remains a significant challenge in
computational physics and chemistry [1]. The main reason
is the need for quantitative treatment of electron correlation
effects and simulating in the thermodynamic limit simulta-
neously. Quantum embedding theories offer a promising
route to solve this problem [2]. For dynamical quantities,
dynamical mean-field theory (DMFT) has been the most
popular choice, leading to advances in the understanding
of correlated electron physics in lattice models and real
materials [3–5].
Despite its success in treating strong local electron

interactions, extending DMFT to accurately capture non-
local electron correlation remains challenging [6]. This
capability is crucial for describing various quantum many-
body phenomena, such as the pseudogap phase and stripe
orders in high-temperature cuprate superconductors [7–9].
Cluster extensions in real (cluster DMFT [10–12]) or
reciprocal (DCA and DΓA [13–15]) spaces have been
proposed, but these formalisms are mostly designed for
short-range quantum fluctuations, and CDMFT is known
to break translational invariance [16]. To account for band
structure and long-range interactions in real materials,
density functional theory (DFT) [17] or many-body per-
turbation theory (GW) [18–21] is normally adopted as the
low-level theory for DMFT. Although much progress has
been made in the downfolded DFTþ DMFT [5] and
GW þ DMFT [22–25] formalisms, their predictive capabil-
ity is limited by uncontrolled errors that are often difficult
to quantify. The impurity problem usually comprises a few

correlated orbitals, but DMFT results could depend sensi-
tively on the choice and construction of these impurity
orbitals [26]. The derivation of effective interactions and
approximation to their frequency dependence also intro-
duce numerical uncertainties [27]. Moreover, DFTþ
DMFT calculations could suffer from the double counting
error [28,29].
To avoid these numerical ambiguities, one of us recently

developed a full cell GW þ DMFT formalism [30–32],
where the impurity problem comprises all local orbitals of
atoms within a chosen supercell. General bare Coulomb
interactions within impurity orbitals are employed and
solved by efficient quantum chemistry solvers [33,34],
removing the need for downfolding. However, full cell
GW þ DMFT inevitably inherits certain limitations
from cluster DMFT, such as the breaking of translational
invariance. While the impurity space is significantly larger,
the nonlocal electron correlation beyond the selected
supercell is at best captured at the GW level. The neglect
of long-range interactions stronger than those captured by
GW is known to yield errors in a variety of settings [24,35].
A common origin of this challenge in DMFT is the

noninteracting nature of its bath representation through
the hybridization function. Despite a natural choice for
continuous-time quantum Monte Carlo (CTQMC) solvers
[36], the noninteracting bath parametrization does not fully
leverage the power of Hamiltonian-based solvers, such as
exact diagonalization (ED) [37], density matrix renormal-
ization group (DMRG) [34,38], configuration interaction
(CI) [39], and coupled-cluster (CC) theory [33,40–42],
as there is no clear mapping between the full Hamiltonian
and fictitious bath states. In this Letter, we develop a new
ab initio Green’s function embedding formulation with*Contact author: tianyu.zhu@yale.edu
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interacting bath, which enables direct projection of the full
interacting Hamiltonian into large embedding problems,
solved by a coupled-cluster Green’s function (CCGF)
solver truncated at the single-reference singles and doubles
level [33]. Unlike DMFT, this formulation utilizes self-
energy corrections to both impurity and bath states for
describing dynamical quantities, allowing the computation
of coupled-cluster spectra at substantially reduced cost.
Because we do not derive bath parameters by fitting the
hybridization function, this method is, strictly speaking, no
longer DMFT, and we term it interacting-bath dynamical
embedding theory (ibDET).
Method—Given a periodic crystal, we start with a mean-

field solution at the Hartree-Fock (HF) or DFT level using
crystalline Gaussian atomic orbitals. To define the impurity
problem, we construct the orthogonal atom-centered local
orbital basis employing an intrinsic atomic orbital plus
projected atomic orbital (IAOþ PAO) scheme [43,44]. We
choose all local orbitals on a single atom as the impurity
and then gradually expand the bath space by selecting
orbitals that entangle most strongly with impurity orbitals
from the environment. To recover the self-energy of the full
crystal, multiple embedding problems need to be formu-
lated, each centered on an impurity atom in the unit cell.
The key step is then to perform algebraic construction of

bath orbitals that allow projection from full Hamiltonian
to the embedding space (Fig. 1). Here, we construct bath
orbitals responsible for capturing short- and long-range
electron correlations, respectively. The first set BDM is
derived by a Schmidt decomposition, i.e., using the
singular value decomposition (SVD) of the mean-field
off-diagonal one-particle reduced density matrix (1-RDM)
between the impurity and remaining lattice [44], the same
as in density matrix embedding theory [45]. BDM ensures
that impurity 1-RDM is exactly reproduced in the

