
Matched Guiding and Controlled Injection in Dark-Current-Free, 10-GeV-Class,
Channel-Guided Laser-Plasma Accelerators

A. Picksley ,1,* J. Stackhouse ,1,2 C. Benedetti,1 K. Nakamura ,1 H. E. Tsai ,1 R. Li ,1,2 B. Miao ,3

J. E. Shrock ,3 E. Rockafellow ,3 H. M. Milchberg ,3,4 C. B. Schroeder ,1,2 J. van Tilborg ,1 E. Esarey,1

C. G. R. Geddes ,1 and A. J. Gonsalves 1

1Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2University of California, Berkeley, California 94720, USA

3Institute of Research in Electronics and Applied Physics and Department of Physics, University of Maryland,
College Park, Maryland 20742, USA

4Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA

(Received 25 July 2024; accepted 18 October 2024; published 18 December 2024)

We measure the high-intensity laser propagation throughout meter-scale, channel-guided laser-plasma
accelerators by adjusting the length of the plasma channel on a shot-by-shot basis, showing high-quality
guiding of 500 TW laser pulses over 30 cm in a hydrogen plasma of density n0 ≈ 1 × 1017 cm−3. We
observed transverse energy transport of higher-order modes in the first ≈12 cm of the plasma channel,
followed by quasimatched propagation, and the gradual, dark-current-free depletion of laser energy to the
wake. We quantify the laser-to-wake transfer efficiency limitations of currently available petawatt-class
lasers and demonstrate via simulation how control over the laser mode can significantly improve beam
parameters. Using 21.3 J of laser energy, and triggering localized electron injection, we observed electron
bunches with single, quasimonoenergetic peaks up to 9.2 GeV with charge extending beyond 10 GeV.

DOI: 10.1103/PhysRevLett.133.255001

Particle acceleration in plasma waves driven by intense
laser pulses [1–3] has attracted significant attention due to
the ultrahigh accelerating gradients that can be achieved
(hundreds of GV=m). Compact laser-plasma accelerators
(LPAs) are attractive for applications such as free-electron
lasers [4,5], Thomson sources [6], and colliders [7,8].
Significant progress has been made toward producing
high-energy (> 1 GeV) [9–17], high-quality [18–21] elec-
tron bunches using LPAs.
Maximizing electron beam energy for a given laser

energy requires maintaining laser intensity over tens of
centimeters, much longer than the typical Rayleigh length
zR ∼ 1 cm of focused, petawatt peak power laser systems.
Hence, laser pulses must be guided via relativistic self-
focusing [22] or using a preformed plasma channel [23,24].
The former requires operating in the bubble regime of the
LPA [25,26], at a plasma density n0 high enough to remain
above the critical power for self-focusing. High-energy
electrons can be produced, but high pulse energy is
required [2]; for example, Aniculaesei et al. [17] demon-
strated an energy gain of ∼10 GeV using 118 J of laser
energy. Preformed plasma channels have transverse density
profiles with a minimum on axis such that the refractive
index is peaked, much like gradient-index optical fibers.
They allow operation of LPAs at lower n0 where the
product of accelerator gradient and length is higher.

Matching the drive laser to the fundamental transverse
mode of the plasma channel maximizes the laser-to-wake
energy transfer efficiency and enables high-quality beams.
For a parabolic channel where neðrÞ − n0 ∝ r2, a low-
intensity laser pulse with a Gaussian transverse profile is
perfectly matched to the fundamental channel mode and
propagates at constant spot size if w0 ¼ wm, where wm is
the matched spot size, a measure of the steepness of the
parabolic profile [2,23]. Applications of 10-GeV-class
LPAs require matched propagation of PW-class lasers with
wm ≲ 50 μm at n0 ≈ 1 × 1017 cm−3 [7,8].
Capillary-discharge waveguides [27,28] have previously

been employed in multi-GeV LPAs [9,13]. While they are
approximately parabolic, and can provide per-mille level
stability of wm and n0 [29], wm is too large for sufficient
confinement at n0 ≈ 1017 cm−3. Even with the addition of
an auxiliary laser to reduce wm [30,31], effective guiding
was only achieved above optimal n0, limiting energy gain
to 7.8 GeV [14]. This can be overcome using channels
formed by hydrodynamic expansion of optical field-ionized
(HOFI) plasmas. Steep channels with 20≲ wm ≲ 50 μm
and n0 ≲ 1017 cm−3 can be generated [32–38]. Guiding of
high-intensity pulses [34,35,37,39–41] and electron accel-
eration [15,16,42] have been demonstrated, with ∼5 GeV
the highest energy to date [15]. In such experiments,
guiding is assessed at the end of the accelerator, and
propagation of the laser pulse throughout the plasma is
inferred from simulations. Laser mode beating and*Contact author: apicksley@lbl.gov
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evolution theory [43–46] was recently analyzed via par-
ticle-in-cell simulations showing mismatched guiding
linked to measured electron spectra [47].
In this Letter, we measure high-intensity, nonlinear laser

