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We realize a Laughlin state of two rapidly rotating fermionic atoms in an optical tweezer. By utilizing a
single atom and spin resolved imaging technique, we sample the Laughlin wave function thereby revealing
its distinctive features, including a vortex distribution in the relative motion, correlations in the particles’
relative angle, and suppression of the interparticle interactions. Our Letter lays the foundation for atom-by-
atom assembly of fractional quantum Hall states in rotating atomic gases.
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Neutral particles in a rotating frame mimic the motion of
charged particles subjected to a magnetic field [1]. The
Coriolis force takes on the role of the Lorentz force, which
dictates free particles to move on cyclotron orbits. Within a
quantum mechanical framework, this results in quantized
energy levels, referred to as Landau levels. They are
infinitely degenerate in the case of translational invariance,
separated by the large cyclotron frequency. The properties
of such a system are classified by the filling factor ν, which
is defined as the ratio of the particle number and the number
of states per Landau level [2]. For integer values, the
Landau levels are completely occupied, resulting in the
integer quantum Hall effect [3], while for ν < 1 the lowest
Landau level (LLL) is partially filled leading to the
emergence of strongly correlated phases including frac-
tional quantum Hall states [4,5]. The fractional filling
factors ν ¼ 1=m, with an integer m, are qualitatively
described by Laughlin’s wave function [6].
Rotating ultracold atomic gases [7,8] is one approach

among other techniques [9–18] to study quantum many-
body physics in magnetic fields. In the slow-rotation limit
of large filling factors ν ≫ 1 quantized flux vortices are
formed [19] and arrange in a triangular Abrikosov lattice
[20,21]. Reaching filling factors ν ∼ 100 has been achieved
with ultracold Bose gases, signaled by the softening of the
Abrikosov lattice [22,23] and more recently by distilling a
single Landau gauge wave function in the LLL [24–26]. In
the limit of rapid rotation ν≲ 1 strongly correlated phases
are predicted analogous to phases occurring in the frac-
tional quantum Hall effect [7,27–29], where first attempts
have been pursued in rotating atomic clusters of interacting
bosons [30]; in different systems, Laughlin states with two
photons [31] and with two bosonic atoms in a driven optical
lattice [32] have been realized lately. Ultracold Fermi gases

at filling factors ν≲ 1 have thus far been unexplored
experimentally due to challenges to transfer fermions to
the LLL via rotation of the potential, given the Pauli
exclusion principle.
In this Letter, we realize the ν ¼ 1=2 Laughlin state of

two rapidly rotating spinful fermions in an optical tweezer.
Our approach relies on the smooth rotation of the optical

FIG. 1. Conceptual path to a Laughlin state with two rapidly
rotating fermions. Two spinful noninteracting fermions (black
particles) are prepared in the ground state of a radially symmetric
optical tweezer. To couple the particles to states with angular
momentum, we tune the trap to an elliptical shape that rotates.
Rotating the non-interacting particles leads to independent,
single-particle rotation. Interactions (indicated by red) break
the symmetry between the particles’ center-of-mass and relative
motion since the interactions only couple to the relative part of the
wave function. Hence, states with angular momentum only in the
center-of-mass degree of freedom have different energy than
states with the same angular momentum in the relative motion
and thus both can be selectively addressed with different rotation
frequencies. States with angular momentum only in the relative
degree of freedom are Laughlin states. These states possess a
node in their relative wave function which, in our case of contact
interactions, renders them noninteracting.
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potential and precise control of the in-plane anisotropy to a
level of 4 × 10−4 [33]. On a conceptual level, the realization
of the Laughlin state requires interactions between the
particles and a strong magnetic field here engineered via
rotation, illustrated in Fig. 1. In the absence of interactions,
rotation of the particles leads to independent, single-particle
rotation. In this scenario, the center-of-mass and relative
motion of the particles are identical. The interactions break
the symmetry between the particles’ center-of-mass and
relative motion (defining the preferred basis) since they
couple only to the relative part of the wave function. The
interaction energy of a state with only center-of-mass
angular momentum tunes differently compared to a state
with relative angular momentum, allowing for selective
spectroscopic addressing.
The Laughlin state for any particle number N incorpo-

rates angular momentum in the relative motion between
each and every particle, thereby suppressing the interaction
energy. The spatial part of the Laughlin wave function is
described by