embedding calculation at the mean-field level [46]. The
second set BGF is obtained by performing SVD of the
imaginary part of mean-field off-diagonal Green’s function
gðωnÞ on a uniform real-frequency grid, to capture the
frequency-dependent entanglement between impurity and
environment [52], a role similar to that of the hybridization
function in DMFT. To keep the number of BDM and BGF
orbitals tractable, we couple bath orbitals only to valence
impurity orbitals (i.e., IAOs) and adopt an additional
projection to orthogonalize the embedding space and
remove redundant BGF orbitals. BDM and BGF, however,
do not capture electron correlation beyond short range, so
we derive a third set of cluster-specific natural bath orbitals
BNO inspired by local correlation methods in quantum
chemistry, particularly the local natural orbital coupled-
cluster (LNO-CC) theory [53]. Similar idea was recently
introduced to quantum embedding by Nusspickel and
Booth [54] and periodic CC theory [55] for ground-state
properties. The key is to select natural orbitals from
the environment that correlate strongly to the existing
embedding cluster (I ⨁ BDM ⨁ BGF, where I stands for
the impurity space), estimated by a cheap direct second-
order perturbation theory (dMP2) calculation. Furthermore,
to better describe the delocalized conduction states in
gapped systems, we incorporate a few low-lying canonical
virtual orbitals into the bath space [46].
The Hamiltonian for each embedding problem is

Hemb ¼
Xemb

ij

F̃ija
†
i aj þ

1

2

Xemb

ijkl

ðijjklÞa†i a†kalaj; ð1Þ

where ðijjklÞ is the general two-particle bare Coulomb
interaction matrix defined on all impurity and bath orbitals,
obtained through a projection with rotation matrix R (see
Fig. 1 for the definition of R). The one-particle interaction
matrix is defined as

F̃ij ¼ Femb
ij −

Xemb

kl

γemb
kl

�
ðijjlkÞ − 1

2
ðikjljÞ

�
: ð2Þ

Here, Femb ¼ R†FfullR, where Ffull is the Fock matrix of
the full system computed using HF (even when we start
from the DFT density), and γemb is the 1-RDM rotated
to the embedding space. The HF contribution to the self-
energy is exactly removed in Eq. (2), so there is no double
counting in ibDET.
The CCGF solver at the EOM-CCSD level [33] is

adopted to solve the embedding Hamiltonians [Eq. (1)]
on the real axis. We choose the CCGF solver because of
its good performance for various lattice models and real
materials [56–60], as well as high computational efficiency.
Meanwhile, we emphasize that ibDET can utilize any
Hamiltonian-based solvers, such as quantum chemistry
DMRG [38] and selected configuration interaction [61]

FIG. 1. Illustration of the ibDET formalism, where each
embedding space includes all local orbitals of an impurity atom
(I) in the unit cell coupled to large interacting bath (B). An
example of an occupied embedding space in SrTiO3 (Ti as
impurity) is shown.
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that are more robust for stronger correlation. The self-
energy computed within the embedding space is rotated
back to the full Hilbert space

Σfull;JðωÞ ¼ RΣemb;JðωÞR†; ð3Þ

where J means the Jth embedding problem. The self-
energy matrices fΣfull;JðωÞg from all embedding calcula-
tions are then assembled using a democratic partitioning
scheme and Fourier transformed to the momentum space,
to obtain the full self-energy of the crystal ΣibDETðk;ωÞ.
Similar to GW þ DMFT, ibDET can be easily combined
with the GW theory to capture any small long-range
correlation effects missed by ibDET, and the resulting
GW þ ibDET self-energy is

ΣGWþibDET ¼ ΣGW;full þ ΣCC;ibDET − ΣGW;ibDET; ð4Þ

where ΣGW;full is the GW self-energy of the full system.
Different from common DFTþ DMFT and GW þ DMFT
calculations that require self-consistency, all results in this
Letter are obtained from one-shot ibDET.
Results—We first demonstrate numerical convergence of

ibDET results on silicon (Si) and two-dimensional hex-
agonal boron nitride (2D BN), where full EOM-CCSD
calculations are possible. For Si and 2D BN, GTH-cc-
pVTZ/GTH-DZVP basis sets [62,63] and GTH-HF-rev/
GTH-PADE pseudopotentials [64,65] were employed,
together with 4 × 4 × 4=6 × 6 × 1 k-point sampling. For
Si, it is not feasible to run full EOM-CCSD calculation,
thus we used a composite correction scheme [66] to
estimate band gaps. All calculations were conducted using
the PYSCF quantum chemistry software package [67,68].
In Fig. 2(a), we show the convergence of GW þ ibDET