propagation throughout meter-scale LPAs by adjusting the
accelerator length on a shot-by-shot basis, showing high-
quality guiding of 500 TW pulses throughout a 30-cm-long
hydrogen plasma with n0 ≈ 1 × 1017 cm−3. We show laser
pulse coupling into the higher-order channel modes and
energy loss through mode filtering, followed by quasi-
matched propagation of the fundamental mode, and the
gradual, dark-current-free depletion of laser energy to the
plasma wave. Then, by triggering electron injection via
the localized addition of nitrogen to the plasma, bunches
with single, quasimonoenergetic peaks up to 9.2 GeV
and charge extending to > 10 GeV are achieved using
just ð21.3� 0.3Þ J of laser energy. We quantify the laser-to-
wake transfer efficiency limitations of currently available
PW-class laser systems and demonstrate via simulation
how control over the laser mode can result in ≳13 GeV
bunches for the same channel.
The Ti:sapphire BELLA PW laser [48] produces pulses

of FWHM duration ∼40 fs at a central wavelength
λ0 ¼ 815 nm. Recent upgrades allow the amplified laser
to be split into two separately compressed beam lines [49]
with control over the relative timing, wave front, and
focusing geometry. Figure 1(a) shows a schematic of the
experimental setup. In the channel-forming beam line,
ð1.3� 0.3Þ J was focused by an axicon lens and reflected
by a mirror with a hole drilled in the center into the gas
target [15,34,35,40]. The peak intensity Iax as a function
of distance from the entrance of the gas jet z is shown

(black line) in Fig. 1(b). The drive pulse was focused
to a spot size w0 ¼ ð53� 1Þ μm at the entrance of
the gas target. The energy was varied up to a maxi-
mum of E0 ¼ ð21.3� 0.3Þ J, corresponding to a peak
normalized vector potential a0 ≈ 2.2, where a0 ≈
0.85λ0 ½μm�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I0½1018 Wcm−2�
p

, with I0 the peak intensity.
The diagnostics for the drive laser and electron bunches

are described in Refs. [14,48]. The input and guided mode
of the drive laser could be imaged over ∼60 cm; the
propagated drive was also imaged at the plane of the third
wedge ≈10 m downstream of the channel exit. The optical
spectrum was measured using fiber-based spectrometers
covering the wavelength range 400≲ λ≲ 2200 nm. The
energy transmission TðzÞ ¼ EðzÞ=E0 was retrieved by
integrating the counts on the detector at z ≈ 10 m, and
then using the measured optical spectrum to correct for the
detector spectral response. The transverse profile of the
electron beam was measured by a phosphor screen placed
12 m downstream of the interaction before the beam
entered a 2.5-m-long magnetic spectrometer, with a
�1 mrad angular acceptance.
A 30-cm-long gas target was developed [15,50,51],

comprising an elongated, converging-diverging nozzle
operated with hydrogen, or hydrogen with a ≤ 5% nitrogen
dopant. The length could be varied by blocking the flow of
gas above the nozzle. Figure 1(b) shows the molecular
density as a function of distance along the gas jet [15]. The
delay between the channel-forming laser and the drive laser
was varied between Δτ ¼ 5 ns and Δτ ¼ 7 ns, for which
wm remained unchanged within experimental error. The jet
was operated 12 mm below the laser axis to avoid blocking
the channel-forming laser (which had a radius of ≈12 mm
at z ¼ 0). For these conditions, two-color interferometry
measurements [37,52,53] shown in Fig. 1(c) indicated an
axial plasma density n0 ≈ 1 × 1017 cm−3 and matched spot
size wm ≈ 37 μm.
The evolution of key drive laser parameters for two

different laser energies, E0 ¼ ð6.0� 0.1Þ J (a0 ≈ 1.3) and
ð19.6� 0.4Þ J (a0 ≈ 2.2), and Δτ ¼ 6 ns is shown in
Fig. 2. Only shots for which the transverse position of
the focus with respect to the channel entranceΔR < 25 μm
were included, inferred from a nondestructive centroid
diagnostic [54]. This condition was satisfied for 71% of
shots. Figure 2(a) shows representative transverse fluence
profiles of the drive laser for several different channel
lengths ≈10 m downstream of the waveguide exit. For
Lch ≈ 7 cm the drive laser mode had transformed from the
top-hat-like input mode (that is typical of currently avail-
able PW-class systems based on bulk crystal) to near-
Gaussian; the super-Gaussian [55] fit order reduced from
≈6 to ≈2. Through z ≈ 12 cm, the propagated mode
exhibited rings outside the central fluence peak. As the
channel was lengthened, a single, approximately Gaussian
transverse profile was always observed when the drive laser
was well aligned to the channel. Figure 2(b) shows the

