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Recent work has highlighted remarkable effects of classical thermal fluctuations in the dipolar spin ice

compounds, such as ‘‘artificial magnetostatics,’’ manifesting as Coulombic power-law spin correlations

and particles behaving as diffusive ‘‘magnetic monopoles.’’ In this paper, we address quantum spin ice,

giving a unifying framework for the study of magnetism of a large class of magnetic compounds with the

pyrochlore structure, and, in particular, discuss Yb2Ti2O7, and extract its full set of Hamiltonian

parameters from high-field inelastic neutron scattering experiments. We show that fluctuations in

Yb2Ti2O7 are strong, and that the Hamiltonian may support a Coulombic ‘‘quantum spin liquid’’ ground

state in low magnetic fields and host an unusual quantum critical point at larger fields. This appears

consistent with puzzling features seen in prior experiments on Yb2Ti2O7. Thus, Yb2Ti2O7 is the first

quantum spin liquid candidate for which the Hamiltonian is quantitatively known.
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Rare-earth pyrochlores display a diverse set of fascinat-
ing physical phenomena [1]. One of the most interesting
aspects of these materials from the point of view of funda-
mental physics is the strong frustration experienced by
coupled magnetic moments on this lattice. The best
explored materials exhibiting this frustration are the ‘‘spin
ice’’ compounds, Ho2Ti2O7, Dy2Ti2O7, in which the mo-
ments can be regarded as classical spins with a strong easy-
axis (Ising) anisotropy [2,3]. The frustration of these mo-
ments results in a remarkable classical spin liquid regime
displaying Coulombic correlations and emergent ‘‘mag-
netic monopole’’ excitations that have now been studied
extensively in theory and experiment [4–6].

Strong quantum effects are absent in the spin ice com-
pounds, but can be significant in other rare-earth pyro-
chlores. In particular, in many materials the low-energy
spin dynamics may be reduced to that of an effective spin
S ¼ 1=2 moment, with the strongest possible quantum
effects expected. In this case symmetry considerations
reduce the exchange constant phase space of the nearest-
neighbor exchange Hamiltonian to a maximum of three
dimensionless parameters [7]. The compounds Yb2Ti2O7,
Er2Ti2O7, Pr2Sn2O7 [1] (and possibly Tb2Ti2O7 [8]) are of
this type, and it has recently been argued that the spins in
Yb2Ti2O7 and Er2Ti2O7 are controlled by exchange cou-
pling rather than by the long-range dipolar interactions

which dominate in spin ice [9,10]. This makes these ma-
terials beautiful examples of highly frustrated and strongly
quantum magnets on the pyrochlore lattice. They are also
nearly ideal subjects for detailed experimental investiga-
tion, existing as they do in large high-purity single crystals,
and with large magnetic moments amenable to neutron
scattering studies. Yb2Ti2O7 is particularly appealing
because its lowest Kramers doublet is extremely well
separated from the first excited one [11], and a very large
single-crystal neutron scattering data set is available, al-
lowing us to determine the full Hamiltonian quantitatively,
as we will show. Although we specialize to Yb2Ti2O7 in
the present article, the theoretical considerations and pa-
rameter determination method described here will very
generally apply to all pyrochlore materials where exchange
interactions dominate, and whose dynamics can be
described by that of a single doublet.
Theoretical studies have pointed to the likelihood of

unusual ground states of quantum antiferromagnets on
the pyrochlore lattice [12,13]. Most exciting is the possi-
bility of a quantum spin liquid (QSL) state, which avoids
magnetic ordering and freezing even at absolute zero tem-
perature, and whose elementary excitations carry fractional
quantum numbers and are decidedly different from spin
waves [14]. Although one neutron study [15] supported
ferromagnetic order in Yb2Ti2O7, intriguingly, the major-
ity of neutron scattering measurements have reported a
lack of magnetic ordering and the absence of spin waves
at low fields in this material [16–18]. In a recent study,
sharp spin waves emerged when a magnetic field of 0.5 Tor
larger was applied, suggesting that the system transitioned
into a conventional state [18]. The possible identification
of the low-field state with a quantum spin liquid is
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tantalizing, but progress certainly requires a more detailed
understanding of the spin Hamiltonian.

