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Gradient descent prevails in artificial neural network training, but seems inept for spiking neural
networks as small parameter changes can cause sudden, disruptive appearances and disappearances of
spikes. Here, we demonstrate exact gradient descent based on continuously changing spiking dynamics.
These are generated by neuron models whose spikes vanish and appear at the end of a trial, where it cannot
influence subsequent dynamics. This also enables gradient-based spike addition and removal. We illustrate
our scheme with various tasks and setups, including recurrent and deep, initially silent networks.
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Introduction—Biological neurons communicate via short
electrical impulses called spikes [1]. Besides their overall
rate of occurrence, the precise timing of single spikes often
carries salient information [2–5]. Taking into account spikes
is therefore essential for the modeling and the subsequent
understanding of biological neural networks [1,6]. To build
appropriate spiking network models, powerful and well-
interpretable learning algorithms are needed. They are
further required for neuromorphic computing, an aspiring
field that develops spiking artificial neural hardware to
apply them in machine learning. It aims to exploit properties
of spikes such as event-based, parallel operation (neurons
only need to be updated when they send or receive spikes)
and the temporal and spatial (i.e., in terms of interacting
neurons) sparsity of communication to achieve tasks with
unprecedented energy efficiency and speed [7–9].
The prevalent approach for learning in nonspiking neural

network models is to perform gradient descent on a loss
function [10,11]. Importantly, during such learning the
representations change continuously and in a predictable
manner as the networks are compositions of functions that
are continuous in the network parameters. The transfer of
gradient descent learning to spiking networks is, however,
problematic due to the all-or-none character of spikes: the
appearance or disappearance of spikes is not predictable
from gradients computed for nearby parameter values. This
is because the gradient only accounts for changes in spike
timing of those spikes present when it is computed. Thus, a
systematic addition or removal of spikes via exact gradient
descent is seemingly not possible. This can, for example,
lead to permanently silent, so-called dead neurons [12,13]
and to diverging gradients [14]. Further, the network
dynamics after a spike appearance or disappearance may
change in a disruptive manner [15–18]. This can result in

discontinuous changes of the representations, which are
given by the spike times, and of the loss during learning.
Nevertheless, there are two popular approaches for

learning in spiking neural networks based on gradient
descent. The first approach, surrogate gradient descent,
assumes binned time and replaces the binary activation
function with a continuous-valued surrogate for the com-
putation of the gradient [19]. It thus sacrifices the crucial
advantage of event-based processing and learning only
from spikes and necessitates the computation of state
variables in each time step as well as their storage [20]
(but see [21]). Furthermore, the computed surrogate gra-
dient is only an approximation of the true gradient. The
second approach, spike-based gradient descent, computes
the exact gradient of the loss by considering the times of
existing spikes as functions of the learnable parameters
[12,22]. It allows for event-based processing but relies on
ad hoc measures to deal with spike appearances and
disappearances and gradient divergence, in particular to
avoid dead neurons [23–27].
Here, we show that disruptive appearances and disap-

pearances of spikes can be avoided. Consequently, all
network spike times vary continuously and in some net-
work models even smoothly, i.e., continuously differen-
tiably, with the network parameters. This allows us to
perform nondisruptive, exact gradient descent learning,
including, as we show, the systematic addition or removal
of spikes.
Neuron model—The most frequently employed neuron

models when learning spiking networks are variants
of the leaky integrate-and-fire (LIF) neuron [14,18–
24,26,28,60,61]. LIF neurons, however, suffer from the
aforementioned disruptive spike appearance and disappear-
ance. For example, spikes can appear in the middle of a trial
due to a continuous, arbitrarily small change of an input
weight or time [Figs. 1(a) and 1(b)]. Here and in the
following, a trial refers to an individual run of an experi-
ment with finite duration.
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We therefore consider instead another important standard
spiking neuron model, a quadratic integrate-and-fire (QIF)
neuron [6,62,63]. Its membrane potential dynamics are
governed by V̇ ¼ VðV − 1Þ þ I, where I consists of tem-
porally extended, exponentially decaying synaptic input
currents, τsİ ¼ −I þ τs