ψ1=mðz1;…; zNÞ ¼
Y
i<j

ðzi − zjÞme−
P

N
i¼1

jzij2=2; ð1Þ

where zj ¼ ðxj þ iyjÞ=lHO labels the complex coordinate of
the jth particle in the radial plane in units of the harmonic
oscillator length lHO, which defines the natural length scale

of our system, m is the angular momentum in units of ℏ
incorporated in the relative motion of the particles ðzi − zjÞ,
and the filling factor relates via ν ¼ 1=m. In our two-
particle case of a spin singlet, the spatial wave function is
required to be symmetric, thereby restricting the exponent
m to even numbers. In the many-body limit, our system
connects to spinful fractional quantum Hall states described
by the Halperin wave function, which is a generalization of
the Laughlin wave function containing a spin degree of
freedom [39].
Preparation of the Laughlin state—We start by prepa-

ring a noninteracting spin-up and -down fermion of 6Li
atoms in the ground state of a radially symmetric, tightly
focused optical tweezer [40]. The tweezer forms a cigar-
shaped harmonic trap with the radial ω=2π ≈ 7.9 kHz
and axial ωz=2π ≈ 7.9 kHz trap frequency, determining
lHO ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mLiω
p

. Since the rotation couples only to the in-
plane motion, we consider a two-dimensional (2D) poten-
tial in Fig. 2(a), top, which forms a rotationally symmetric
2D harmonic oscillator up to small anharmonic corrections.
The energies En;m are labeled by their shell number n and
their angular momentum Lz ¼ mℏ along the axial direc-
tion. When viewed in the reference frame rotating at ω, the
states remain eigenstates of the system, yet the energy
rearranges such that the eigenstates form degenerate
Landau levels, shown in Fig. 2(a), bottom. The states
jmi (red states) with maximal angular momentum in each
shell, i.e., n ¼ m, belong to the LLL [33].

FIG. 2. Preparation of the Laughlin state. (a) Two noninteracting fermions are prepared in the ground state of the optical tweezer (top).
In-plane it forms an approximate harmonic oscillator. States jmi (red) with maximal angular momentum along the axial direction
Lz ¼ mℏ in their respective shell n (n ¼ m) form the lowest Landau level in the rotating frame with ω, i.e., the deconfinement limit
(bottom). (b) Energy spectrum in the laboratory frame in the Lz ¼ 0ℏ; 2ℏ angular momentum manifold of two interacting fermions in a
cigar-shaped harmonic trap including an anharmonicity Δ. Adiabatic tuning of the magnetic field ⓪ → ③ leads to an energy shift Eint
with respect to the noninteracting ground state energy Eg (horizontal dotted line); the maximum Eint is on the order of the axial trap
frequency ωz. In the Lz ¼ 2ℏ manifold in the limit Eint ≫ Δ, the two states correspond to j2icomj0irel and j0icomj2irel in the center-of-
mass and relative basis, with the latter being the Laughlin state jψ1=2i. (c) Excitation spectrum at various magnetic fields measured by
counting the remaining atoms in the single-particle ground state hn̂0↑ þ n̂0↓i after applying the rotating perturbation for τ ¼ 350 μs. For
increasingly repulsive interacting atoms, the frequency of the relative excitationΩrel < 1.9ω decreases, while the frequency of center-of-
mass excitation at Ωcom ∼ 1.9ω stays approximately constant. (d) Rabi oscillations at 680G on the resonance Ωrel ≈ 1.7ω driven with a
Rabi rate Ωrabi=2π ≈ 0.42 kHz. According to Eq. (2b) the Rabi oscillations reach 2 and 0.5 (dashed lines). The error bars in (c),(d)
represent the standard error of the mean and are smaller than the data points if not visible.
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To excite the atoms selectively to angular momentum
eigenstates in the LLL, we interfere the tweezer with a
Laguerre-Gaussian beam which deforms the originally
radially symmetric potential and acts as a rotating pertur-
bation ∝ ðzle−iΩt þ H:c:Þ. It couples states that differ in
angular momentum by ℏl and in energy by ℏΩ. Here, 2πl is
the phase winding of the Laguerre-Gaussian beam, andΩ=l
is the angular rotation frequency of the optical potential set
by the angular frequency difference Ω between the tweezer
and the perturbation beam. To realize the ν ¼ 1=2 Laughlin
state, we introduce a total angular momentum of 2ℏ using
the Laguerre-Gaussian beam with l ¼ 2 [41].
Our approach to reach the two-particle Laughlin state