In this article, we present a detailed experimental and
theoretical investigation of the excitation spectrum in
the high-field state throughout the Brillouin zone. We
show that the spectrum is extremely well fit by spin wave
theory, and through this fit we unambiguously extract all the
microscopic exchange parameters in the spin Hamiltonian
(see below). Interestingly, we find that the largest exchange
interaction is of the same ‘‘frustrated ferromagnetic’’ Ising
type as in spin ice, despite the fact that the g-tensor tends to
orient magnetic moments primarily normal to the Ising axes.
Moreover, spin-flip terms which induce quantum dynamics
are comparable to the Ising exchange. This result confirms
the picture of Yb2Ti2O7 as a strongly quantum magnet, in
qualitative agreement with recent studies [10,19,20].
Strikingly, we find that the predictions of mean-field theory
using these parameters disagree drastically with experiments
in zero field, indicating that fluctuations strongly reduce or
destroy the classically expected spin order. Taken together,
these observations make Yb2Ti2O7 a promising candidate
for the observation of QSL physics. The precise determina-
tion of the microscopic spin interactions sets the stage for a
quantitative understanding and test of this proposal.

Time-of-flight neutron scattering measurements were
performed on a 7g single crystal of Yb2Ti2O7, grown
via the optical-floating-zone method. Details of the
crystal growth were given elsewhere [18,21]. The neutron
scattering data was collected at the Disk Chopper
Spectrometer at the NIST Center for Neutron Research,
using 5 Å incident neutrons. This configuration allowed an
energy resolution of 0.09 meV. The sample environment
consisted of a 11.5 T vertical-field magnet combined with a
dilution insert that achieved a base temperature of 30 mK.
The scattering plane was chosen to contain the directions
[110] and [001]. This is known as the HHL plane, and it
contains all of the highest-symmetry directions in a cubic
lattice. The vertical direction, along which the magnetic
field is applied, is then ½1�10�. The sample was rotated 147�
in 1.5� steps about the vertical, allowing a three-
dimensional data set to be acquired, i.e., two components
of the wave vector Q within the scattering plane, and
energy transfer. The spin-excitation spectra along several
high-symmetry directions within the scattering plane were
thereby obtained.

At 30 mK, the inelastic spectrum changes qualitatively
at H ¼ 0:5 T; above this field strength, resolution-limited
spin wave excitations that go soft with quadratic dispersion
at nuclear-allowed positions develop, indicating a transi-
tion to a field-polarized ferromagnetic state [18]. The spin
wave excitations indicate that the symmetry of the under-
lying lattice is preserved, as is evident from gaps in the
spectrum at the nuclear zone boundaries. In Fig. 1 we show
the spin wave dispersions along several directions in the
HHL plane for H ¼ 2 T and H ¼ 5 T. These high-

symmetry directions are shown relative to the Brillouin-
zone structure within the HHL plane in Fig. 2.
We compare the experimental data to spin wave theory.

We assume nearest-neighbor exchange coupling only, as
appropriate to the strongly localized f-electron states, and
neglect dipolar interactions. The Hamiltonian, written in
global spin coordinates, is then

H ¼ 1

2

X
ij

J��
ij S�i S

�
j ��BH

�
X
i

g��
i S�i ; (1)

where J
��
ij ¼ J

��
ji is the matrix of exchange couplings

between sites i and j, g��
i is the g-tensor for the spin at

site i, and we take @ ¼ 1. Symmetry allows four indepen-
dent exchange constants [7], J1; . . . ; J4. To specify them,
we give the exchange matrix on one pair of nearest-
neighbor sites, located at positions r0 ¼ a

8 ð1; 1; 1Þ and r1 ¼
a
8 ð1;�1;�1Þ on a tetrahedron centered at the origin [a is

the conventional cubic lattice spacing for the face centered
cubic (FCC) Bravais lattice]:

J 01 ¼
J2 J4 J4
�J4 J1 J3
�J4 J3 J1

0
@

1
A: (2)

The other exchange matrices can be obtained from this one
by cubic rotations given in Appendix A. The g-tensor
contains two components: gz parallel to and gxy perpen-

dicular to the local C3 rotation axis through the Yb site.
Spin wave theory, carried out as described in

Appendix C, is fit to the H ¼ 5 T, T ¼ 30 mK measure-
ments; the fitting procedure focuses on the dispersion
relation alone, and the overall intensity of the calculated
spin waves is scaled to agree with the experiment at a
single wave vector and energy point. The resulting inelastic
structure factor SðQ; !Þ (see Appendix C) is compared to
both the 5 T and 2 T data in Fig. 1. The best fit is achieved
with the following exchange parameters, in meV:

J1 ¼ �0:09� 0:03; J2 ¼ �0:22� 0:03;

J3 ¼ �0:29� 0:02; J4 ¼ 0:01� 0:02:
(3)

Here we quote rough uncertainties obtained by the visual
comparison of the theoretical and experimental intensities.
The fit is performed by taking the ratio of components of the
g-tensor to be gxy=gz ¼ 2:4, i.e., the ratio obtained by