FIG. 1. (a) Schematic of the experimental setup. Inset: mea-
sured vacuum mode of the drive laser pulse. (b) Measured
molecular density of the gas jet (blue and orange lines) and
peak intensity of the channel-forming pulse along the length of
the gas (black line). (c) Measured electron and neutral density
n ¼ ne þ nn of the HOFI plasma channel atΔτ ¼ 6 ns (blue) and
calculated fundamental mode of the measured plasma channel
(orange line).
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reimaged exit mode, with the channel length varied in steps
of 0.2 cm up to Lch ≈ 5 cm. The dashed line indicates the
measured peak of nðrÞ. Figure 2(c) shows reimaged exit
mode images for channel lengths ≤ 30 cm. For z≳ 12 cm,
a well-confined, near-Gaussian drive mode was observed
for all channel lengths and for both laser intensities.
Dominant mechanisms behind laser pulse propagation

[43,44,47,56] can be understood from these guiding mea-
surements. The channel supports several quasibound
modes which we denote as ðp;mÞ referring to the radial
and azimuthal mode number, respectively. Their structures
are determined by neðrÞ. HOFI plasma channels are finite in
extent and not radially parabolic; only a finite number of
low-order modes can propagate, of which the fundamental
(0, 0) [shown in Fig. 1(c), orange line] mode is close to
Gaussian. Since the input mode [shown in Fig. 1(a)] was
not the fundamental channel mode, energy was coupled
into higher-order modes, observed directly from the ring
structure in Fig. 2(a) for Lch ≈ 7 cm. Figure 2(b) shows
leakage of higher-order modes out of the bound region at
oblique angles over a few centimeters [56]. These modes do
not contribute to wakefield generation. After this initial
period of mode filtering, which occurred over z≲ 12 cm,
higher-order mode content in the guided modewas severely
reduced, evidenced by Fig. 2(c)(i). Remaining higher-order
modes slip behind the fundamental due to group velocity

dispersion, and eventually become separated longitudinally
such that they also do not contribute to wakefield gen-
eration [43,44,47,57–61]. The distance over which the
(1, 0) and (2, 0) modes separate by 40 fs was calculated
to be 21.6 cm, and 9.4 cm, respectively. For z≳ 12 cm, the
measured exit mode remained approximately Gaussian
with measured spot-size oscillation ≲6%, demonstrating
approximately matched propagation of the drive in the
fundamental mode.
Coupling and propagation losses were evaluated quanti-

tatively. The mode coupling efficiency η of the input drive
laser into the measured fundamental mode was calculated
as the overlap integral between the two modes. For the
measured input spot (w0 ≈ 53 μm), η ≈ 60%. The focus of
a perfect near flat-top laser with the same w0 yields
η ≈ 72%, and for a size of w0 ≈ 47 μm, η can be as high
as ≈85%. Measured propagation loss [see Fig. 2(d)] is due
to transfer of energy to the wake, and the limited angular
acceptance of our diagnostics. It was calculated that
> 99%, 85%, and 28% of light remaining in the (0, 0),
(1, 0), and (2, 0) modes, respectively, was captured inside
the diagnostic acceptance. For E0 ¼ ð6.0� 0.1Þ J, mea-
sured TðzÞ indicates ð31� 4Þ% losses in the first 16 cm,
consistent with predicted coupling losses. Further losses for
16≲ z≲ 30 cm were ≲10% indicating mild coupling of
remaining energy to the wake. The calculated attenuation
through leakage of light remaining in the (1, 0) and (0, 0)
modes was small over 16≲ z≲ 30 cm. Since wakefield
generation is mainly driven by energy in the (0, 0) mode,
and higher-order modes are filtered, control over the
channel length directly illustrates how laser-to-wake trans-
fer efficiency is limited in LPAs due to currently available
PW-class systems, and can be maximized by careful
matching of the laser to the channel.
Driving a wakefield suitable of generating multi-GeV