predictions of silicon band gaps against the full system

limit, which is challenging for quantum embedding meth-
ods due to the long-range nature of the screened interaction
[30,31,69]. Although one-shotG0W0 approximation on top
of PBE [70] predicts accurate band structure for Si, this
success benefits from error cancellations, indicated by
the large difference between G0W0@PBE (1.15 eV) and
G0W0@HF (1.86 eV) Γ-X band gaps. The GW þ ibDET
predicted band gaps quickly converge to the full EOM-
CCSD limit as the embedding space grows. At around 210
embedding orbitals (6% of the total number of orbitals,
Ntot), theGW þ ibDET (PBE reference) Γ-X and X-X band
gap errors are both only 0.04 eV. Furthermore, since the
long-range electron correlation is mostly captured by the
CCGF solver within ibDET, the starting-point dependence
is significantly reduced from 0.71 to 0.08 eV (Γ-X gap)
when using PBE vs. HF reference, which is also smaller
than in full cell GW þ DMFT with similar embedding size
(0.48 eV, Nemb ¼ 170).
ibDETalso predicts accurate photoemission spectrum on

2D BN [Fig. 2(b)]. Previous full cell HFþ DMFT simu-
lation with a BN unit cell as the impurity yields accurate
band gaps, but the spectrum shape shows some discrep-
ancies, especially in the valence part [31], an indication of
broken translational symmetry. In contrast, the density of
states (DOS) predicted by HFþ ibDET (200 orbitals in
each embedding space) is in good agreement with full
EOM-CCSD, suggesting the treatment of nonlocal electron
correlation is substantially improved and the translational
symmetry is preserved. The valence spectrum is near
perfect, although the band gap is overestimated due to
the large error in HF. GW þ ibDET (HF reference) further
improves over HFþ ibDET and achieves quantitative
agreement with EOM-CCSD over a wide frequency range.
We then apply GW þ ibDET to study two metal oxides

(MgO and SrTiO3) with large k-point sampling (6 × 6 × 6)
impossible for standard EOM-CCSD implementation.
MgO has an experimental band gap of 7.98–8.19 eV
[66,71], but G0W0@PBE underestimates the band gap
(7.43 eV [20]) and quasiparticle self-consistent GW largely
overestimates (9.33 eV [21]). We performed GW þ ibDET
(PBE reference) calculation using all-electron cc-pVTZ
basis set, with 230 orbitals in each embedding space (2% of
Ntot). As presented in Fig. 3(a) and Table S6,GW þ ibDET
greatly improves over G0W0@PBE and predicts the band
gap to be 8.22 eV, which is also consistent with recent
EOM-CCSD benchmark (8.34 eV [66]).
For the moderately correlated insulator SrTiO3,

the experimental indirect band gap is 3.25 eV [72].
Although SrTiO3 has no open-shell 3d electrons, its
lowest conduction bands are dominated by localized
Ti-3d orbitals, causing severe underestimation of the band
gap by PBE (1.82 eV). G0W0@PBE overestimates the
band gap (3.62 eV), while various self-consistent
GW schemes yield even larger overestimation errors
[73,74]. We conducted GW þ ibDET calculations using

(b)(a)

FIG. 2. Benchmark of ibDET on Si and 2D BN against EOM-
CCSD. (a) Convergence of GW þ ibDET band gaps of Si as the
number of embedding orbitals is increased, compared to full cell
GW þ DMFT values [30]. (b) DOS of 2D BN from HFþ ibDET
and GW þ ibDET (HF reference), compared to the HFþ DMFT
spectrum [31].
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all-electron def2-TZVP/def2-SVP basis sets [75] for Ti
and O, and GTH-DZVP-MOLOPT-SR/GTH-HF-rev basis/
pseudopotential for Sr. As seen in Fig. 3(b) and
Table S7, with around 210 orbitals in each embedding
space (1% of Ntot), GW þ ibDET (PBE reference) predicts
the R-Γ and Γ-Γ band gaps to be 3.24 and 3.74 eV, in
excellent agreement with experimental values. Comparing
the G0W0@PBE and GW þ ibDET band structures, we
find that GW þ ibDET predicts broader valence band
spectrum due to the shift of O-dominant peaks by 1–2 eV.
Finally, we demonstrate the applicability of ibDET to

metallic systems, using sodium (Na) as an example.
Although Na is usually considered as near-free-electron
weakly correlated, DFT with LDA or GGA functionals
severely overestimates the occupied bandwidth of Na

