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Materials that are constantly driven out of thermodynamic equilibrium, such as active and living systems,
typically violate the Einstein relation. This may arise from active contributions to particle fluctuations which
are unrelated to the dissipative resistance of the surrounding medium. We show that in these cases the widely
used relation between informatic entropy production and heat dissipation does not hold. Consequently,
fluctuation relations for the mechanical work, such as the Jarzynski and Crooks theorems, are invalid. We
relate the breaking of the correspondence between entropy production and heat dissipation to departure from
the fluctuation-dissipation theorem. We propose a temperaturelike variable that restores this correspondence
and gives rise to a generalized second law of thermodynamics, whereby the dissipated heat is necessarily
non-negative and vanishes at equilibrium. The Clausius inequality, Carnot maximum efficiency theorem, and
relation between the extractable work and the change of free energy are recovered as well.
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Classical thermodynamics is the central theory for the
possible forms of energy transfer in materials. Its many
useful consequences, including the Carnot efficiency theo-
rem and the bounds on extractable work via changes in free
energy, establish nontrivial and universal relations based
on a few macroscopic observables. Among these variables
is the temperature, which ties microscopic statistics of
equilibrium systems to their energetics, e.g., through the
equipartition principle or by imposing the mean energy as a
constraint for entropy maximization.
In light of its vast applicability for characterizing the

behaviors of equilibrium materials, there is an ongoing effort
to extend thermodynamics to systems that are constantly
driven out of equilibrium, for example, self-propelled par-
ticles [1–3], sustained chemical reactions [4,5], and living
systems [6]. Among the complications associated with non-
equilibrium systems is the inadequacy of temperature and
other variables as thermodynamic state functions [7–12].
One of the consequences of thermodynamic equilibrium,

where the system’s configurations are Boltzmann distrib-
uted, is the Einstein relation (ER) [13,14],

D ¼ kBTμ: ð1Þ

The diffusivity D and mobility μ characterize, respectively,
the strength of thermal fluctuations and dissipative attenu-
ation of motion. In general, they may be space-dependent
matrices, reflecting translational and rotational symmetry

breaking. At equilibrium with a bath of temperature T, the
effects of fluctuations and dissipation exactly balance [14],
leading to Eq. (1). Systems away from equilibrium, such
as supercooled liquids [15] and systems under external
forces [8], typically do not satisfy Eq. (1) with the ambient
temperature T. In such cases Eq. (1) has been used to define
an effective temperature [7,10,16–18]. However, if the
forces are not conservative [8,19], or when fluctuations
arise from coarse graining of fast athermal or active forces
[10,17,18,20–26], there is generally no relation between the
two position-dependent tensors D and μ. Thus, in far-from-
equilibrium cases such as active biopolymer networks [27–
29], bacterial swarms [30,31], and driven chemical reac-
tions [5,32], the ER is invalid, as no scalar T exists to
satisfy Eq. (1). In this Letter, we propose a temperaturelike
variable for systems exhibiting this severe breakdown of
the Einstein relation.
One of the theories addressing nonequilibrium systems

is stochastic thermodynamics [33]. By considering
Langevin equations or discrete Markov chains, it estab-
lishes trajectorywise energy conservation (leading to the
first law of thermodynamics) [34–36] and gives a wealth
of fluctuation relations (FRs) [37], such as the Jarzynski
and Crooks relations [38–40]. The latter also yields the
second law of thermodynamics for the average entropy
changes and heat increments. Yet, implicitly, all the
aforementioned FRs and extended second law of thermo-
dynamics have relied on the existence of a temperature,
defined through the ER, to connect microscopic statistics
to thermodynamic energy, mechanical and chemical
work, and calorimetric heat.
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Several definitions of a nonequilibrium temperature
were proposed based on generalizations of the fluctuation-
dissipation theorem (FDT) and FRs in active matter
[10,22,41,42], systems with memory [20,21], and anoma-
lous diffusion [43,44]. Most of these require a thermal bath
that obeys the ER. In this Letter, we adopt an alternative
approach, which is not derived from extensions of FRs or
FDT, to identify a temperaturelike variable directly, such
that the classical-thermodynamic results are recovered.
In some cases, the ER is required to keep the extended

