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Understanding the behavior of dense hadronic matter is a central goal in nuclear physics as it governs
the nature and dynamics of astrophysical objects such as supernovae and neutron stars. Because of the
nonperturbative nature of quantum chromodynamics (QCD), little is known rigorously about hadronic
matter in these extreme conditions. Here, lattice QCD calculations are used to compute thermodynamic
quantities and the equation of state of QCD over a wide range of isospin chemical potentials with controlled
systematic uncertainties. Agreement is seen with chiral perturbation theory when the chemical potential is
small. Comparison to perturbative QCD at large chemical potential allows for an estimate of the gap in the
superconducting phase, and this quantity is seen to agree with perturbative determinations. Since the
partition function for an isospin chemical potential μI bounds the partition function for a baryon chemical
potential μB ¼ 3μI=2, these calculations also provide rigorous nonperturbative QCD bounds on the
symmetric nuclear matter equation of state over a wide range of baryon densities for the first time.
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The determination of the internal structure of neutron
stars presents a long-standing and important challenge for
nuclear theory. Since neutron stars were first predicted in
the 1930s and observed 30 years later, many models for the
structure of their interiors have been proposed, including
various phases of nuclear matter, mesonic condensates
and hyperonic matter, and deconfined quark cores [1–6].
As observational data and terrestrial probes of the
relevant nuclear densities are not sufficiently constraining,
most of these possibilities for the neutron star equation of
state (EOS) remain viable. From a theoretical perspective,
it is expected that neutron star interiors can be described
by the standard model of particle physics, however, in a
regime where the strong interactions are nonperturbative.
The numerical technique of lattice quantum chromody-
namics (LQCD) is applicable at such large couplings, but is
beset by a notorious sign problem at nonzero baryon

chemical potential [7] prohibiting its direct application.
Consequently, theoretical approaches to the nuclear
EOS are based on models and interpolations between
phenomenological constraints from nuclear structure and
perturbative QCD (pQCD) calculations that are valid at
asymptotically large chemical potentials (see, for example,
Refs. [8–18]). In light of this, any rigorous information that
can impact such analyses is of paramount importance.
In this Letter, the first nonperturbative QCD constraint

on the nuclear EOS with complete quantification of
systematic uncertainties is presented. These calculations
build upon the proof-of-principle, single lattice spacing
results of Ref. [19] with improved methodology, increased
statistical precision, an extrapolation to the continuum
limit, and an interpolation to the physical quark masses,
enabling a systematically controlled result to be achieved
for the first time. The pressure and other thermodynamic
properties of low-temperature isospin-dense matter are
determined over a wide range of densities and chemical
potentials, spanning all scales from hadronic to perturba-
tively coupled. At small values of the isospin chemical
potential μI , the results agree with chiral perturbation theory
(χPT) [20,21] at next-to-leading order (NLO) [22,23]. At
large μI , the results are seen to agree with pQCDwith pairing

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 134, 011903 (2025)
Editors' Suggestion Featured in Physics

0031-9007=25=134(1)=011903(7) 011903-1 Published by the American Physical Society

https://orcid.org/0000-0002-5877-8005
https://orcid.org/0000-0002-0400-8363
https://orcid.org/0000-0003-3570-2849
https://orcid.org/0000-0001-8263-7512
https://orcid.org/0000-0002-2954-5050
https://orcid.org/0000-0003-0239-1394
https://orcid.org/0000-0002-0916-7603
https://orcid.org/0000-0001-7670-1880
https://ror.org/042nb2s44
https://ror.org/04pvzz946
https://ror.org/00cvxb145
https://ror.org/044fgj614
https://ror.org/044fgj614
https://ror.org/021018s57
https://ror.org/020hgte69
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.134.011903&domain=pdf&date_stamp=2025-01-06
https://doi.org/10.1103/PhysRevLett.134.011903
https://doi.org/10.1103/PhysRevLett.134.011903
https://doi.org/10.1103/PhysRevLett.134.011903
https://doi.org/10.1103/PhysRevLett.134.011903
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