jψ1=2i is illustrated in Fig. 2(b). We outline the relevant
energy levels of two contact-interacting fermions trapped in
a cigar-shaped potential, viewed in the laboratory frame.
We express the eigenstates in the center-of-mass and
relative coordinates, as the interactions depend only on
the relative motion and the center-of-mass and relative
degrees of freedom decouple in a harmonic potential. The
decoupling also holds in the presence of the weak anhar-
monicity Δ ≈ 1.4 kHz in the limit of large interaction
energy Eint=h ≫ Δ.
The normalized spatial wave function of the two-particle

Laughlin state jψ1=2i can be expressed using harmonic
oscillator eigenstates

jψ1=2i ¼ j0icomj2irel ð2aÞ

¼ ðj0i↑j2i↓ þ j2i↑j0i↓Þ=2 − j1i↑j1i↓=
ffiffiffi
2

p
; ð2bÞ

in the center-of-mass and relative basis [Eq. (2a)] and the
single-particle basis [Eq. (2b)]. The Laughlin state jψ1=2i
remains in the center-of-mass ground state, while carrying
2ℏ angular momentum in the relative degree of freedom. In
the single-particle basis, jψ1=2i is a superposition of states
in the LLL, where either one spin state carries 2ℏ angular
momentum leaving the other spin state in the ground state
or each spin state carries 1ℏ angular momentum. Note, that
we directly relate each particle to a spin value via the
subscripts ↑;↓ [42].
We spectroscopically characterize the system by meas-

uring the single-particle occupation number in the ground
state hn̂0↑ þ n̂0↓i after applying the rotating perturbation
for τ ¼ 350 μs at different interactions strengths, shown
in Fig. 2(c). For those repulsive interactions, we observe
two resonances which correspond to the center-of-
mass j2icomj0iBrel and relative rotation j0icomj2irel (for
Eint=h ≫ Δ). Here, j0iBrel labels the ground state in the
relative motion which changes with the interaction strength
tuned by the magnetic field. As the interaction energy
depends only on the relative motion, the resonance fre-
quency of the center-of-mass excitation tunes similarly
to the ground state energy and thus stays approximately

constant at Ωcom ∼ 1.9ω, down-shifted from 2ω due to
the anharmonicities. In contrast, the relative excitation
Ωrel < 1.9ω shifts to lower frequencies for larger repulsive
interaction strengths. Modeling the energy levels in the trap
allows us to subtract the interaction-dependent ground state
energy, showing the suppression of interparticle inter-
actions in the j0icomj2irel state (see also Fig. S2 in [33]).
By ramping the magnetic field to 680G, we reach the