FRs connected to physical measurables. For example, the
Hatano-Sasa relation [45], an extension of the Jarzynski
equality, requires Markovian dynamics only. It therefore
relaxes Jarzynski’s assumption of a steady-state Boltzmann
distribution for a given value of the external protocol [39],
thus relaxing also the ER requirement. Yet, the effective
Hamiltonian and work used by this relation coincide with
their actual, measurable counterparts only under those extra
assumptions. Otherwise, they demand knowledge of the
complete microstates’ steady-state distribution, which
is usually inaccessible or requires simplistic models [46].
The temperaturelike variable proposed here, arising directly
from thermodynamics, does not rely on those assumptions.
We have two aims: (i) to investigate the fate of existing

nonequilibrium FRs and extensions to the second law of
thermodynamics once ER is violated, and (ii) to formulate a
generalized, ER-independent temperature and derive the
resulting alternative thermodynamic identities.
Overdamped stochastic energetics—We consider an

ensemble of N interacting degrees of freedom (particles),
subjected to a deterministic external time-dependent
protocol Λt. The time-dependent stochastic microstate is
an N-component vector Xt. We couple the particles to
an arbitrary medium determining the mobility μðx; λÞ and
diffusivity Dðx; λÞ, such that the particles follow the
overdamped Langevin equation [Eq. (2) below]; no other
property of the surrounding medium is specified.
The aforementioned Xt and Λt denote particular time-
dependent realizations of x and λ. The particles are
subjected to an additional external force Fextðx; λÞ, which
may be nonconservative and is excluded from the internal
energy. We denote the total (N-component) force acting
on the particles by F ¼ Fext − ∇H, where Hðx; λÞ is the
system’s Hamiltonian. The system is driven out of equi-
librium due to the nonconservative force Fext [47] and/or
violation of ER [Eq. (1)]. Thus, the system’s steady-state
distribution is not Boltzmann, nor can a temperature be
conventionally identified.
The system follows the overdamped Langevin equation,

Ẋt ¼ μðXt;ΛtÞ · FðXt;ΛtÞ þ ∇ · DðXt;ΛtÞ
þ bðXt;ΛtÞ · ηt; ð2Þ

where b is the noise magnitude satisfying D ¼ b · bT=2, ηt
is the normalized thermal noise [hηti¼0, hηtηt0 i¼Iδðt−t0Þ,

where I is the identity matrix], and the equation is written
in the Itô convention [48]. The “spurious drift” term ∇ · D
ensures that Boltzmann distribution is obtained at equilib-
rium, i.e., in systems with a well-defined temperature,
Eq. (1), under conservative forces [49,50]. The correspond-
ing Fokker-Planck equation [51] for the microstates dis-
tribution pðx; tÞ is

∂pðx; tÞ
∂t

¼ −∇ · Jðx; tÞ; ð3Þ

J ¼ μ · Fp −D · ∇p; ð4Þ
where J is the probability flux.
We follow Sekimoto’s approach [34,35] to identify the

internal energy, work, and heat for trajectories in generic
Langevin systems. The time derivative of the Hamiltonian
is [48]

Ḣt ¼ ∇H ∘ Ẋt þ
∂H
∂λ

Λ̇t; ð5Þ

where ∘ is the Stratonovich product [52]. ð∂H=∂λÞdΛt is
the external work necessary to change the system’s internal
energy over time dt. The force FextðXt;ΛtÞ acting along a
displacement dXt during dt performs additional work,
Fext ∘ dXt. Thus, the total work rate is

Ẇt ¼
∂H
∂λ

Λ̇t þ Fext ∘ Ẋt: ð6Þ

According to the first law of thermodynamics, the heat rate
is the remaining energy flow into the system,

Q̇t ¼ Ḣt − Ẇt ¼ −F ∘ Ẋt: ð7Þ
Converting the Stratonovich differential into Itô [48] and
inserting Eq. (2), we find an implicit Langevin equation for
the heat in terms of the solutions Xt of Eq. (2),