contributions [24]. The comparison of next-to-next-to-
leading-order (NNLO) pQCD predictions [24–29] for the
pressure (partial next-to-next-to-next-to-leading-order results
are also available [30]) with the continuum limit of the
LQCD calculations provides a determination of the super-
conducting gap as a function of μI. This is seen to agree
with the leading-order perturbative calculation of the pairing
gap [24], but is more precise. The speed of sound in isospin-
dense matter is also seen to significantly exceed the
conformal limit of c2s=c2 ≤ 1=3 over a wide range of μI .
A Bayesian model-mixing approach that combines χPT,
LQCD, and pQCD provides a determination of the zero-
temperature EOS for isospin-dense QCD matter valid at all
values of the isospin chemical potential.
These results provide constraints for phenomenological

frameworks seeking to describe the QCD phase diagram
[31], and from simple path-integral relations [32–35], the
determination of the pressure in isospin-dense matter
provides a nonperturbative, model-independent bound on
the pressure of isospin-symmetric QCD matter at nonzero
baryon chemical potential and hence on the nuclear EOS.
The current results therefore provide a systematically
controlled QCD bound at all densities, and the impact
on nuclear phenomenology is briefly discussed.
Thermodynamic relations—Thermodynamic quantities

are accessed in this Letter by building an approximation to
the grand canonical partition function valid at low temper-
ature. The grand canonical partition function is defined at a
temperature T ¼ 1=β and isospin chemical potential μI by

Zðβ; μIÞ ¼
X
s

e−β(Es−μIIzðsÞ); ð1Þ

where the sum is over all states s, andEs and IzðsÞ correspond
to the energy and z component of the isospin of a given state,
respectively. Since states of different Iz but the same I are
approximately degenerate, contributions from states with
Iz < I are suppressed by Oðe−βμIÞ relative to those with
Iz ¼ I and can therefore be neglected. Additionally, only the
ground state for each isospin contributes at low temperature.
The summation can therefore be approximated in terms of
these Iz ¼ I ground states, which can be labeled by their
isospin charge n ¼ I ¼ Iz, and truncated at some nmax giving

Zðβ → ∞; μIÞ ≃
Xnmax

n¼0

e−βðEn−μInÞ: ð2Þ

E0 ¼ 0 is chosen, and this approximation is valid for values of
μI such that the truncation at nmax does not affect the result
significantly.
For an observableO that only depends on the energy and

isospin charge of the system, the thermodynamic expect-
ation value of O can be computed as

hOðE; nÞiβ;μI ¼
1

Zðβ; μIÞ
X
n

OðEn; nÞe−βðEn−μInÞ: ð3Þ

The energy density can be computed using the quantity
En=V, while the isospin-charge density can be computed
from the expectation value of n=V, where V is the volume
of the system. Derivatives of observables can also be
computed using

∂

∂μI
hOiβ;μI ¼ β

�
hnOiβ;μI − hniβ;μIhOiβ;μI

�
; ð4Þ

which results from directly differentiating Eq. (3). This
leads to the following expressions for the pressure,

Pðβ; μIÞ ¼
Z

μI

0

hniβ;μ
V

dμ; ð5Þ

and speed of sound defined by the isentropic derivative of
the pressure with respect to the energy density ϵ,

1

c2s
¼ ∂ϵ

∂P
¼ 1

hniβ;μI
∂

∂μI
hEiβ;μI : ð6Þ

Previous work [19,36–39] studied isospin-dense matter
through a canonical partition function approach by using
the thermodynamic relation

μI ¼
dEn

dn
ð7Þ

to determine the isospin chemical potential from the
extracted energies. Other studies have added the isospin
chemical potential directly to the QCD action [40–44].
These studies probe isospin-dense QCD at μI ≲ 2 and focus
primarily on nonzero temperature. The results in this Letter
are consistent with the low-temperature results in those
works, but span a larger range of chemical potentials.
The primary advantage of the method used here in

comparison to the method of Ref. [19] is that μI enters
as an input to the calculation of thermodynamic quantities
rather than being derived from the isospin charge of the
LQCD data and therefore is not subject to statistical and
systematic uncertainties. A more detailed comparison to the
approach of Ref. [19] is discussed in the Supplemental
Material [45].
Color-superconducting gap—At large isospin chemical

potential, asymptotic freedom guarantees the validity of
pQCD and the resulting prediction of a color-singlet
superconducting state at zero temperature [20]. In this
state, Cooper pairs of quark–anti-quark fields condense,
leading to a superconducting gap with order parameter
hd̄aγ5ubi ¼ δabΔ, where a and b are color indices. The gap
Δ can be computed perturbatively [20,24], with the next-to-
leading order result given by