Ref. [11]. The fit then produces gz ¼ 1:80, in nearly perfect
agreement with these studies (using the g-factor ratio of Cao
et al. instead [19], i.e., gxy=gz ¼ 1:8 does not reproduce the

data as precisely). Using these results, a high-temperature
expansion gives (see Appendix B) a theoretical Curie-Weiss
temperature �CW ¼ 312 mK, which is comparable to, but
smaller than, the experimentally determined values,�CW ¼
400 mK [22] and 750 mK [11]. The deviations may be
explained by the sensitivity of the theoretical value to small
changes in the g-factors and exchange parameters, and to
the dependence of the experimental value on the fitting
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range [19]. Furthermore, and most importantly, our ex-
tracted exchange parameters correctly reproduce relative
intensities as well as the shape of the spin wave dispersion
for each of the five directions. Agreement is excellent for
H ¼ 2 T, showing that these parameters produce a robust
description of the field-induced ferromagnetic state. We
note, however, that there is a significant quantitative dis-
agreement with the exchange parameters quoted in
Refs. [9,10] (see Appendix H).

Implications.—The excellent agreement with spin wave
theory for fieldsH � 2 T clearly indicates that the high field

state is accurately modeled semiclassically, and is smoothly
connected to the fully polarized limit. Theoretically, the
ground state in this regime breaks no symmetries, and sup-
ports a ferromagnetic polarization along the axis of the
applied field (for the h110i field used in the experiment).
However, the semiclassical analysis clearly and dramatically
fails at small fields, where the measurements show no signs
of spontaneous long-range order [18]. The classical zero-
field ground state for our Hamiltonian parameters has a large
spontaneous polarization along the h100i axis. Extension of
this analysis to a T > 0mean-field theory wrongly predicts a

FIG. 1. The measured SðQ; !Þ at T ¼ 30 mK, sliced along various directions in the HHL plane, for both H ¼ 5 T (first row) and
H ¼ 2 T (third row). The second and fourth rows show the calculated spectrum for these two field strengths, based on an anisotropic
exchange model with five free parameters (see text) that were extracted by fitting to the 5 T data set. For a realistic comparison to the
data, the calculated SðQ; !Þ is convoluted with a Gaussian of full-width 0.09 meV. Both the 2 T and 5 T data sets, composed of spin
wave dispersions along five different directions, are described extremely well by the same parameters. (Note that r.l.u. stands for
reciprocal lattice units.)

FIG. 2. Representations of the HHL scattering plane, showing the FCC Brillouin-zone boundaries and the corresponding zone centers
(labeled in terms of the conventional simple-cubic unit cell). Blue lines indicate the directions of the five different cuts shown in Fig. 1.
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continuous magnetic ordering transition at a temperature of
TMF
c ¼ 3:2 K (see Appendix F). The experimental indica-

tions of a zero-field transition to long-range order are mixed
[15,17], but early specific heat measurements [22] found an
anomaly at Tc ¼ 214 mK, and Mössbauer spectroscopy
[16] suggested a transition at 240 mK. This temperature is
approximately 14 times lower than TMF

c . If there is magnetic
ordering at all, it appears to be substantially suppressed,
indicating strong fluctuations—classical, quantum, or both.

The presence of strong fluctuations makes a QSL ground
state plausible in low fields. We now use the Hamiltonian
parameters to suggest the nature of this state. To do so, we
rewrite the zero-field Hamiltonian in terms of spins quan-
tized along the local C3 axis for each site, similarly to
Ref. [20]:

H ¼X
hiji

fJzzSz
iS

z
j � J�ðSþ

i S
�
j þ S�

i S
þ
j Þ

þ J��ð�ijS
þ
i S

þ
j þ ��

ijS
�
i S

�
j Þ

þ Jz�½Sz
i ð�ijSþ

j þ ��ijS�
j Þ þ i $ j�g; (4)

where here S�
i are local spin coordinates, Jzz ¼

� 1
3 ½2J1 � J2 þ 2ðJ3 þ 2J4Þ�, J� ¼ 1

6 ð2J1 � J2 � J3 �
2J4Þ, J�� ¼ 1

6 ðJ1 þ J2 � 2J3 þ 2J4Þ, and Jz� ¼ 1
3
ffiffi
2

p ðJ1 þ
J2 þ J3 � J4Þ, and the matrices �ij, �ij consist of

unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17� 0:04; J� ¼ 0:05� 0:01;

J�� ¼ 0:05� 0:01; Jz� ¼ �0:14� 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J� and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J�=Jzz. For larger J�=Jzz, the ground state is instead
a magnet with hS�i i � 0 [23]. While the actual value of
J�=Jzz � 0:3 would place this model in the magnetic state
[23], the Jz� interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz� coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz�=Jzz � 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz �

J� model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful

QSL

FM

quantum
critical

T

H

Hc

FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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comparison of theoretical modeling and focused experi-
ments in low fields are clearly needed.