Q̇t ¼ −F · μ · F − ∇ · ðD · FÞ − F · b · ηt: ð8Þ

The above is a natural adaptation of the internal
energy, work, and heat to the microscale [34,35]. A
similar extension of the system’s entropy is less trivial.
Consider the instantaneous nonequilibrium stochastic
entropy [33,37], Sðx; tÞ ¼ − lnpðx; tÞ, whose ensemble
average is the Shannon entropy [53,57,58], hSi ¼
−
R
dxpðx; tÞ lnpðx; tÞ. The relation between classical-

thermodynamic entropy and stochastic entropy is estab-
lished for equilibrium states by finding the distribution p
that maximizes hSi [59] (for a fixed protocol value λ).
Combining the stochastic chain rule [48] and Eqs. (2)–(4)
yields the time derivative of St ¼ SðXt; tÞ,

Ṡt ¼ ∇ ·

�
J
p

�
−
1

p
∇ · ðD · ∇pÞ − ½ð∇ lnpÞ · b� · ηt; ð9Þ
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where the last two terms are often omitted [60] as they
vanish on average.
If a well-defined temperature T exists, it is instructive

to consider the thermodynamic heat dissipation, kBTRt. It
quantifies how much extra calorimetric heat Q̇t is wasted
in an irreversible process. According to the second law of
thermodynamics, the average thermodynamic dissipation
hṘti is non-negative [61],

Ṙt ≡ Ṡt −
Q̇t

kBT
; hṘti ≥ 0: ð10Þ

Recall that kBTṠt is the reversible contribution to the heat.
Our goal is to arrive at a similar relation in the absence of
the conventional temperature T.
Informatic entropy production (IEP)—The IEP Σt quan-

tifies the breaking of time-reversal symmetry in the micro-
states’ dynamics [33]. Consider a discretized trajectory
drawn from Eq. (2), ðX0;…;XKΔtÞ ¼ ðx0;…;xKÞ, with
arbitrarily small time step Δt. The probability distribution
of obtaining this trajectory under the protocol sequence
ðλ0; λ1;…; λKÞ, P⃗ ≡ Prðx0;x1;…;xKÞ, is compared with
the probability distribution of obtaining the reverted tra-
jectory, P⃖ ≡ PrðxK;xK−1;…;x0Þ, under the reverted pro-
tocol ðλK; λK−1;…; λ0Þ. Explicitly [33,37],

Σt ¼ ln
P⃗

P⃖
: ð11Þ

For Markovian systems [such as Eq. (2)], it is helpful
to decompose the trajectory probabilities using the
infinitesimal-time propagator, Prðxkþ1;λkþ1jxk;λkÞ, as
P⃗ ¼ pðx0; 0Þ

Q
K
k¼1 Prðxk; λkjxk−1; λk−1Þ. This decomposes

the IEP rate at time t ¼ kΔt into

Σ̇t ¼ Ṡt þ Ω̇t;

Ω̇t ¼ lim
Δt→0

1

Δt
ln
Prðxkþ1; λkþ1jxk; λkÞ
Prðxk; λkjxkþ1; λkþ1Þ

: ð12Þ

In Eq. (12) we identify the time derivative of the
entropy, Ṡt ¼ ln½pðxkþ1; ðkþ 1ÞΔtÞ=pðxk; kΔtÞ�=Δt,
given by Eq. (9). We refer to the remainder, Ωt, as the
“informatic heat” (IH). The propagator in the denominator,
Prðxk; λkjxkþ1; λkþ1Þ, is the exact same propagator of
Eq. (2), where the jump process is reverted [i.e., the process
starts at xkþ1 at time t ¼ kΔt and ends up at xk at time
ðkþ 1ÞΔt under the protocol value λkþ1].
Focusing on the IEP has two advantages. First, its

ensemble average hΣti is a Kullback-Leibler divergence;
thus, it is non-negative [58]. Second, the dissipation
coincides with the IEP, Ṙt ¼ Σ̇t, in a wide range of
scenarios satisfying the Einstein relation [33]. In particular,
one finds Q̇t ¼ −kBTΩ̇t [50] (hence the term informatic
heat for Ωt). For these cases, therefore, one does not have

to resort to simplistic models for the dynamics and then
employ Eq. (8) to obtain Q̇t. Instead, one can access Q̇t
from the statistics of trajectories [Eqs. (11) and (12)]
without any prior knowledge of the underlying dynamics
[62,63]. Clearly, the correspondences Ω̇t–Q̇t and Σ̇t–Rt
assume the ER with its well-defined temperature.
More specifically, in Ref. [64] the IH rate is found to

satisfy [65]