beams required increased laser intensity [2]. Similar
behavior of the drive laser evolution for laser energy
ð19.6� 0.4Þ J is observed in Fig. 2(b)(ii), with the excep-
tion of decreased transmission associated with wakefield
generation. This was confirmed by laser redshifting shown
in Fig. 3(a). Simulations of this case were performed using
the code INF&RNO [62,63]. The measured parameters for
the laser (energy, and temporal and spatial profiles) and
density were used (see Fig. 1). Figure 3(b) shows the
calculated optical spectrum. The wavelength at which the
spectrum reduces to 5% of the peak, λR, is shown in black
and matched closely to experiment for all Lch, with
continual depletion of energy from the laser to the wake.
The calculated average field was Ez ≈ 30 GVm−1 and
fraction of energy lost by the laser pulse was 32%. Unlike
for E0 ¼ ð6.0� 0.1Þ J, at high-intensity TðzÞ continuously
reduced as energy was coupled to the wake [15,35,46,64].
Figure 3(c) (blue line) shows the calculated evolution of

the normalized peak intensity âðzÞ for parameters of
Fig. 3(b). Oscillations in âðzÞ are due to mode beating

FIG. 2. Evolution of the drive laser in HOFI channels with n0 ≈
1 × 1017 cm−3 and wm ≈ 37 μm. (a) Propagated mode z ≈ 10 m
downstream. (b) Lineouts of the exit mode for short channel
lengths. The dashed line indicates the measured peak of the
neutral density profile. (c) Exit modes for (i) E0 ¼ ð6.0� 0.1Þ J
and (ii) ð19.6� 0.4Þ J. (d) Measured energy transmission aver-
aged over ≈20 shots.
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and cause periodic changes in the longitudinal and trans-
verse structure of the wakefield [43,45–47]. Changes in the
longitudinal structure result from relativistic effects (i.e.,
the dependence of the plasma wavelength on the laser
strength), while changes in the transverse structure result
from laser mode evolution (i.e., the shape of the laser mode
varies because of mode beating, and this affects the
transverse component of the ponderomotive force). The
latter can result in a wakefield unsuitable for the transport
of electron beams if, for instance, the laser mode acquires a
sufficiently deep minimum on axis. Mode filtering and
subsequent mode dispersion reduce the visibility of oscil-
lations for z≳ 12 cm, consistent with the diminishing ring
structures in Fig. 2(a). Low oscillations caused by beating
between the (0, 0) and (1, 0) modes are present as the laser
self-steepens and redshifts.
No electron beams were generated for the experiments

presented above [see Fig. 4(a)], demonstrating that pulses
can be well guided for densities below the self-trapping
threshold at intensities sufficient to generate high-
amplitude plasma waves. Electron beams were generated
by introducing a nitrogen dopant to the gas jet [65–67]. A
1% dopant extending throughout the jet triggered injection
at several points and resulted in electron bunch spectra with
a broad distribution. Electrons injected after short propa-
gation distance experience the wake over a longer distance
and reach higher energies, while electrons injected later in
the channel experience less energy gain. An example bunch
with conditions similar to Fig. 2 (but with Δτ ¼ 7 ns) is
shown in Fig. 4(b). A peak in the tail of the distribution was
observed at ∼9.4 GeV with charge extending ≳10 GeV.

To study the acceleration of single, quasimonoenergetic
bunches, we restricted the dopant region 0 ≤ z≲ Ldop
within the gas jet [47,68,69]. For Ldop ≈ 6 cm, high-energy
electrons were not observed. Figure 4(c) shows gene-
rated beams for Ldop ≈ 12 cm, Δτ ¼ 5 ns, and
E0 ¼ ð21.3� 0.3Þ J. Singly peaked electron bunches were
observed, indicating injection in the region 6≲ z≲ 12 cm.
The mean energy and FWHM spread for the examples in
Fig. 4(c) were 8.67� 0.48, 7.70� 0.88, 7.96� 0.44, and
9.15� 1.80 GeV. Shot-to-shot stability was dominated by
transverse offset of the laser focus at the channel entrance,
and by variations of ≳20% in the pulse duration. Because
of pointing variations and limited acceptance of the
spectrometer, not all of the charge recorded by the
phosphor screen was captured by the magnetic spectrom-
eter. For each example, the measured charge within the
quasimonoenergetic bunch and percentage of charge cap-
tured is shown. The bottom panel in Fig. 4(c) shows results
from INF&RNO simulations with the same conditions. The
simulation confirmed ionization of nitrogen occurred
throughout the dopant region, z ≤ 12 cm; however,
changes in the wake, noted in Fig. 3(a), prevented the
trapping of electrons with a significant charge for z≲
8.6 cm [16,47]. A portion of the electrons ionized within
8.6≲ z≲ 12 cm were accelerated to 9.3 GeV (FWHM
energy spread 1.3 GeV, bunch charge 6 pC).
Optimizing wake-to-bunch energy transfer requires

beam loading using a tailored current profile [2,70]. For
current profiles providing strong beam loading, the overall