A key consequence of the QSL scenario is the presence of
a quantum confinement phase transition in applied field (see
Fig. 3). Such a quantum phase transition is required to
remove the ‘‘fractional’’ excitations of the QSL phase
(electric and magnetic monopoles) from the spectrum in
the semiclassical high-field phase. Theoretically, such quan-
tum critical points have been studied in related model
Hamiltonians, and occur by a mechanism analogous to the
Higgs transition in the standard model [25] or by magnetic
monopole condensation [26]. The gapless excitations ob-
served by neutrons at H � 0:5 T in Ref. [18] indeed indi-
cate a quantum critical point at this field. Further theoretical
work is required for a detailed comparison to experiment.

Yb2Ti2O7 enjoys several major advantages over other
materials considered to be candidates for QSL states up to
now [14]: It is the only case in which the Hamiltonian
parameters are precisely known, and for which large
single-crystal samples highly suitable for detailed neutron
scattering measurements are available. Moreover, similar
methods may be applicable to other rare-earth pyrochlores
in which substantial quantum effects are present, such as
Er2Ti2O7 and Tb2Ti2O7 [1,8]. Especially in this broader
context, the prospects for detailed observation of the long-
sought QSL physics are bright. The basic framework
established here will allow coordinated theoretical and
experimental studies to confront the problem.
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and L. S. were supported by the DOE through Basic Energy
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APPENDIX A: CUBIC ROTATIONS
AND LOCAL BASES

As described in the main text, we use the usual coor-
dinate system for the pyrochlore lattice, with sites located
on tetrahedra whose centers form a FCC lattice. We take
one to be centered at the origin with its four corners at r0 ¼
a
8 ð1; 1; 1Þ, r1 ¼ a

8 ð1;�1;�1Þ, r2 ¼ a
8 ð�1; 1;�1Þ, and r3 ¼

a
8 ð�1;�1; 1Þ. The exchange matrices Jij between sites of

types i and j are obtained by applying the following cubic
rotations Rij to J01:

(i) R02 is a
2�
3 rotation about the [111] axis,

(ii) R03 is a
4�
3 rotation about the [111] axis,

(iii) R21 is a
4�
3 rotation about the ½1�1 �1� axis,

(iv) R31 is a
2�
3 rotation about the ½1�1 �1� axis,

(v) R23 is a rotation made of a 2�
3 rotation about the

[111] axis followed by a 4�
3 rotation about the ½1�1 �1�

axis.

Note Jji ¼ JTij.

We use the following local ðâi; b̂i; êiÞ bases:

ê0 ¼ 1ffiffiffi
3

p ð1; 1; 1Þ; â0 ¼ 1ffiffiffi
6

p ð�2; 1; 1Þ;

ê1 ¼ 1ffiffiffi
3

p ð1;�1;�1Þ; â1 ¼ 1ffiffiffi
6

p ð�2;�1;�1Þ;

ê2 ¼ 1ffiffiffi
3

p ð�1; 1;�1Þ; â2 ¼ 1ffiffiffi
6

p ð2; 1;�1Þ;

ê3 ¼ 1ffiffiffi
3

p ð�1;�1; 1Þ; â3 ¼ 1ffiffiffi
6

p ð2;�1; 1Þ;

(A1)

b̂i ¼ êi 	 âi, and the 4	 4 complex unimodular matrices

� ¼
0 �1 ei�=3 e�i�=3

�1 0 e�i�=3 ei�=3

ei�=3 e�i�=3 0 �1
e�i�=3 ei�=3 �1 0

0
BBB@

1
CCCA; � ¼ ���;

(A2)

for which our exchange Hamiltonian takes the form of
Eq. (4).

APPENDIX B: CURIE-WEISS TEMPERATURE

A high-temperature expansion of the Hamiltonian of
Eq. (1) yields the Oð1=T2Þ term in the uniform suscepti-
bility from which we extract the Curie-Weiss temperature,

�CW ¼ �1

6kBð2g2xy þ g2zÞ
½2g2xyð4J1 þ J2 � 5J3 þ 2J4Þ

þ 8gxygzðJ1 þ J2 þ J3 � J4Þ
þ g2zð2J1 � J2 þ 2J3 þ 4J4Þ�; (B1)

where kB is the Boltzmann constant. Using the formulation
of Eq. (4) �CW takes the simpler form

�CW ¼ 1

2kBð2g2xy þ g2zÞ
½g2zJzz � 4g2xyðJ� þ 2J��Þ

� 8
ffiffiffi
2

p
gxygzJz��: (B2)

APPENDIX C: SPIN WAVE THEORY

As usual, we expand the Hamiltonian about one of the
classical states using Holstein-Primakoff bosons in the
spirit of large s, and keep only terms up to and of order
s, which shall then be set to 1=2. We define the transverse