(e.g., 3.41 eV from PBE) compared to those measured
by angle-resolved photoemission spectroscopy (ARPES)
experiments (2.65–2.78 eV) [76,77], which leads to long-
standing debate over the nature of electron correlation in
Na [24,78–82]. Adding nonlocal static exchange in hybrid
functionals yields even worse results [79]. The GW
approximation is also insufficient, as G0W0 only slightly
improves over LDA and GGA (e.g., G0W0@PBE value is
3.20 eV). Single-site DFTþ DMFT and self-consistent
GW þ EDMFT have been applied to this problem, where
the impurity is a single Na-3s orbital. LDAþ eDMFT
predicted a bandwidth of 2.84 eV [79], which resulted
in the conclusion that only local electron correlation
within single Na atom needs to be captured beyond
DFT. However, Ref. [24] showed contradictory result
(3.2–3.3 eV, no improvement over GW) from GWþ
EDMFT, which suggested treating Na-Na nonlocal corre-
lation beyond GW is important. Such discrepancy is likely
due to the use of different effective interaction parameters
within the downfolding scheme.
We thus apply ibDET, which is free of downfolding

parameters and treats significantly larger embedding space
(225 orbitals), to address this puzzle. The CCGF solver was
previously shown to agree well with DMRG on the spectral
function of a small uniform electron gas model at the
relevant Wigner-Seitz radius rs ¼ 4 [78]. Our GW þ
ibDET (PBE reference) simulation employed GTH-cc-
pVTZ basis set [62] and GTH-HF-rev pseudopotential
and 8 × 8 × 8 k-mesh. In Fig. 4(a), we find that GW þ
ibDET achieves excellent agreement with the ARPES
spectra [76,77] and predicts an occupied bandwidth of
2.84 eV, significantly better than G0W0@PBE and PBE.
Now that we have established the accuracy of

GW þ ibDET, we further analyze the nature of electron
correlation in metallic sodium. Specifically, we ask if
the same good bandwidth prediction can be obtained

(a)

(b)

FIG. 3. Band structure of MgO and SrTiO3 computed byGW þ
ibDET (heat map) and G0W0@PBE (white dashes).

(a) (b) (c)

FIG. 4. GW þ ibDET results for metallic sodium. (a) Band structure computed by GW þ ibDET (heat map), compared against PBE,
G0W0@PBE, and ARPES experiments by Plummer [76] and Fink [77]. (b) DOS(Local) − DOS(Full), computed by applying self-
energy correction (ΣCC − ΣGW) to the full system (Full) or only to the diagonal block within each Na atom (Local). (c) 3s-3s nonlocal
self-energy correction (ΣCC − ΣGW) between Na atoms as the Na-Na distance increases.
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with only local self-energy approximation, by limiting the
ΣCC − ΣGW self-energy correction to the diagonal block
within each Na atom (this approximation is similar to
single-site DFTþDMFT and GWþEDMFT). In Fig. 4(b),
we find that, without nonlocal interatomic self-energy
correction beyond GW, the bandwidth predicted by “local”
GW þ ibDET is 3.11 eV, only slightly improved over
G0W0@PBE (3.20 eV) and much worse than that predicted
by full GW þ ibDET (2.84 eV). Furthermore, GW þ
ibDET allows us to quantify the magnitude of real-space
long-range electron correlation. In Fig. 4(c), we find that
the real part of interatomic 3s-3s self-energy correction
(ΣCC − ΣGW) does not decay to zero until 6th nearest
neighbor in distance, indicating the electron correlation
is quite delocalized in metallic sodium. Thus, to quantita-
tively simulate spectral properties of sodium, we argue
it is crucial to account for long-range electron correlation
at a many-body level beyond DFT and GW, as seen in
GW þ ibDET.
Conclusion—We have developed a new Green’s function

embedding formulation, interacting-bath dynamical embed-
ding theory, for capturing local and nonlocal electron
correlations on an equal footing in many-body simulation
of solids. The main strength of this method is that it avoids
uncontrolled errors associated with small impurity subspace
and empirical truncations, while fully leveraging the power
of advanced quantum chemistry solvers for treating long-
range electron correlation effects. We have demonstrated that
theGW þ ibDET approach achieves quantitative description
of spectral properties across a wide range of materials and
preserves the translational invariance. In particular, ibDET
provides a capability to examine the effect of nonlocal
(and even long-range) electron correlation in determining
material-specific electronic properties. GW þ ibDET is thus
a promising tool for tackling material problems in which
nonlocal electron correlation plays a significant role.
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