Δ ¼ b̃μI exp
�
−
π2 þ 4

16

�
exp

�
−
3π2

2g

�
; ð8Þ

where b̃ ¼ 512π4g−5, and g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παsðμIÞ

p
is the strong

coupling at the scale μI . Notably, the prefactor of 1=g in the
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exponent of Eq. (8) is smaller than the analogous coef-
ficient in the baryon-density case by a factor of 1=

ffiffiffi
2

p
[20],

leading to an exponential enhancement of the gap and its
effects in isospin-dense QCD. If pQCD is reliable for a
given μI and μB ¼ 3μI=2, then the isospin-dense gap
bounds the baryonic gap, in which there is significant
phenomenological interest [46].
The nontrivial background in the presence of the gap

induces a change in the pressure of the system. This change
can be computed perturbatively, as has been done at NLO
in Ref. [24] with the result

δP≡ PðΔÞ − PðΔ ¼ 0Þ ¼ Nc

2π2
μ2IΔ2

�
1þ g

6

�
: ð9Þ

This difference allows for an indirect extraction of the gap
by comparing the lattice QCD pressure with the pressure
derived in pQCD without pairing.
LQCD calculations—Following the methods and analy-

sis techniques developed in Ref. [19], the energies of
systems of isospin charge n∈ f1;…; 6144g are determined
from two-point correlation functions

CnðtÞ ¼
��X

x

π−ðx; 0Þ
�

n Yn
i¼1

πþðyi; tÞ
�

ð10Þ

calculated on four ensembles of gauge-field configurations
whose parameters are shown in Table I. Here, π−ðx; tÞ ¼
πþðx; tÞ† ¼ −d̄ðx; tÞγ5uðx; tÞ is an interpolating operator
built from u and d quark fields that creates states with the
quantum numbers of the π−. The correlation functions are
computed using the symmetric polynomial method of
Ref. [19] from sparsened [47] quark propagators computed
using a grid of 512 source locations on a single time slice of
each configuration.
The relevant ground-state energies En are determined

from an analysis of the t dependence of the effective energy
functions

aEeff
n ðtÞ ¼ log

CnðtÞ
Cnðt − 1Þ

¼ ϑnðtÞ − ϑnðt − 1Þ þ σ2nðtÞ
2

−
σ2nðt − 1Þ

2
; ð11Þ

where a is the lattice spacing, ϑnðtÞ and σnðtÞ are the mean
and standard deviation of logCnðtÞ, and the second equality
is under the assumption of log-normality [19]. Nb ¼ 2000
bootstrap resamplings are used on each ensemble to assess
the statistical uncertainties and address correlations. As in
Ref. [19], on each bootstrap the energy is given by the value
of the effective mass on a randomly chosen time inside the
effective mass plateau region.
Given the energies determined on each ensemble for

systems of isospin charge n∈f1;…;6144g, Eqs. (5) and (6)
are used to determine the pressure, the energy density,
and speed of sound. The action used in these calculations
is perturbatively improved, so discretization effects are
Oða2; g2aÞ. The mass dependence of quantities evaluated
over the range of quark masses used in the calculations
is expected to be described linearly in mud ∼m2

π . Each
quantity X∈fP=PSB;ϵ=ϵSB;c2s=c2g (where PSB ¼ ϵSB=3 ¼
μ4I =32π

2 is the pressure of a Stefan-Boltzmann gas) is
fit with forms including arbitrary μI dependence and
terms O(a2; a2μI; a2μ2I ; ðm2