Holstein-Primakoff bosons xa ¼ xya , ya ¼ yya , conjugate
with one another on site a of the pyrochlore lattice,
satisfying

½xa; ya� ¼ i; na ¼ x2a þ y2a
2

� 1

2
; (C1)

such that
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Sa 
 ua ¼ s� na; Sa 
 va ¼
ffiffiffi
s

p
xa;

Sa 
 wa ¼
ffiffiffi
s

p
ya:

(C2)

Here ðva;wa;uaÞ is an orthonormal basis, chosen such that
ua gives the direction of the spin in the classical ground
state at site a (which we find numerically). We find that for
all fields, the ground state does not enlarge the unit cell, so
that there are only four distinct such bases, which we
denote by a ¼ 0; . . . ; 3. One may choose, for example,
va ¼ ua 	 ð1; 1; 1Þ= k ua 	 ð1; 1; 1Þ k and wa ¼ ua 	 va.

Since the classical ground state does not enlarge the unit
cell, we can readily proceed to Fourier space in the four site
basis. Keeping only terms of order s, we arrive at the spin
wave (quadratic) Hamiltonian,

Hk ¼ ðXT�k YT�k Þ
Ak Ck

CT
k Bk

 !
Xk

Yk

 !
; (C3)

where ðXTYTÞ ¼ ðx0; . . . ; x3; y0; . . . ; y3Þ and Dab
k ¼

~Dab cos½k 
 ðra � rbÞ�, D ¼ A, B, C, with

~Aab ¼ sva 
 Jab 
 vb þ�B

2
H 
 ga 
 ua�ab

� sua 

X
b

Jab 
 ub;

~Bab ¼ swa 
 Jab 
 wb þ�B

2
H 
 ga 
 ua�ab

� sua 

X
b

Jab 
 ub;

~Cab ¼ sva 
 Jab 
 wb;

(C4)

where H is the magnetic field and Jab and ga are 3	 3
matrices with matrix elements J��

ab and g��
a , respectively.

To find the modes, we resort to the path-integral formula-
tion. The action at temperature T ¼ 1=ðkB�Þ is

S ¼ 1

2�

X
n

X
k

ZT
�k;�!n

½Gk þ ði!nÞ��Zk;!n
; (C5)

where !n ¼ 2�n
� is the Matsubara frequency, where we

have defined ZT ¼ ðXT YT Þ,

Gk ¼ 2
Ak Ck

CT
k Bk

 !
and � ¼ 0 �i14

i14 0

 !
(C6)

(14 is the four-by-four identity matrix). As usual, the real
frequency dispersion relations !ðkÞ are found by solving
the zero-eigenvalue equations of the matrix Gk þ!�.
Here, these are equivalently the (both zero and nonzero)
eigenvalues of ��Gk.

We calculate the inelastic structure factor (to which the
intensity Iðk; !Þ of the scattering is proportional) obtained
from the moment-moment correlation function [27],

Sðk; !Þ
¼ X

�;�

½��� � ðk̂Þ�ðk̂Þ��
X
a;b

hm�
a ð�k;�!Þm�

bðk; !Þi;

(C7)

where k̂ is the unit vector associated with k, m�
a ðk; !Þ ¼

�B

P
�g

��
a S�aðk; !Þ is the moment at momentum k

and real frequency ! on the a ¼ 0; . . . ; 3 sublattice in
direction � ¼ x; y; z, and S�a is, as usual, the �-th coordi-

nate of the effective spin-1=2 spin at site a. F ��ðkÞ ¼
��� � ðk̂Þ�ðk̂Þ� selects the component of the spin-spin

correlations perpendicular to the scattering vector [27],
and G��

ab ðk; !Þ ¼ hm�
a ð�k;�!Þm�

bðk; !Þi is the

moment-moment correlation function that originates
from the interaction between the neutron’s moment and
the spins’ moments, which we find to be

G��
ab

¼ ��s	�
a 	�

b

X



�ð!� �
Þ 1

c y
R;
�c R;


ð½c y
R;
�a½c R;
�bÞ;

(C8)

where � is the Dirac distribution, 	
�
a ¼P

�¼x;y;zg
��
a ðv�

a w�
a Þ, �
 is the 
-th eigenvalue of

��G, and c R;
 is its corresponding ‘‘right’’ eigenvector,

i.e., such that ��G 
 c R;
 ¼ �
c R;
. Also note that the

momentum and frequency dependencies are implied every-
where to be k, !.
Now we estimate the amplitude of quantum fluctuations

using our spin wave theory, by evaluating the quantum
moment reduction in zero field and at zero temperature.
In the Holstein-Primakoff boson language the reduction of
the spin expectation value from the classical value of 1=2,
averaged over the four site basis, is r ¼ 1

4

P
3
a¼0h0jnaj0i,

where h0jnaj0i indicates a ground-state quantum expecta-
tion value. Evaluating this using the path-integral method,
we obtain r ¼ 1

8

R
k;! Trh½Gk þ!���1i � 1

2 , i.e.,

r ¼ 1

8

Z
k

X



�ð�
Þ
c y

R;
c R;


c y
R;
�c R;


� 1

2
� 0:05 (C9)

(� is the usual Heaviside distribution), which is a 10%
reduction compared with the classical value of 1=2.

