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The interplay between causal mechanisms and emerging collective behaviors is a central aspect of
understanding, controlling, and predicting complex networked systems. In our work, we investigate the
relationship between higher-order mechanisms and higher-order behavioral observables in two represen-
tative models with group interactions: a simplicial Ising model and a social contagion model. In both
systems, we find that group (higher-order) interactions show emergent synergistic (higher-order) behavior.
The emergent synergy appears only at the group level and depends in a complex, nonlinear way on the
trade-off between the strengths of the low- and higher-order mechanisms and is invisible to low-order
behavioral observables. Our work sets the basis for systematically investigating the relation between causal
mechanisms and behavioral patterns in complex networked systems with group interactions, offering a
robust methodological framework to tackle this challenging task.
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Mechanisms and behaviors are two facets of the study
of complex systems: mechanisms are the structural and
dynamical rules controlling the causal evolution of the
system; behaviors, instead, refer to the measurable observ-
ables quantifying statistical interdependencies between
units of a system in space and time (Fig. 1). The nature
of the relation between the two facets and the limits of our
capacity to reconstruct it is a long-standing problem in the
analysis of complex systems [1–8].
Existing methods to study each of the two facets mostly

adopt lower-order descriptions: pairwise network represen-
tations for mechanisms [9,10], and low-order information-
theoretic metrics for behaviors [11,12]. Despite their
success, these low-order methods often fail to fully capture
the intricate nuances inherent to many complex systems
[13,14], thus beyond-pairwise methods are being devel-
oped: higher-order network representations such as hyper-
graph or simplicial complexes [15] and higher-order
behavioral metrics, both topological [16,17] and informa-
tion-theoretic [18].
A central question is,What is the relation between higher-

order mechanisms and behaviors? The presence of higher-
order mechanisms enhances pairwise interdependencies,

measurable for instancewithmutual information or pairwise
correlations. On the other hand, intuition might suggest
that observing higher-order behaviors implies the presence
of higher-order mechanisms. However, this is not the
case. Systems with only low-order mechanisms can display
higher-order behaviors: for example, a simple system of
three spins connected by pairwise antiferromagnetic inter-
actions shows a total interdependency (higher-order behav-
ior) significantly larger than the sum of the three pairwise
interdependencies (low-order behaviors) [14,19]. As both
low and higher-order mechanisms can determine the obser-
vation of both low and higher-order behaviors, the con-
nection between behavioral observables and microscopic
mechanisms in systemswith pairwise and group interactions
is not trivial; a systematic investigation of this complex
relationship across different orders of interactions is
needed [20].
Here, we explore the mechanism-behavior relation in

higher-order versions of two canonical dynamical proc-
esses—a generalization of the Ising model [21,22], and a
social contagion model [23]—and quantify higher-order
behavior by defining the total dynamical O-information, an
extension of transfer entropy to arbitrary groups of vari-
ables [18,24]. In both systems, we uncover an emergent
synergistic behavioral signature of group interactions.
Synergistic behaviors manifest when information about a
group of variables can only be recovered by considering the

*Contact author: robiglio_thomas@phd.ceu.edu
†Contact author: maxime.lucas@unamur.be
‡Contact author: giovanni.petri@nulondon.ac.uk

PHYSICAL REVIEW LETTERS 134, 137401 (2025)
Editors' Suggestion Featured in Physics

0031-9007=25=134(13)=137401(6) 137401-1 © 2025 American Physical Society

https://orcid.org/0000-0001-7267-9401
https://orcid.org/0009-0007-0998-552X
https://orcid.org/0000-0002-1108-7311
https://orcid.org/0000-0001-8087-2981
https://orcid.org/0000-0003-1847-5031
https://ror.org/02zx40v98
https://ror.org/03jzk4720
https://ror.org/043hw6336
https://ror.org/048tbm396
https://ror.org/03d1maw17
https://ror.org/03d1maw17
https://ror.org/03hdf3w38
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.134.137401&domain=pdf&date_stamp=2025-03-31
https://doi.org/10.1103/PhysRevLett.134.137401
https://doi.org/10.1103/PhysRevLett.134.137401
https://doi.org/10.1103/PhysRevLett.134.137401
https://doi.org/10.1103/PhysRevLett.134.137401