π − m̄2
πÞ), where m̄π ¼ mπþ ¼

139.57039 MeV [52], with coefficients independent of μI .
The systematic uncertainty from the extrapolation is
assessed by combining fits with all possible subsets of
the terms above through model averaging [53–55]. The
systematic uncertainty and the statistical uncertainty are
combined under the bootstrap procedure. The lattice
determinations of the pressure, energy density, and speed
of sound are shown in the Supplemental Material [45],
along with further details.
The calculated pressure is shown in Fig. 1 for each lattice

ensemble as well as for the continuum-limit, physical-
quark-mass interpolation. The LQCD results for the differ-
ent volumes, lattice spacings, and quark masses used in
the calculations are seen to agree with each other within
uncertainties and also with the physical mass, continuum-
limit extraction. The LQCD pressure agrees with NLO χPT
at small values of the chemical potential and can be
compared with NNLO pQCD [24–29] at large values of
the chemical potential. The mild tension seen between
LQCD and pQCD for μI ∈ ½1500; 2250� MeV potentially
indicates the presence of a superconducting gap [24]

TABLE I. Parameters of the gauge-field configurations used in this Letter. Ensembles were generated with Nf ¼ 2þ 1 flavors of
quarks using a clover fermion action [48] and a tree-level improved Lüscher-Weisz gauge action [49]. The first column lists the label
used to refer to the ensemble, Nconf is the number of configurations, and βg and CSW refer to the gauge coupling and clover coefficient,
respectively. The lattice spacing a is determined in Refs. [50,51], while the lattice geometries are defined by the spatial and temporal
extents L and L4, respectively. The bare light (up and down, mud) and strange (ms) quark masses are given in lattice units, and mπ is the
pion mass. The temperature T ¼ 1=ðaL4Þ is also shown.

Label Nconf βg CSW amud ams ðL=aÞ3 × ðL4=aÞ a (fm) mπ (MeV) L (fm) mπL T (MeV)

A 665 6.3 1.205 37 −0.2416 −0.2050 483 × 96 0.091(1) 169(3) 4.37 3.75 22.8
B 1262 6.3 1.205 37 −0.2416 −0.2050 643 × 128 0.091(1) 169(2) 5.82 5.08 17.1
C 846 6.5 1.170 08 −0.2091 −0.1778 723 × 192 0.070(1) 164(3) 5.04 4.33 14.7
D 977 6.5 1.170 08 −0.2095 −0.1793 963 × 192 0.070(1) 125(4) 6.72 4.40 14.7

PHYSICAL REVIEW LETTERS 134, 011903 (2025)

011903-3



(it could alternatively be an indication of the breakdown of
pQCD, although NLO and NNLO pQCD results are in
agreement over this range).
The corresponding speed of sound is seen to exceed the

conformal limit of c2s=c2 ¼ 1=3 over a wide range of the
isospin chemical potential (see Fig. 3 below). While this
behavior was seen in Refs. [19,44,56] (and also in two-
color QCD [57,58]), the present results confirm that this is
not a lattice artifact and that such a behavior is possible
in strongly interacting QCD matter. This suggests that the
assumption that the speed of sound remains below this
value in baryonic matter is questionable.
Given the LQCD calculation of the pressure, a determi-

nation of the superconducting gap can be made by sub-
tracting the pQCD calculation of the pressure in the absence
of the gap. In the range of chemical potentials where pQCD
is a controlled expansion, this determines the gap, accurate to
the same order as the perturbative subtraction. Figure 2
shows the extracted gap found using the NNLO pQCD
pressure subtraction as well as a comparison to the pQCD
gap in Eq. (8) evaluated at scales Λ̄ ¼ μI × f0.5; 1.0; 2.0g as
a guide to uncertainty. As can be seen, the gap extracted from
the LQCD calculations is in agreement with the perturbative
gap for μI ∈ ½1500; 3250� MeV but is considerably more
precisely determined than the uncertainty from perturbative
scale variation. Since there is agreement with the perturba-
tive estimate, the gap is also most likely larger than the
corresponding gap for baryonic matter.
Equation of state for isospin-dense mater—The con-

tinuum-limit lattice QCD calculations presented above span
isospin chemical potentials from just above the pion mass
to values where pQCD appears to converge. Consequently,
by combining the LQCD results with χPT and pQCD, the
zero-temperature EOS of isospin-dense matter can be

described for all μI with uncertainties quantified using
Bayesian inference. The functional dependence of each
overlapping theoretical constraint on μI is modeled by a
correlated Gaussian distribution. The ensemble of con-
straints is combined via a Gaussian process (GP), following
similar work for the nuclear EOS [9,59–61]. Theoretical
uncertainties of χPT are estimated from the difference
between the NLO and LO results, and uncertainties in
pQCD are assessed from scale variation over Λ̄∈ μI ×
½0.5; 2.0�. Figure 3 shows the GP-model results for the

FIG. 1. The pressure computed for each LQCD ensemble as
well as for the continuum-limit, physical mass extraction. Results
from the Stefan-Boltzmann limit of a free Fermi gas and from
NNLO pQCD without pairing or quark mass effects are shown
for μI ≳ 1500 MeV.