APPENDIX D: FURTHER DETAILS OF
EXPERIMENTAL DATA AND FITS

The inelastic neutron scattering data (rows 1 and 3 in
Fig. 1) contain several features worth commenting on
further. First, the darkest blue areas do not contain any
data, either for kinematic reasons near Q ¼ ð0; 0; 0Þ, or
because of the finite angular extend of the scan. Second, at
E ¼ 0 one observes intensity that is due to coherent and
incoherent elastic scattering from the sample, and hence is
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more intense than the inelastic features by up to several
orders of magnitude, thus appearing red (off scale). Third,
near the (0,0,0) position there is higher background leading
to unphysical intensities due to contamination from the
unscattered incident beam. This is observable in the HHH
and HH0 data sets near the zero position.

The data sets were collected by counting for 8 minutes
per angular rotation of the sample. The total time per
magnetic-field setting was about 12 hours.

Figure 4 shows the dispersions obtained from the fitting
procedure over-plotted on the data. These fits were accom-
plished by digitizing the shape of the dispersion from the
experimental data, and performing a least squares minimi-
zation routine to match it. Intensities were calculated based
on the spin wave theory using the extracted exchange
parameters, and were not fit to the data. The 5D parameter
space (four exchange plus one g-tensor parameter) was
explored using a uniform search technique from which the
resulting excellent description was obtained (Fig. 1).

APPENDIX E: FEATURES OF
THE SPIN WAVE SPECTRUM

The spectra of Fig. 1 are very rich. Because of the many
parameters and of the presence of classical phase transi-
tions (there are several ground states to the classical
model), it is very difficult to track which features are due
to what terms of Eq. (4). One remarkable feature which can
be easily identified throughout most of phase space (in-
cluding the region around which Eq. (3) places Yb2Ti2O7)
is a quasiflat band. Specifically, one spin wave mode is
completely dispersionless in the plane of reciprocal space
with kx ¼ ky, i.e., normal to the magnetic-field direction

and passing through the origin in reciprocal space. All
scattering measurements on Yb2Ti2O7 have been taken in
this plane, so this feature is quite significant in the experi-
ments. In the region of phase space around Yb2Ti2O7 and
for H¼ 5 T, we find its energy to be, numerically, in meV:

E2D flat� 0:74þ0:51Jzz�1:18J��3:11J���5:81Jz�;
(E1)

where the J
’s must be input in meV, and which for our fit

gives EYb2Ti2O7

2D flat � 1:45 meV. Note that the energy of this

feature is most sensitive to Jz�.

Moreover, we observe the following trends in the region
around Yb2Ti2O7:
(i) as jJz�j increases, all bands go up in energy (espe-

cially the two-dimensional flat one),
(ii) increases in J� and J�� seem to have more or less

the same effect: The bands get closer, and this
happens, in particular, because the energy of the
top bands decreases.

APPENDIX F: MEAN-FIELD-THEORY
CALCULATION

The Curie-Weiss mean-field Hamiltonian obtained from
Eq. (1) takes the form

HMF ¼ X
hi;ji

X
�;�

J��
ij ðhS�i iS�j þ S�i hS�j i � hS�i ihS�j iÞ

��BH
�
X
i

g
��
i S�i ; (F1)

where H� is the magnetic field in the � direction, hS�i i is
the mean-field quantum thermal expectation value of S�i ,
defined by hS�i i ¼ 1

Z TrS�i expð��HMFÞ, where � is the

inverse temperature � ¼ 1=ðkBTÞ, kB is the Boltzmann
constant, and Z is the partition function Z ¼
Tr expð��HMFÞ. The traces are taken over the up and
down spin states of every spin.
The ground state does not enlarge the unit cell at zero

temperature, and we assume that this is still the case at
nonzero temperature. Thus, we define, for every sublattice
a and every axis �, the average magnetization

m
�
a ¼ hS�t;ai; (F2)

which is the same for every tetrahedron t (t can be either
‘‘up’’ or ‘‘down’’). We arrive at the 12 consistency equa-
tions

m a ¼ � heff
a

2 k heff
a k tanh

� k heff
a k

2
; (F3)

where heff
a ¼ 2

P
bmb 
 Jba ��BH 
 ga; the free energy

per site is

FIG. 4. Dispersions (white curves) obtained from the fitting procedure over-plotted on the data at H ¼ 5 T.
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f ¼ � 1