limit Eint=h ≈ 9.9 kHz ≫ Δ. In Fig. 2(d), we show Rabi
oscillations with a Rabi rate Ωrabi=2π ≈ 0.42 kHz on the
resonance Ω ≈ 1.7ω between the repulsively interacting
ground state and the Laughlin state, to which we transfer
via a π pulse. Since we measure hn̂0↑ þ n̂0↓i we expect the
minimum of the Rabi oscillations to reach 0.5, following
Eq. (2b). An upper bound of the preparation fidelity is
inferred through the single-particle ground state occupation
after half a Rabi cycle F prep ¼ 96ð2Þ%, also accounting for
the preparation fidelity of two atoms in the ground state.
Furthermore, we measure the lifetime of the Laughlin

state by utilizing Ramsey spectroscopy which yields τcoh ¼
191ð21Þ ms [33]. Remarkably, this corresponds to 21 400
coherent rotations of the particles, demonstrating that
the Laughlin state is insensitive to environmental noise
sources.
Observation of the Laughlin wave function—We mea-

sure the density of the Laughlin wave function in momen-
tum space after a time-of-flight expansion of ttof ¼ 1.78 ms
from approximately 11 000 experimental realizations using
a spin and atom resolved fluorescence imaging technique
[43]. Since the Laughlin state consists of states in the LLL
and suppresses interactions the expansion corresponds to a
magnification of the initial wave function [44]. We express
all momenta in units of the harmonic oscillator momen-
tum pHO ¼ ffiffiffiffiffiffiffiffiffiffi

ℏmω
p

.
In Fig. 3(a), we show the normalized density in the single

particle basis of the spin up and spin down fermion. In that
basis, neither of the spin states exhibits a vortex distribu-
tion. Instead, the density has a flattened profile. Note that
the density distribution of the spin-up state is larger
stemming from off-resonant scattering during the prior
imaging of the spin-down state [33].
In order to reveal the key signatures of the Laughlin

wave function we transform to the center-of-mass and
relative basis. In each experimental realization, we measure
the momentum p ¼ ðpx; pyÞ of the spin-up and spin-down
fermion, denoted as p↑ and p↓, respectively. This allows us

to calculate the center-of-mass pcom ¼ 1=
ffiffiffi
2

p ðp↑ þ p↓Þ and
relative prel ¼ 1=

ffiffiffi
2

p ðp↑ − p↓Þ coordinates in a single
snapshot of the wave function. We determine the normal-
ized density in the center-of-mass and relative basis in
Fig. 3(b), revealing the striking features of the Laughlin
wave function.
While in center-of-mass coordinates the density distri-

bution of the Laughlin state has a Gaussian shape, it shows
a rotationally symmetric vortex distribution in relative
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coordinates owing to the angular momentum incorporated
in the relative motion of the particles. The amount of
angular momentum m ¼ 2ℏ determines the size of the
vortex, with the peak density occurring at

ffiffiffi
2

p
pHO. A small

peak in the density at zero momenta is visible, stemming
from anharmonic coupling to molecular states with center-
of-mass excitations during the ramp of the magnetic
field [45].
In Fig. 4, we compare our experimental data to theo-

retical predictions based on the Laughlin wave function
ψ1=2. In Figs. 4(a) and 4(b), we show the azimuthally
averaged density distributions np as a function of the radial

momentum pr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
, in both the single-particle

basis and center-of-mass and relative basis, respectively. In

the single-particle basis, the Laughlin state is a super-
position of states in the LLL, according to Eq. (2b). In the
center-of-mass and relative basis, the Laughlin state
remains in the ground state j0icom (red) and occupies the
j2irel state (blue), respectively, according to Eq. (2a).
The measured densities qualitatively agree with the theo-
retical predictions (solid lines) without free parameters.
Additionally, we gain information about the phase of the
wave function by letting the system evolve in a slightly
anisotropic potential; the time evolution is consistent with
the expected phase winding of 4π corresponding to an
angular momentum of 2ℏ (see Fig. S3 in [33]).
Furthermore, we extract the relative angle correlations

between the fermions, similar to [31]. For that, we subtract
the azimuthal angle of the spin-up and -down atom