joint state of all variables and cannot be reconstructed from
subsets of units of the group. Crucially, the observed
behavioral signatures display a complex nonlinear depend-
ence on the strength of the higher-order mechanisms. When
these signatures are present, they are invisible to low-order
observables and thus represent genuine higher-order phe-
nomena. It is also observed that these signatures can be
overshadowed by other emergent phenomena in the sys-
tems (e.g., the transition to the magnetized phase in the
Ising model).
Quantifying higher-order behaviors—The partial infor-

mation decomposition framework allows for the charac-
terization of the information-sharing interdependencies
between groups of variables [25–27]. Qualitatively, these
relations can be of three types: redundant, synergistic, or
unique. Consider three variables X1, X2, and X3.
Information is redundant if it is replicated over the variables
(i.e., recoverable from X1∨X2∨X3), synergistic if it can
only be recovered from their joint state (X1 ∧ X2 ∧ X3),
and unique if it can only be recovered from one variable and
nowhere else. In this framework, mutual information has
been extended to groups of three or more variables by the
O-information [18]. To generalize the O-information of
multivariate time series from equal-time correlations to
time-lagged correlations—similarly to how transfer entropy
extends mutual information [28]—Stramaglia et al. pro-
posed dynamical O-information [24]. This quantity is
defined by (i) considering n variables X ¼ ðX1;…; XnÞ
on which we compute the O-informationΩnðXÞ, (ii) adding
a new variable Y, and (iii) computing the variation of
O-information: Δn ¼ Ωnþ1ðX; YÞ − ΩnðXÞ. To remove

shared information due to common history, the dynamical
O-information is defined by conditioning Δn on the history
Y0 of the target variable Y:

dΩnðY;XÞ≡ ð1 − nÞIðY;XjY0Þ

þ
Xn

j¼1

IðY;X−jjY0Þ: ð1Þ

Here, X−j ¼ XnXj, Ið·; ·j·Þ is the conditional mutual
information, Y0 ¼ ½yðtÞ; yðt − 1Þ;…; yðt − τ þ 1Þ� the past
and present of Y, and Y ¼ yðtþ 1Þ its next instance. The
parameter τ is the temporal horizon of the time series,
usually set to a relevant time scale of the process. To
quantify the dynamical O-information regardless of source-
target assignments, we define the total dynamical
O-information as

dΩtot
n ðXÞ≡Xn

j¼1

dΩn−1ðXj;X−jÞ: ð2Þ

Total dynamical O-information inherits fromO-information
the property of being a signed metric: dΩtot

n ðXÞ > 0 indi-
cates that information sharing among the units of X is
dominated by redundancy, while dΩtot

n ðXÞ < 0 indicates
that it is dominated by synergy (see Sec. II of Supplemental
Material [29] for a more extended presentation of these
observables).
Dynamical systems with higher-order mechanisms—We

consider two discrete higher-order dynamical models: a
simplicial Ising model and the simplicial model of social
contagion [23]. Both are defined on simplicial complexes, a
class of hypergraphs [15] that encode multinode inter-
actions as simplices and respect downward closure (we
refer to SM Sec. III for an extended presentation of the two
models).
The first model we consider is a simplicial Ising model.

This model is an extension of the Ising model [21,22] with
group interactions of different strengths for simplices of
different sizes. We consider a simplicial complex K with
average generalized degrees fhklig, where each of the N
nodes has two possible states: spin-up (Si ¼ þ1) or spin-
down (Si ¼ −1). The model is defined by the Hamiltonian

H ¼ −J0
XN

i¼1

Siþ

−
Xlmax

l¼1

Jl
hkli

X

fσ ∈K∶jσj¼lg

h
2⊗
i∈ σ

Si − 1
i
; ð3Þ

where lmax is the maximal order of K and

⊗
n

i¼1
Si¼ δ ðS1;…;SnÞ¼

�
1 if S1¼…¼ Sn

0 otherwise
ð4Þ

(a)

(b)