Ω̇t ¼ ½ðμ · FÞ ·D−1� ∘ Ẋt: ð13Þ
Therefore, if D and μ are not related by a scalar, the
informatic Σ̇t is no longer related to the measurable Ṙt, even
on average. Consequently, the non-negativity of hṘti (i.e.,
the second law) can no longer be established based on
trajectory statistics. Below, we propose a definition of a
nonequilibrium temperature that mends this discrepancy.
Nonequilibrium temperature—We return to the second

law, Eq. (10). Noting that it concerns only the means of
Eqs. (8) and (9), we average over the noise realizations
(while using hηti ¼ 0), and over the instantaneous position,
where h½·�ðXt;ΛtÞi ¼

R
dxpðx; tÞ½·�ðx;ΛtÞ. Integration by

parts gives hQ̇ti¼−
R
dxJ ·F and hṠti ¼ −

R
dx J · ∇ lnp.

Let us posit that the second law of thermodynamics (10)
still holds, but with a nonequilibrium temperature T . Using
the expressions for hQ̇ti and hṠti, we express the average
dissipation rate of Eq. (10) as

hṘti ¼
Z

dx
J
p
·D−1 ·

�
D

kBT
· Fp −D · ∇p

�
: ð14Þ

The term in the parentheses, which depends on our choice
of T , is reminiscent of J [Eq. (4)].
We now impose the following physical conditions on

Eq. (14): (i) To satisfy the second law, hṘti should be a
non-negative functional of J. (ii) To agree with Onsager’s
theory [66–68], the right-hand side should reduce to a
quadratic form of J near equilibrium and turn the second-
law inequality into an equality for reversible processes
(J → 0). (iii) The variable T should be a configuration-
independent scalar. The simplest choice for the dissipation
functional that satisfies these three conditions is hṘti ¼R
dxðJ · D−1 · JÞ=p [69]. To complete our construction,

we solve the equation hṘti ¼ hṠti − hQ̇ti=ðkBT Þ for kBT
and find the following drive-dependent generalized
temperature:

kBT ¼
R
dxJ · FR

dxJ ·D−1 · ðμ · FÞ : ð15Þ

We thus recovered the second law of thermodynamics
for general Markovian overdamped Langevin dynamics
[Eq. (2)].
Equation (15) is our central result. If ER holds, such that

D−1 · μ ¼ ðkBTÞ−1, we readily get T ¼ T. Otherwise, the
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generalized temperature is an intricate quantity. Computing
it directly from Eq. (15) is challenging. Below, we propose
how to estimate it from experiments [see, e.g., Eq. (18)].
This is expected for nonequilibrium systems with arbitrar-
ily complex J, D, μ, and F. Furthermore, T depends on
time via the protocol Λt affecting all these quantities. Even
for constant protocol, T will change in time due to the
instantaneous distribution pðx; tÞ entering J. Indeed, non-
equilibrium steady states generally have J ≠ 0, as noncon-
servative forces and drift create persistent fluxes across
scales. Despite these caveats, Eq. (15) should play an
experimentally meaningful role as a generalized temper-
ature in nonequilibrium thermodynamics [16–18,23], as
discussed below.
Consequences—First, we reestablish the connections

IH–heat and IEP–dissipation, i.e., between information
and thermodynamics. Substituting Eq. (2) in Eq. (13),
we find

Ω̇t ¼ ðμ · FÞ · D−1 · ðμ · FÞ þ ∇ · ðμ · FÞ
þ ½ðμ · FÞ · D−1 · b� · ηt; ð16Þ

which, combined with Eq. (9) and the relation Σ̇t¼ ṠtþΩ̇t,
gives the IEP rate as [70]