P
i wi

P
ti δðt − tiÞ. Here, τs is the

synaptic time constant, measured in multiples of the
membrane time constant τm ¼ 1, and i indexes the pre-
synaptic neurons, which spike at times ti and have a
synaptic weight wi. In contrast to the LIF neuron, where
V̇ decays linearly with V, the QIF neuron explicitly
incorporates the fact that in biological neurons the mem-
brane potential further increases due to a self-amplification
mechanism once it is large enough. As this generates spike
upstrokes, the QIF neuron may be considered as the
simplest truly spiking neuron model [63]. The voltage

self-amplification is so strong that the voltage actually
reaches infinity in finite time. One can define the time when
this happens as the time of the spike, reset, and onset of
synaptic transmission. We adopt this and henceforth call
positive infinity the threshold of the QIF neuron for
simplicity. For sufficiently negative voltage, the voltage
increases strongly as well. The neuron can thus be reset to
negative infinity, from where it quickly recovers. For LIF
neurons, one needs to define finite threshold and reset
potentials.
Nondisruptive appearance and disappearance of spikes

and smooth spike timing—In the QIF neuron, spike times
only appear and disappear at the trial end; otherwise they
change smoothly with the network parameters. Importantly,
this kind of spike appearance and disappearance is non-
disruptive since the are no more spiking dynamics after the
trial end that could be affected.
The mechanism underlying this feature can be intuitively

understood: the voltage slope V̇ at the threshold is infinitely
large. If there is a small change, for example, in an input
weight (Fig. 1, left column, blue curves), V and V̇ will still
be large close to where the spike has previously been.
Therefore a spike will still be generated, only a bit earlier or
later, unless it crosses the trial end. This is in contrast to the
LIF neuron, where V̇ at the threshold can tend to zero and a
spike can therefore abruptly appear or disappear, accom-
panied by a diverging gradient (Fig. 1, left column, purple
curves). A similar mechanism applies if there are changes
in an input time as in Fig. 1, right column: an inhibitory
input is moved backward in time until it crosses the time of
an output spike generated by a sole, previous excitatory
input [tin crosses tsp in Fig. 1(d) right]. In the QIF neuron, V
and V̇ are infinitely large at this point, such that the
additional inhibitory input is negligible compared to the
intrinsic drive. Thus there is no abrupt change in spike
timing. In contrast, in the LIF neuron the inhibitory input
induces a downward slope in the potential also if it is at the
threshold. The spike induced by the excitatory input alone
therefore suddenly appears once the inhibitory input
arrives later.
In Supplemental Material, Sec. II [28], we prove the

smoothness of the spike times and their nondisruptive
appearance and disappearance in the general case with
multiple inputs and output spikes.
Pseudodynamics and pseudospikes—The nondisruptive

disappearance of spikes allows spike-based gradient
descent to remove them in a controlled manner by shifting
them past the trial end. In contrast, the gradient contains no
information about spike appearances at the trial end,
precluding the systematic addition of spikes. Being able
to add spikes is, however, important because a neuron may
initially or at some point during learning spike insuffi-
ciently often for the task or even be completely silent.
To solve this problem, we appropriately extend the

ordinary dynamics by what we call pseudodynamics.

(a)

(b)

(c)

(d)