FIG. 2. Comparison of the pQCD form in Eq. (8) for the BCS
gap (orange curves evaluated at scales Λ̄ ¼ μI × f0.5; 1.0; 2.0g)
with that determined from the difference between the continuum
limit of LQCD calculations and the NNLO pQCD result (red
curve). The inner shaded error region is the extrapolated LQCD
uncertainty, while the outer shaded error region combines this
with the NNLO pQCD uncertainty.

FIG. 3. The squared speed of sound as a function of the isospin
chemical potential. The lattice QCD determination (red), pQCD
determination (orange), and χPT determination (blue) are com-
bined into the GP model (gray) as discussed in the main text. The
dashed horizontal line shows the conformal limit.
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speed of sound in comparison to the three theoretical
inputs. A data file for evaluating this model accompanies
this article. With a complete quantification of the isospin-
dense equation of state, phenomenological implications
such as the existence of pion stars [62–64] and the isospin
effects that distinguishes pure neutron matter from sym-
metric nuclear matter [65,66] can be further investigated.
Constraining the nuclear equation of state—The parti-

tion function of two-flavor QCD with an isospin chemical
potential μI can be written in terms of the path integral

ZIðβ; μIÞ ¼
Z
β
½dA� detD

�
−
μI
2

�
detD

�
μI
2

�
e−SG

¼
Z
β
½dA�

���� detD
�
μI
2

�����
2

e−SG ; ð12Þ

where A is the gluon field, DðμÞ≡ =Dþm − μqγ0 is the
Dirac operator with quark chemical potential μq, SG is the
gauge action, and

R
β½dA� indicates integration over gauge

fields with period β in the temporal direction. As first
shown in Refs. [32,33], this partition function bounds the
partition function of two-flavor QCD with equal chemical
potentials for u and d quarks

ZBðβ; μBÞ ¼
Z
β
½dA�Re

�
detD

�
μB
Nc

�	
2

e−SG ð13Þ

as

ZBðβ; μBÞ ≤ ZI

�
β; μI ¼

2μB
Nc

�
: ð14Þ

By the monotonicity of the logarithm, the above inequality
directly translates into an inequality between the pressures
of the two media as a function of the energy density.
Consequently, the isospin-dense EOS bounds the EOS for
symmetric nuclear matter. At large values of the quark
chemical potentials, where pQCD is valid, this bound
becomes tight as differences between the partition func-
tions enter only at OðαksÞ for k ≥ 3 [35]. This bound was
explored in Ref. [34] based on the previous lattice QCD
results [19] at a single lattice spacing and unphysical quark
masses. Here, Fig. 4 presents updated bounds based on the
continuum-limit lattice QCD results at the physical quark
masses, χPT, and perturbative QCD through the GP model.
While the bounds from isospin-dense matter do not
significantly constrain phenomenological nuclear equa-
tions of state within the uncertainties that are typically
presented [8–18], the bounds are independent of modeling
uncertainties that enter the nuclear EOS in the regions that
are unconstrained by nuclear structure or pQCD calcula-
tions. GP models without lattice QCD constraints result in
significantly larger uncertainties in the position of the
bound, in particular, in the lower right corner of the red
band of Fig. 4.

Summary—In this Letter, a determination of the equation
of state of isospin-dense matter for the complete range of
isospin chemical potential at zero temperature is presented
for the first time. To achieve this, continuum-limit LQCD
calculations are combined with pQCD calculations and
χPT through a model-mixing approach in overlapping
regions of isospin chemical potential. Comparison to
pQCD enables a determination of the superconducting
gap, and QCD inequalities translate the isospin-dense EOS
into rigorous bounds on the nuclear EOS relevant for
astrophysical environments.
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