Σ̇t ¼
J
p
·D−1 ·

J
p
þ 2

p
∇ · Jþ

�
J
p
· D−1 · b

�
· ηt: ð17Þ

Taking the averages of Eqs. (16) and (17), we obtain

kBT ¼ −hQ̇ti=hΩ̇ti; ð18Þ
and

hṘti ¼ hΣ̇ti ¼
Z

dxðJ ·D−1 · JÞ=p ≥ 0: ð19Þ

Note that the correspondence holds for the means
only and not for the full statistics, Q̇t ≠ −kBT Ω̇t and
Ṙt ≠ Σ̇t. For example, the variances of the former are
different, hðdΩtÞ2ic¼2dt

R ðμ ·FÞ ·D ·ðμ ·FÞpdx, whereas
hðdQtÞ2ic ¼ 2dt

R
F ·D · Fpdx ≠ ðkBT Þ2hðdΩtÞ2ic. (The

subscript c denotes a cumulant.) Since the Jarzynski
equality [38,39] and Crooks fluctuation theorem [40]
require statistics beyond the mean, they are not restored
by the generalized T . Thus, without ER, the various
FRs [37] remain related only to informatic quantities
(IEP and IH) [45] and not to thermodynamics (dissipation
and heat).
Another relation to examine is the one between heat of

stochastic systems and the departure from FDT. Such a
connection was established by Harada and Sasa [71],
implicitly assuming ER and configuration-independent
scalar mobility. (We recall that the ER and FDT are
equivalent only in equilibrium [72].) Connections found
recently for various active systems between FDT

violation and the IH (e.g., Refs. [41,42]) have similarly
made these two strong assumptions. As discussed above,
without these assumptions the IH and thermodynamic
heat are separate quantities. In addition, the assumptions
underlying FDT do not apply [73]. It is then unclear
which heat is connected to FDT violation—IH or
thermodynamic heat? We find that neither connection
can be established in the general case [73], implying that
the Harada-Sasa relation breaks down as well.
Nevertheless, generalized versions of FDT and the

Harada-Sasa relation can be derived in the absence
of ER. Here we outline these results; see Supplemental
Material for details [73]. Instead of considering the
response to an impulsive linear potential gradient as was
done in Ref. [71], we consider a perturbation to the force,
δFðx; sÞ ¼ −δhμðsÞμ−1ðx; sÞ · Dðx; sÞ · ∇xμ at time s < t,
in response to an external perturbation δhðsÞ. The differ-
ence between the response of the average force to such
perturbation and its correlation with the position are found
to be related to the thermodynamic heat [73],

hQ̇si ¼ − lim
t→sþ

�
d
ds

hFðXt; tÞ ·Xsi þ
δ

δhðsÞ · hFðXt; tÞi
�
:

ð20Þ

If, instead of F, we consider the observable D−1 · μ · F,
we obtain a similar relation for the IH,

hΩ̇si ¼ lim
t→sþ

�
d
ds

h½ðμ · FÞ ·D−1�ðXt; tÞ ·Xsi

þ δ

δhðsÞ · h½ðμ · FÞ ·D
−1�ðXt; tÞi

�
: ð21Þ

Thus the IH and thermodynamic heat are related to
violations of a generalized FDT for different observables.
If ER holds, the two observables coincide and the classical
FDT is recovered. With the additional assumption of a
configuration-independent scalar mobility, the Harada-Sasa
relation is recovered as well [73].
We now revisit additional classical-thermodynamic

results demonstrating the relevance of the generalized
temperature T . More details regarding these consequences
are found in the Supplemental Material [73]. (i) Consider a
process starting and ending at steady state under the same
protocol value, Λtf ¼ Λ0. Since

H
∞
0 dthṠti ¼ 0, we obtain

Clausius’s inequality,
H∞
0 dthQ̇ti=ðkBT Þ¼−

H∞
0 dthΣ̇ti≤0

[73]. (ii) Construct a Carnot-like cyclic engine consisting of
an “isothermal” process (with constant T H and hQini > 0),
an “adiabatic” process (in which the system “cools” down
to T C), followed by another isothermal process (with
constant T C, and hQouti < 0), and an adiabatic process
(where the system reaches T H). The efficiency of such
engine is h−Wcyclei=hQini¼1−T C=T HþkBT ChΣcyclei=
hQini, where hΣcyclei is the mean IEP during a cycle [73].
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Thus, the mean IEP quantifies the cycle’s irreversibility
compared to a generalized Carnot efficiency, 1 − T C=T H.
(See also Ref. [79] in the context of nonequilibrium
engines.) (iii) Define the nonequilibrium free energy,
At ¼ Ht − kBT St. We show that it bounds the extractable
work in isothermal (constant T > 0) transformations,
h−Ẇti ¼ −ðhȦti þ kBT hΣ̇tiÞ ≤ −hȦti [73].
An interesting consequence of Eq. (15) relates to a