FIG. 3. Laughlin wave function of two rapidly rotating fermions. (a) Normalized single-particle density of the spin-up and spin-down
atom. Both densities flatten out for small momenta. (b) Normalized density in center-of-mass coordinates pcom ¼ 1=

ffiffiffi
2

p ðp↑ þ p↓Þ and
in relative coordinates prel ¼ 1=

ffiffiffi
2

p ðp↑ − p↓Þ. The center-of-mass motion has a Gaussian shape. The angular momentum is incorporated
in the relative motion of the particles, resulting in an azimuthally symmetric vortex distribution of the density. The total angular
momentum of 2ℏ determines the maximum of the vortex distribution at a radius of

ffiffiffi
2

p
pHO. Note that a small admixture ∼1% of a

Feshbach molecule is visible as a peak at zero relative momenta.

FIG. 4. Properties of the Laughlin state. (a) Radial densities of the spin-up and spin-down fermion. The solid line is a mixture of the
states j0i; j1i; j2i, according to Eq. (2b). (b) The Laughlin state remains in the ground state j0icom in center-of-mass coordinates, and
occupies the j2irel state in relative coordinates. The relative density is not zero at small momenta due to the admixture of a Feshbach
molecule. The solid lines are calculated according to Eq. (2a). (c) Normalized histogram of relative angle correlations between the spin-
up and spin-down fermion. The solid line is the theoretical angle correlation function g1=2ðφÞ, see text. Error bars of the 95% confidence
interval, determined using a bootstrapping technique, are smaller than the point size if not visible.
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determined in each experimental realization and calculate
the normalized angle distribution, shown in Fig. 4(c). The
solid line represents the theoretical angle correlations of the
ν ¼ 1=2 Laughlin wave function g1=2ðφÞ¼ð6−3πcosφþ
4cos2φÞ=16π, without free parameters. In general, the
Laughlin wave function ψ1=m exhibits a distinctive peak
at a relative angle φ ¼ π between two particles, which
becomes sharper with increasing angular momentum m
[33]. In the context of our zero-range contact interactions,
this observation demonstrates that while the Laughlin state
is noninteracting due to the node in the particles’ relative
wave function, it is strongly correlated in the motional
degree of freedom.
To connect to the electronic fractional quantum Hall

effect, we emphasize that the Laughlin state, which is an
excited eigenstate of the system in the laboratory frame,
becomes the ground state in the reference frame rotating at
the deconfinement limit. In order to further relate the two-
particle Laughlin wave function to the many-body limit, we
consider the density ñp ¼ np↑ þ np↓ at its center. Since the
two-particle Laughlin wave function is an eigenstate of
the harmonic oscillator, the momentum space ñp and real
space ñr densities are the same 2πñpðpr → 0Þp2

B ¼
2πñrðr → 0Þl2B when expressed in units of the magnetic
momentum pB and magnetic length lB, which in our
analogous system are pB ¼ ffiffiffi

2
p

pHO and lB ¼ lHO=
ffiffiffi
2

p
.

The measured value 2πñpðpr → 0Þp2
B ≈ 0.6 is close to

the expected value of 1=2, marking the precursor of the
incompressible bulk plateau of the fractional quantum Hall
droplet, extending up to a radius 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN − 1Þp
lB [7]. In this

region, the density increases before it falls off to zero on a
scale of lB, indicating the onset of the compressibility of the
edge in the many-body limit [5].
Conclusion and outlook—We directly observe micro-

scopic correlations of the ν ¼ 1=2 Laughlin wave function
demonstrating its noninteracting, yet strongly correlated
nature due to the incorporation of angular momentum in the
relative motion of the contact-interacting fermions. Our
platform opens up a new pathway to explore microscopic
details of spinful fractional quantum Hall states with
ultracold atoms. Future work involves the scalability to
larger particle numbers to study the emergence of topo-
logical phases of matter [46,47], the exploration of quan-
tum Hall ferromagnetism [48,49], or the investigation of
topologically distinct quantum phase transitions in the
BEC-BCS crossover [50–52].
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