4

X
a;b

ma 
 Jab 
mb � 1

4�

X
a

ln

�
2 cosh

� k heff
a k

2

�
:

(F4)

We solve Eqs. (F3) numerically, choosing the solution
which minimizes the free energy in Eq. (F4). With the field
oriented along the [110] direction, we find the phase dia-
gram shown in Fig. 5, which contains two phases. In zero
field, the low temperature phase is a ferromagnet with net
magnetization along any of the h100i axes. In low fields,
this expands into a phase in which the average magnetiza-
tion is not aligned with the field, but lies within a {001}
plane. Upon increasing fields, a transition occurs to the
high-field state in which the net magnetization is aligned
with the applied field, and no symmetries are spontane-
ously broken. This state is continuously connected to the
high-temperature paramagnetic phase.

APPENDIX G: PERTURBATION THEORY

We show that theUð1Þ QSL described in Refs. [13,23] is
stable to the addition of the terms in the symmetry-
obtained Hamiltonian, Eq. (4), provided all coupling con-
stants are small with respect to the Ising exchange parame-
ter Jzz. In other words, we show that theUð1ÞQSL exists in
a finite region of parameter space, specifically where J�,
Jz�, and J�� are small with respect to Jzz.

In that limit, one may apply perturbation theory. When
Jzz > 0, the ground-state manifold of the unperturbed
Hamiltonian is the extensively degenerate ‘‘two-in–two-
out’’ manifold. When Jz� ¼ J�� ¼ 0, Eq. (4) can be

mapped exactly onto the Hamiltonian of Ref. [13], where
the first nonvanishing and nonconstant term in perturbation
theory (above the ‘‘two-in–two-out’’ manifold) was shown
to be third order in J�=Jzz:

Heff
ring¼�K

X
fi;j;k;l;m;ng¼x

ðSþ
i S

�
j S

þ
k S

�
l S

þ
mS

�
n þH:c:Þ; (G1)

where K ¼ 12J3�
J2zz

is a ring exchange interaction. Heff
ring flips

the spins on the ‘‘flippable’’ hexagons, i.e., those with
alternating up and down spins, and yields zero otherwise.
This represents a ring move responsible for favoring the
quantum superpositions of the Uð1Þ QSL. As shown in
Refs. [13,23,28], this ring Hamiltonian has as its ground
state a Uð1Þ QSL, whose low-energy physics is described
as the Coulomb phase of aUð1Þ gauge theory. This phase is
locally stable to all perturbations [13] in three dimensions,
which is enough already to guarantee the persistence of the
QSL state when the other exchange couplings are suffi-
ciently small, i.e., when the induced terms in the effective
Hamiltonian are much smaller than the ring coupling K.
We can, however, go further and consider these effects

explicitly in the perturbative limit, which extends the dis-
cussion to the case when Jz�; J�� � Jzz but with no
particular assumptions placed upon the magnitude of the
induced terms in the effective Hamiltonian relative to K.
When Jz� or J�� are nonzero, other ‘‘nonring’’ effective
Hamiltonians are allowed. In particular, the Jz� term gives
rise to an effective third-neighbor ferromagnetic Ising
Hamiltonian:

Heff
3rd Ising ¼ �Jð3Þ

X
hhhi;jiii

Sz
iS

z
j; (G2)

where Jð3Þ ¼ 3J2z�
Jzz

. This term alone has six symmetry-

related ordered ground states. Each of them consists of
the choice of one of the six two-in–two-out tetrahedra, with
the same pattern repeated on each ‘‘up’’ tetrahedron (these
states are magnetic with their moment along the h100i
directions) and contain no flippable hexagons; see Fig. 6.
This implies that states which contain flippable hexa-

gons represent an energy cost. We can therefore consider

0 1.0 2.0 3.0
0.0

0.5

1.0

1.5

T in K

H
in

T

FIG. 5. Field versus temperature phase diagram obtained from
a mean-field analysis of the Hamiltonian of Eq. (1), for a field H
parallel to the [110] direction and with the exchange constant
values obtained with our fits, Eq. (3). The system displays a net
magnetic moment throughout the ðH;TÞ plane. The blue region
denotes a region where the total magnetization lies in the xy
plane, and the green region is the paramagnetic phase; the two
zones are separated by a continuous transition. In zero field, this
transition takes place at TMF

c ¼ 3:2 K. At zero temperature, the
amplitude of the transition field is HMF

c ¼ 1:1 T. The dark blue
arrow shows the experimentally reported transition temperature
of 240 mK: The actual transition occurs at a much lower
temperature than that predicted by mean-field theory TMF

c .