particular class of nonequilibrium systems having multiple
“temperatures,” e.g., a mixture of different types of
particles, each of which is subjected to a different “thermo-
stat” [80,81]. These models are relevant for mixtures of
passive and active particles [82–86]. They yield a temper-
aturelike scalar that is a weighted average of the thermo-
stats’ temperatures. Considering a diagonal but nonscalar
D−1 · μ, with different inverse temperatures as its eigen-
values, Eq. (15) is a generalization of such weighted
averages. These systems may attain J ¼ 0, which results
in a “0=0” ambiguity for T . However, perturbing different
global parameters amounts to taking a perturbation J
along different axes, thus picking up different eigenvalues
(inverse temperatures) of D−1 · μ. We show a simplistic
example in the Supplemental Material [73].
Conclusion—We have analyzed a generic nonequili-

brium Langevin system [Eq. (2)] that violates ER [Eq. (1)].
This describes ubiquitous scenarios in driven and active
materials since the relation between dissipation (mobility)
and fluctuations (diffusivity) is a particular consequence
of the equilibrium Boltzmann distribution [14]. We have
demonstrated far-reaching consequences of ER violation,
which may be summarized as the detachment of informatic
quantities (IH, IEP) from their physical thermodynamic
counterparts (heat, dissipation) and the resulting invalida-
tion of fluctuation theorems.
To restore the information-thermodynamics correspon-

dence, we have imposed the second law of thermodynamics
directly and identified a generalized temperature T
[Eq. (15)], which gives all thermodynamically required
properties: non-negative dissipation, zero dissipation at
equilibrium, linear thermodynamic stability, and the tem-
perature being a macroscopic (integrated) property. The
generalized temperature is model-independent—with a
calorimetric measurement of the heat and path sampling
for the IH, T is found with no prior knowledge of the
underlying dynamics. In particular, the variety of tools
available for estimation of IEP from trajectories (e.g.,
sampling marginal distributions [63,87,88] or thermody-
namic uncertainty relations [89,90]) will be useful, since in
our construction the average IEP remains connected to the
average thermodynamic dissipation. The generalized tem-
perature does not restore the various FRs [37,38,40,71],
which in the absence of ER no longer dictate the statistics
of thermodynamic properties [45].
The three conditions that we used to find T , Eq. (15),

do not uniquely determine it. Within linear irreversible

thermodynamics [66–68], they do guarantee a single
generalized temperature, as they impose the exact leading
OðJ2Þ term, hṘti ¼

R
dxðJ ·D−1 · JÞ=p. This term is the

complete dissipation functional when ER holds. If one
additionally requires this dissipation functional beyond
linear theory, T is uniquely determined by Eq. (15). The
fact that T is the ratio between hQ̇ti (thermodynamics) and
hΩ̇ti (information) is then a useful consequence of this
choice of dissipation functional.
The temperature T obtained here is a property of a single

closed system exchanging heat with an arbitrary bath. It
dictates the direction of heat flow into or out of the system
based on the change in the system’s entropy. The fact that
the entropy production is non-negative, hṘti ≥ 0, implies a
positive T if heat is leaving the system and a negative one if
heat is entering the system at the nonequilibrium steady
state. At equilibrium, there is no heat flow. It remains to be
explored whether T also dictates the direction of heat flow
between two systems in contact.
The applicability of T as a nonequilibrium temperature

can be put to test in simple experimental scenarios. For
example, one can make the mobility and diffusivity
separately isotropic or anisotropic by controlling, respec-
tively, the particle shape and athermal randomized forces.
This will break ER and allow the tuning of T according to
Eq. (15). One can then study various manifestations of the
second law based on T and its spatial variation [18].
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