FIG. 1. Mechanisms versus behaviors in complex systems.
(a) Mechanisms consist of (i) the topological structure of
interactions between nodes and (ii) the rules controlling the
temporal evolution of the states of the nodes. (b) Behaviors are
the observable states of the system and encompass its spatial and
temporal patterns, interdependencies between units, and emer-
gent phenomena. In experimental settings, often only behaviors
are available.
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is the Kronecker delta for an arbitrary number of binary
arguments. Inserting the Kronecker delta—instead of the
product [38–40]—in the coupling terms is necessary to
preserve the symmetry under spin flip at all sites of
the dyadic model with no magnetic field (J0 ¼ 0). We
consider the dynamics of this system to be the sequence
of Monte Carlo moves performed with the Metropolis-
Hastings acceptance-rejection rule [41] at temperature T.
The second model we consider is the simplicial model of

social contagion [23]. Following the Susceptible-Infected-
Susceptible (SIS) framework [42], we associate to each of
the N nodes of a simplicial complex K a binary variable
xiðtÞ∈ f0; 1g, corresponding to the susceptible or infected
state of agent i at time t. At the initial time step t0, a frac-
tion of infected agents ρ0 ¼

P
i xiðt0Þ=N is placed in the

population. At each time step, susceptible agents
[xiðtÞ ¼ 0] become infected with a probability βl if they
belong to a l-simplex where all other nodes are infected.
Infected agents [xiðtÞ ¼ 1] recover independently with
probability μ. We introduce the usual rescaled infectivity
parameter of order l: λl ¼ βlhkli=μ.
For computational feasibility, we limit ourselves to

group mechanisms and interdependencies up to three nodes
(i.e., lmax ¼ 2). The results shown are obtained in random
simplicial complexes with N ¼ 200 nodes and average
degrees hk1i ¼ 20, hk2i ¼ 6—results are qualitatively con-
sistent across a large range of such parameters. The Ising
model was simulated for 3 × 104 time steps, and the
contagion model for 104 time steps. Other parameters were
set to T ¼ 1 (Ising) and μ ¼ 0.8 and ρ0 ¼ 0.3 (contagion).
Emergence of synergistic signatures of group

interactions—We simulate the two systems for different
values of the control parameters and compute the total
dynamical O-information dΩtot

3 on the resulting time series
for different types of node triplets: 2-simplices, 3-cliques,
and uniformly randomly chosen triplets of nodes (that
are not connected in a 2-simplex or a 3-clique). The
2-simplices are the true higher-order interactions as the
nodes belonging to them will interact through the three-
body ferromagnetic coupling in the Ising model and the
group infection rate in the contagion model. The 3-cliques
can be thought of as “spurious” higher-order interactions as
the nodes belonging to them are all interconnected but
through pairwise couplings only. In both cases, we set the
delay of the dynamical O-information to τ ¼ 1 as both
systems are Markovian. Increasing the strength of group
interactions (J2, the three-body coupling in the Ising model,
and λ2, the group rescaled infection rate in the contagion
model), we observe an increasing cooccurrence of higher-
order mechanisms and synergistic higher-order behaviors
(Fig. 2). In both systems, all types of triplet groups display
synergistic higher-order behaviors (dΩtot

3 < 0); however,
and crucially, as we increase the relative strength of the
higher-order mechanisms, we see that 2-simplices, i.e., the
genuine higher-order interactions, display significantly
stronger synergistic behaviors than the other groups.

Complex dependence of higher-order behaviors on
higher-order mechanisms—To go further, we now show
(Fig. 3) how the total dynamical O-info dΩtot

3 changes as
the strength of group mechanisms is increased (J2 and λ2,
respectively), relatively to its value without group mech-
anisms (J2 ¼ 0 and λ2 ¼ 0, respectively). We see that, as
we increase this group coupling strength, the dΩtot

3 mea-
sured on 2-simplices (solid lines) shows a relative increase
with respect to the case without group mechanisms,
regardless of the (color-coded) pairwise coupling strength
(J1 and λ1, respectively). Moreover, total dynamical O-info
measured on 3-cliques (dashed lines) stays roughly con-
stant as J2 and λ2 increase. These two facts confirm the
results from Fig. 2, showing that group mechanisms
promote higher-order synergistic behavior. More impor-
tantly, we see that the relative dΩtot