FIG. 3. Measured (a) and simulated (b) optical spectra as a func-
tion of propagation distance for E0 ¼ 19.6 J, n0 ≈ 1 × 1017 cm−3,
and wm ≈ 37 μm. Measured (averaged over ≈20 shots) and
calculated λR is overlaid in black. (c) Calculated normalized peak
intensity â as a functionofpropagationdistance for the experimental
input, linearly matched, and supermatched spots.

FIG. 4. Example electron beams generated in 30-cm-long
HOFI channels with E0 ¼ ð21.3� 0.3Þ J. For each row, the
charge measured by the spectrometer within the quasimonoe-
gergetic bunch and percent captured by the spectrometer is given.
(a) Δτ ¼ 6 ns, no nitrogen, (b) Δτ ¼ 7 ns, 1% nitrogen,
Ldop ≈ 30 cm, (c) Δτ ¼ 5 ns, 1% nitrogen, Ldop ≈ 12 cm,
(d) Δτ ¼ 6 ns, 5% nitrogen, Ldop ≈ 12 cm.
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acceleration gradient is reduced. This was demonstrated by
increasing the dopant concentration to 5% [see Fig. 4(d)].
The estimated total charge increased by a factor of ≳3, but
resulted in a maximum bunch energy of 7.44 GeV
(0.25 GeV FWHM energy spread).
Future, high repetition-rate laser systems (e.g., based on

fiber lasers [71]) allow for precise control over the trans-
verse laser modes, in contrast to bulk-crystal lasers. For the
same laser energy and channel, although with the pulse
length optimized for electron beam trapping (≈70 fs) [67],
the orange curve in Fig. 3(c) shows the intensity evolution
for a linearly matched input mode. Mode beating was
greatly reduced, but not eliminated because at these
intensities the plasma refractive index itself is modified,
slice by slice along the pulse, by relativistic self-focusing
and ponderomotive self-channeling [23,45,72]. This sim-
ulation produced a 13.0 GeV, 65 pC electron bunch,
trapped in the region z≲ 4 cm, after z ≈ 50 cm, and the
fraction of energy transferred to the wake was 46%. This
was compared to the green curve of Fig. 3(c) where the
transverse laser mode of each longitudinal slice of the pulse
was varied so that it remained matched to the ponder-
omotively perturbed channel (supermatching) [46]. Mode
beating and oscillations in âðzÞ were completely elimi-
nated. The simulated electron bunch was 13.1 GeV, 102 pC
after a z ≈ 50 cm. This demonstrates that control over the
laser mode maximizes coupling to the fundamental channel
mode, and minimizes the distance over which the wake is
unsuitable for electron beam transport. The marginal
difference in energy gain between a laser pulse initiated
with a supermatched or a linearly matched input mode is
encouraging, since it could mitigate the necessity for
supermatching. Tailoring of the plasma channel at the
entrance of the plasma channel [16,40,73,74] to filter
p, m > 0 modes more rapidly could also reduce the
mode-beating distance.
In conclusion, unprecedented insight into the mecha-

nisms of laser propagation in meter-scale LPAs has been
gained through varying the accelerator length on a shot-by-
shot basis. We observed laser coupling into high-order
channel modes and their energy loss through mode filter-
ing, followed by quasimatched propagation of the funda-
mental mode, and nonlinear depletion of laser energy to the
wake. We quantified the reduction in laser-to-wake effi-
ciency and electron energy gain caused by the laser mode of
currently available PW-class lasers, and showed how
control over the mode can result in a significant increase
of the bunch energy and charge for the same channel.
Matched guiding at n0 ≈ 1017 cm−3 suppressed electron
self-trapping throughout the accelerator. With a nitrogen
dopant, electron beams were generated with single, qua-
simonoenergetic peaks up to 9.2 GeV using 21.3 J of laser
energy. Previous demonstrations of acceleration to
∼7.8 GeV using the same laser system required 31 J
and produced electron spectra containing several

lower-energy peaks [14]. This Letter opens the door for
advanced injection techniques to trap ultralow emittance
bunches [75] using plasma structures well suited to
repetition rates exceeding 1 kHz [32,76], meeting require-
ments for future compact accelerators.
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