FIG. 1. Disruptive and nondisruptive appearance of spikes.
(a),(b),(d) Spike times of the LIF neuron can appear disruptively
in the middle of a trial. (a),(c),(d) Spike times of the QIF neuron
only appear nondisruptively at the trial end and otherwise change
continuously with changed parameters. Left column: a neuron
receives a single input, whose weight is increased (traces with
increasing saturation). Right column: a neuron receives an
excitatory as well as an inhibitory input whose arrival is moved
to larger times. (a) Setup (gray, different input currents). (b) LIF
neuron membrane potentials [purple traces, saturation corre-
sponding to (a); Vrest and VΘ, resting and threshold potential;
T, trial duration] and spikes (top, ticks). (c) Like (b) for the QIF
neuron (Vsep, separatrix potential). (d) Times of the first output
spike as function of the changed parameter; dots correspond to
equally colored spikes in (b),(c). Left: wmin, weight at which the
spike appears at finite time for the LIF neuron and at infinity for
the QIF neuron. Inset: spike time gradient, divergent for the LIF
neuron.
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Concretely, we propose two types of pseudodynamics. In
the first type, which we use in our applications, the neurons
continue to evolve as QIF neurons, but with an added
constant, suprathreshold drive, until they have spiked
sufficiently often for the task [28]. We call the additional
spikes pseudospikes. They only affect the pseudodynamics
of postsynaptic neurons by controlling the value of the
added drive. This ensures generically nonzero gradients.
The continued evolution as a QIF neuron ensures con-
tinuity and mostly smoothness of the spike times, even if a
spike transitions from a pseudospike to an ordinary one. In
Supplemental Material, Sec. IB [28], we suggest a second
approach where the spike times remain completely smooth.
Both types of pseudospike times have several useful

properties: (i) they depend continuously and mostly
smoothly on the network parameters, also when the
pseudospikes cross the trial end to turn into ordinary
spikes. (ii) If the voltage at the trial end increases, the
pseudospike times decrease, intuitively because the neuron
is already closer to spike. (iii) Pseudospikes affect post-
synaptic pseudospikes but not ordinary ones. (iv) The
pseudospikes interact such that the components of the
gradient in multilayer networks are generically nonzero
also if neurons are inactive during the actual trial duration.
(v) The pseudospike times are computable in closed form.
Similar pseudospike time functions can be found for

other neuron and synapse models with continuous spike
times such as QIF neurons with infinitesimally short
synaptic currents that generate voltage jumps [28].
Gradient descent learning—In the following, we apply

spike-based gradient descent learning on the neural net-
work models with continuous spike times identified above.
We choose single neuron models with a closed-form
solution between spikes and for the time of an upcoming
spike. The former enables and the latter simplifies the use
of efficient event-based simulations and modern automatic
differentiation libraries [64,65] (The code to reproduce
these results is publicly available [66].).
Interestingly, such solutions exist for the QIF neuron

with temporally extended, exponentially decaying synaptic
input currents if τs ¼ τm=2 [28]. This is compatible with
often assumed biologically plausible values, for example
with a membrane time constant about 10 ms and a synaptic
time constant about 5 ms [1,6]. In the examples in this
Letter, we therefore use these values.
In the last of our three applications we employ oscillating

QIF neurons with infinitesimally short input currents.
Between spikes, they evolve with a constant rate of change
in an appropriate phase representation [6,62,63,67], which
further simplifies the event-based simulations. While their
spike times are continuous, they are not smooth, as the
derivative with respect to the time or weight of an input
spike time jumps if it crosses another one.
Single neuron learning—As a first illustration of our

scheme, we learn spike times of a single QIF neuron

[Fig. 2(a); see [28] for details on models and tasks]. Initially
it does not spike at all during the trial [Fig. 2(b), left]. We
apply spike-based gradient descent to minimize the quad-
ratic difference between two target and the first two output
spike times (which may also be pseudospike times). The
neuron is set to initially generate two pseudospikes, one for
each target spike time. While not necessary in the displayed
task, superfluous (pseudo)spikes can be included into the
loss function with target behind the trial end to induce their
removal if they enter the trial.
The use of pseudospikes allows one to activate the

initially silent neuron [Fig. 2(c), gray background]. In
doing so, the pseudospike times transition smoothly into
ordinary spike times [Fig. 2(c), white background]. They
are then shifted further until they lie precisely at the desired
position on the time axis [Fig. 2(b), right]. The spike times
change smoothly [Fig. 2(c)] and the loss gradient is
continuous [Fig. 2(d)]. The example illustrates that our
scheme allows one to learn precisely timed spikes of a
single neuron in a smooth fashion and even if the neuron is
initially silent.
Learning a recurrent neural network—Next, we con-

sider the training of a recurrent neural network (RNN),

(a)

(c) (d)

(b)