3 response of 2-simplices
is qualitatively different in the two systems. First, the
response appears to be roughly linear (until the transition
to the ferromagnetic phase occurs, see SM Sec. IV where
we show the numerical values of the total dynamical
information in the two systems) in the simplicial Ising
model, but nonlinear in the simplicial contagion model.
Second, although the relative dΩtot

3 depends on the pairwise

(a)

(b)

FIG. 2. Synergistic signature of higher-order mechanisms. We
show box plots of the distributions of total dynamical O-info
dΩtot

3 in (a) the simplicial Ising, and (b) the simplicial contagion
models. Distributions are over all occurrences of three types of
groups of nodes: 2-simplices, 3-cliques, and random triplets, and
are shown for increasing values of the group mechanism strengths
(J2 and λ2). As strength increases, higher-order interactions
become more synergistic (negative dΩtot

3 ) than lower ones.
Symbols “ns” and “**** ” indicate a nonsignificant and signifi-
cant (p ≤ 10−4) difference, respectively, between the distribu-
tions (t test).
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coupling strength (J1 and λ1, respectively) in both systems,
it does so in opposite ways: an increase in the pairwise
coupling yields a larger relative dΩtot

3 in the simplicial Ising
model, but yields a lower relative dΩtot

3 in the simplicial
contagion model. These results indicate a complex and
system-dependent interplay between low- and higher-order
mechanisms and behaviors, which requires further
investigation.
Insufficiency of lower-order metrics—Despite the strong

synergistic behaviors displayed by genuine higher-order
interactions, we still do not know the extent of this
correspondence, nor whether low-order observables could
already detect—and to what degree—the presence of
higher-order interactions. Moreover, we need to determine
whether group behaviors are truly higher-order, or the
byproduct of low-order interdependencies. To answer these
questions, we compare our higher-ordermetricwith a lower-
order metric over the parameter space of both systems. For
the latter, for each triplet, we compute the sum of the transfer
entropies between the time series of the three possible node
pairs. For both metrics, we quantify the difference in
behavior between 2-simplices and 3-cliques via the stat-
istical distance d [43,44]. For two distributions—here, P2

for 2-simplices and P3 for 3-cliques—over a common
alphabet χ, d is defined as

dðP2; P3Þ ¼
1

2

X

x∈ χ

jP2ðxÞ − P3ðxÞj; ð5Þ

whichwe denoted23 ≡ dðP2; P3Þ for short. The distanced23
quantifies the overlap of the two distributions. By definition,
it takes values in [0, 1]: d23 ¼ 0 if the two distributions are
identical, and d23 ¼ 1 if the two distributions take nonzero
values on nonoverlapping subsets of χ [45].
In both systems, we find two main results. First, the low-

order behavioral metric does not see differences between

the lower- (3-cliques) and higher-order mechanisms
(2-simplices), whereas the higher-order metric does (the
statistical difference between 3-cliques and random triplets is
shown in SM Sec. V). Indeed, this is indicated by the
uniformly low values ofd23 with low-ordermetric [Figs. 4(a)
and 4(c)] with respect to the large values exhibited by
d23 with the higher-order metric, the total dynamical
O-information [Figs. 4(b) and 4(d)]. The latter is consistent
with the synergetic signature results shown in Fig. 2. So, the
higher-order mechanisms can be identified—and distin-
guished from low-order mechanisms—by the higher-order
behavioral metric and not by the low-order one.
Second, focusing on dΩtot

3 , we see that the difference
between the 2-simplices and 3-cliques is large (large
d23, dark blue) over a finite region of parameter space
[Figs. 4(b) and 4(d)]. This region corresponds to the
cooccurrence of higher-order mechanisms and synergistic
higher-order behavior (Fig. 2). This occurs for sufficiently
large values of the strength of the higher-order mechanisms.
These findings apply to both models, but each model has

its specificities. While explaining the full shape of the dark
blue region is a hard task, we can explain some of its
features. In the Ising model [Fig. 4(b)], the large d23 ≳ 0.5

(a) (b)

FIG. 3. Complex dependence of higher-order behaviors on
higher-order mechanisms. We show the relative variation of total
dynamical O-info dΩtot

3 measured on 2-simplices as a function of
the strength of higher-order mechanisms (a) the simplicial Ising,
and (b) the simplicial contagion models. The dashed lines
(sometimes indistinguishable from one another) show the same
quantity for 3-cliques.