FIG. 6. One of the six ground states of Heff
3rd Ising ¼

� 3J2z�
Jzz

P
hhhi;jiiiSz

iS
z
j. A blue sphere represents an ‘‘in’’ spin while

a black sphere represents an ‘‘out’’ one. Because two of the four
chain types contain nonalternating spins, there are no flippable
hexagons in any of the six (equivalent) ground states.
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Heff
3rdIsing as an analog of the Rokhsar-Kivelson (RK) term

[24] introduced by Hermele et al. [13],HRK ¼ VNf, where

Nf is the operator that counts the number of flippable

hexagons. This term actually stabilizes the QSL state
[13]. In particular, the QSL phase grows in stability as V
is increased from zero up to the point V ¼ K, beyond
which (for V > K) the system undergoes a first order
transition to a degenerate set of classical unflippable states
[13], which includes the six ordered h100i ferromagnetic
ground states described above.

In the case relevant here, when Jð3Þ=K is sufficiently

large, the system must undergo a transition to the unflip-
pable h100i ground states. Since this model and the RK one
of Ref. [13] agree on the phases both when Jð3Þ � K and

when Jð3Þ � K, it is natural to expect that the intervening

phase diagram coincides in the two models as well.
Therefore, we expect that the QSL state is maximally
stable when Jð3Þ=K takes some value ofOð1Þ (for the values
of the exchange constants given by our fits we find

Jð3Þ=K ¼ J2z�Jzz
4J3�

¼ 6:2, but we caution that this is probably

outside the perturbative regime). Unfortunately, there is no
simple relationship between V and Jð3Þ. However, we note
that the Jð3Þ exchange can also be expressed in terms of

purely plaquette interactions, which might allow further
analytical connection to the RK theory. We will not, how-
ever, pursue this further here.

Inclusion of the other coupling J��, higher order ef-
fects, and cross terms amongst the exchange couplings
does not lead to any new effects. Indeed, all the associated
terms in the effective Hamiltonian assume a ferromagnetic
or ring form, and can be subsumed in the above couplings.
They are also higher order in J
=Jzz, 
 ¼ �, z� , �� .

APPENDIX H: COMPARISON BETWEEN OUR
EXCHANGE CONSTANTS AND THOSE OF

THOMPSON ET AL.

The correspondence between our effective spin-1=2 op-
erators Si in Eq. (1) and the full 7=2-angular-momentum
operators Ji used by Thompson et al. in Ref. [10] is given
by projecting the full angular momentum into the ground-
state Kramer’s doublet

P1=2JiP1=2 ¼ gi 
 Si

gJ
; (H1)

where P1=2 is the projection operator to the ground-state

Kramer’s doublet, and gJ ¼ 8=7 is the Landé factor.
We use gxy=gz ¼ 2:4 and gz ¼ 1:79 for concreteness,

but the results do not depend too much upon the details of
this choice within the range of parameters found in the
literature. With this choice, we find that the semiformal
relations between our parameters and those given in
Ref. [10] are

J1 ¼ 0:818J Ising � 9:08J iso � 1:21J pd � 2:34J DM;

J2 ¼ �0:818J Ising � 8:03J iso � 11:2J pd þ 6:16J DM;

J3 ¼ 0:818J Ising þ 4:88J iso þ 12:7J pd � 2:34J DM;

J4 ¼ 0:818J Ising � 0:523J iso � 5:49J pd þ 5:62J DM:

For J I sing ¼ 6:98	 10�2 meV, J iso ¼ 1:90	 10�2 meV,

J pd¼�2:50	10�2 meV, and J DM ¼ �2:33 	
10�2 meV as calculated by Thompson et al. in Ref. [10],
we obtain J1 ¼ �0:03 meV, J2 ¼ �0:07 meV, J3 ¼
�0:11 meV, and J4 ¼ 0:05 meV, or, in the formulation
of Eq. (4), Jzz ¼ 1:9	 10�4 meV, J� ¼ 3:0	
10�3 meV, J�� ¼ 3:8	 10�2 meV, and Jz� ¼
�6:4	 10�2 meV. These values are rather different
from those found in our fits, Eqs. (3) and (5), and indeed
yield spin wave spectra in strong disagreement with ex-
periment. In principle, one resolution of the difference
could be that the exchange couplings are actually strongly
temperature dependent, and distinctly different in the tem-
perature range studied in Ref. [10] and at the low tempera-
tures studied here. Such a change in exchange parameters
could conceivably occur if the transition observed at
214–240 mK had a substantial structural component.
However, we do not have any a priori reason to suspect
this. In any case, it would be very interesting to resolve the
differences between the two exchange models.
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