FIG. 2. Smooth gradient descent learning in a QIF neuron.
(a) Weights (purple) and times (orange) of two inputs are learned
to adjust the first two output spike times (blue). (b) Left: before
learning, the neuron does not spike (gray ticks, target spike times;
horizontal gray lines, Vsep, Vrest, or zero input current; black bars,
potential or current difference of 1; orange, black ticks, learned,
other input spikes). Right: after learning, the neuron spikes at the
desired times (blue ticks cover gray ticks). (c) During learning,
the [pseudo (gray area)] spike times change smoothly [colors as
in (a); gray circles, target spike times]. (d) The components of the
gradient of the loss function L change continuously during
learning (∂L=∂w1 mostly covered by ∂L=∂tin;1). Learning
progress is displayed as a function of the arc length of the
output spike time trajectories since the start of learning [28].
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where spike time changes have a global impact. It can be
useful for the reconstruction of cortical networks
[18,68,69]. We consider a fully connected RNN of ten
QIF neurons with external inputs and learn the spike times
of two network neurons by updating the recurrent weights
and initial conditions [Fig. 3(a)]. In contrast to the learning
of all network spikes [18,70], this does not reduce to
independently finding a mapping from given input spike
times to output spike times for each neuron.
Our scheme is successful also in this scenario and the

spike times are precisely learned [Fig. 3(b)]. As in the
previous example, the spike times of the first neuron
change continuously during learning without discrete
jumps [Figs. 3(c) and 3(d)]. Because of large gradients,
which are typical for all kinds of RNNs [71], some changes
are jumplike for the second neuron [28]. The underlying
continuity becomes clear when restricting the maximal
spike time change per step using adjustable update step
sizes [28]. Hence, this example illustrates the applicability
of our scheme to recurrent networks.
Standard machine learning task—Finally, we apply our

scheme to the classification of hand-written single-digit
numbers from the MNIST dataset, which is a widely used
benchmark in neuromorphic computing (e.g., [20,24,61]).
We employ a three-layer feedforward network consisting

of oscillatory QIF neurons with infinitesimally short input

currents. For each input pixel, there is a corresponding
input neuron, which spikes once at the beginning of the trial
if the binarized pixel intensity is 1 and otherwise remains
silent. The index of the neuron in the output layer that
spikes first is the model prediction [72].
To demonstrate that our scheme allows one to solve the

dead neuron problem even if neurons in multiple layers are
silent, we randomly initialize network parameters such that
there are initially basically no ordinary spikes [Fig. 4(a),
left]. Yet, the pseudospike time-dependent, imposed inter-
action between the neurons allows to backpropagate errors.
Hence, the hidden and output neurons are activated
[Figs. 4(a) right, (b)]. Finally basically all hidden neurons
spike before the first output spike for some input image
[28], indicating that they contribute to inference. Still
activity is sparse. The final accuracy of 97.3% when only
considering ordinary output spikes is comparable to pre-
vious results with similar setups [23–25,73]. If we also
allow pseudospikes during testing (which only affects trials
without ordinary output spikes), the accuracy does not
change much. The minimal error level is, however, reached
faster [Fig. 4(c)]. Thus, our scheme achieves competitive
performance in a neuromorphic benchmark task even if
almost no neurons are initially active.
Discussion—We have shown that there are neural net-

works with spike times that vary continuously or even
smoothly with network parameters; ordinary spikes only
appear and disappear at the trial end and can be extended to
pseudospikes. The networks allow one to learn the timings
of an arbitrary number of spikes in a continuous fashion
with a spike-based gradient.

(a)

(c) (d)

(b)

FIG. 3. Learning precise spikes in a RNN. (a) Network
schematic. Neurons receive in each trial the same spikes from
external input neurons (gray). Spike times of the first two network
neurons are learned (blue and orange). (b) Spikes of network
neurons before (left) and after (right) learning (colored ticks,
spikes of first two neurons; gray ticks, target times). (c) Spike
time trajectories of the first neuron during learning. Desired
spikes (blue traces) shift toward their target times (gray circles).
The first superfluous spike (black trace) is pushed out of the trial.
(Gray area indicates pseudospikes.) (d) Same as (c) but the spike
times are shown as a function of the arc length of the output spike
time trajectories [28], which demonstrates their continuity,
despite the occurrence of large gradients [cf. the steplike
change in (c)].