(a) (b)

(c) (d)

FIG. 4. Low-order metrics do not see the synergistic signature
of higher-order mechanisms. We show the statistical distance
d23 between the distributions of the behavior of 2-simplices and
3-cliques for two metrics: (a),(c) sum of transfer entropies (low-
order) and (b),(d) total dynamical O-information (higher-order).
Two models are shown. (a),(b) The simplicial Ising model, where
the dashed line is the critical coupling strength of the pairwise
model Jcr1 ¼ 1 with no magnetic field. (c),(d) The simplicial
contagion model, where the two dashed lines are, respectively,
the epidemic threshold of the pairwise SIS model λcr1 ¼ 1 and the
critical value of the rescaled 2-simplices infectivity rate above
which the system shows the discontinuous phase transition and
bistability λcr2 ¼ 1, and the dash-dotted line represents the points
ðλ1; λ2Þ where the system undergoes a discontinuous transition
[23]. The three white symbols in (b) and (d) correspond to the
parameter values shown in Fig. 2.
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region (dark blue) does not extend above Jcr1 ¼ 1 (dashed
line), which is the magnetization threshold of the pairwise
model with no magnetic field [46]. This is because, above
that value, the system magnetizes, and no information can
be recovered. Below (J1 < 1), the region appears above a
certain strength of the three-body coupling J2 ≳ 0.5, and
that value seems to decrease as J1 increases.
In the contagion model [Fig. 4(d)] the large d23 region

displays larger values (0.7≲ d23 ≲ 1.0). It does not appear
to be bounded from above. However, it is bounded from
below. First, for λ1 < 1 (left of the vertical dashed line), the
region appears only above λcr ¼ 2

ffiffiffiffiffi
λ2

p
− λ2 (dashed-dotted

line). These values are known: λ1 ¼ 1 is the epidemic
threshold of the pairwise version of the model (SIS on an
Erdős-Rényi graph), and λcr is the value where the discon-
tinuous transition occurs [23]. Below that value, only the
epidemic-free state exists, for which no higher-order behav-
iors are expected. Second, the region does not appear to
extend below λ2 ¼ 1 (horizontal dashed line), below which
no discontinuous transition can exist, andwe thus expect the
system to behavemore like its low-order variant. Finally, for
larger λ1, the region starts abovevalues of λ2 that are larger as
λ1 increases, suggesting that their ratio plays a role.
These synergistic signatures of group interactions can

be useful for many downstream tasks. For example, we
present in SM (Sec. VI) a simple method leveraging these
synergistic signatures for detecting higher-order inter-
actions, given the temporal sequence of the states of nodes.
In conclusion, by exploring the relation between mech-

anisms and behaviors in two systems with higher-order
interactions, we uncovered emergent synergistic signatures
characterizing group mechanisms. Quantifying higher-
order behaviors using dΩtot

3 , we showed that in both
models, an increase in the strength of the parameter
controlling the group mechanisms in 2-simplices led (non-
linearly) to significantly larger synergistic values of dΩtot

3 .
We have also shown that the synergistic behavioral
response of the groups of nodes to the variation of the
driving higher-order mechanisms is nonlinear and shows
system-dependent characteristics. Crucially, low-order
observables did not capture the behavioral signatures of
groups, supporting the importance of higher-order observ-
ables to study group interdependencies. By exploring the
control parameter spaces of the two systems, we showed
that synergistic signatures are not ubiquitous and can be
overshadowed by other emergent phenomena (e.g., the
magnetization transition in the Ising model). A full char-
acterization of the relation between these group signatures
and other emergent phenomena in the systems, as well as
the effect of variations in the structure of the system under
study, is an interesting venue for future research. We expect
our results to be relevant for any attempts at reconstructing
[16,40,47,48] and predicting [7,49] complex interacting
systems from signals, and for the ongoing discussion about
the nature and importance of higher-order systems [50,51].
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