(a) (b)

(c)

FIG. 4. MNIST task. (a) Spike raster plot of the three-layer
network. Left: silent neurons before learning. Inset: example
input also used on the right and in (b). Right: sparse spiking after
learning. (b) Voltage dynamics of the output neurons after
learning (horizontal gray line, Vrest; black bar, potential difference
of 1). (c) Classification error dynamics. Utilizing pseudospikes
also during testing (orange) generates smaller test errors in early
training (solid lines indicate mean and shaded areas standard
deviation over ten network instances).
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Perhaps surprisingly, the networks may consist of rather
simple, standard QIF neurons. These are widely used in
theoretical neuroscience [6,63], also for supervised learn-
ing [68,74,75], and have been implemented in neuro-
morphic hardware [76,77]. However, the particularity
that spikes only appear and disappear at the trial end has
not been noticed and exploited. We expect also that further
neuron models exhibit spikes with continuous timings if
their voltage slope close to the threshold is guaranteed to be
positive. This includes neuron models that generate spikes
by reaching infinite voltage, such as hybrid leaky integrate-
and-fire neurons with an attached, nonlinear spike gener-
ation mechanism [78], the Izhikevich neuron with minor
modifications [63], the rapid theta neuron [79,80], the sine
neuron [81], and the exponential integrate-and-fire neuron
[6]. It further includes intrinsically oscillating LIF neurons
and antileaky integrate-and-fire neurons [82], if the impact
of synaptic input currents vanishes at their spike threshold.
We also expect that synapses with continuous current rise
will be feasible, as well as conductance-based synapses.
On the one hand, our scheme possesses the same

advantages as other spike-based gradient descent ap-
proaches such as small memory and computational foot-
prints and a clear interpretation as following the exact loss
gradient. On the other hand, like standard machine learning
schemes it produces no disruptive transitions during learn-
ing and no gradient divergences. This suggests a wide range
of applications: when studying biological neural networks,
our scheme may be used to learn neurobiologically relevant
tasks, to benchmark biological learning, to investigate how
the network dynamical solutions may work, and to recon-
struct synaptic connectivity from experimentally (partially)
observed spiking activity. Furthermore, it may be used to
train networks in neuromorphic computing (see [28] for
further discussion). It generally allows one to benchmark
other learning rules whose underlying mechanisms are less
transparent and to train and pretrain networks before
converting to a desired neuron type that complicates
learning.
The dynamics of spiking and nonspiking neural net-

works can be chaotic [82–86] and give rise to exploding
gradients [10,28,71,87]. We therefore restricted our learn-
ing examples to at most ten multiples of the membrane time
constant. This fits the length of various experimentally
observed precisely timed spike patterns [2,88–92] and the
fast processing of certain tasks in neuromorphic computing
[20,23–25,73].
Our pseudospikes allow the gradient to “see” spikes

before they appear and to thus add spikes in a systematic
manner. Pseudospikes affect the pseudospikes of postsy-
naptic neurons and ultimately of the output neurons. This
preserves the gradients of the ordinary spike times and
solves, in particular, the dead neuron problem. In a some-
what related approach, silent output neurons were assumed
to spike at the trial end [26,27]. Our pseudospikes,

however, apply to all neurons and allow one to back-
propagate errors through silent neurons. The resulting
possibility of initializing an entire network with small
weights may be important to induce desirable and biologi-
cally plausible features such as energy-efficient final
connectivity and sparse spiking [7,93], sparse coding
[94], and representation learning [95].
To conclude, the present study shows something that

seemed fundamentally impossible [8]: despite the inherent
discreteness of spikes, there can be exact nondisruptive,
even smooth gradient descent learning in spiking neural
networks, including the gradient-based removal and, after
augmentation with pseudodynamics, also generation of
spikes.
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