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We employ machine learning techniques to provide accurate variational wave functions for matrix
quantum mechanics, with multiple bosonic and fermionic matrices. The variational quantum Monte Carlo
method is implemented with deep generative flows to search for gauge-invariant low-energy states.
The ground state (and also long-lived metastable states) of an SUðNÞ matrix quantum mechanics with
three bosonic matrices, and also its supersymmetric “mini-BMN” extension, are studied as a function of
coupling and N. Known semiclassical fuzzy sphere states are recovered, and the collapse of these
geometries in more strongly quantum regimes is probed using the variational wave function. We then
describe a factorization of the quantum mechanical Hilbert space that corresponds to a spatial partition of
the emergent geometry. Under this partition, the fuzzy sphere states show a boundary-law entanglement
entropy in the large N limit.
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I. INTRODUCTION

A quantitative, first-principles understanding of the
emergence of spacetime from nongeometric microscopic
degrees of freedom remains among the key challenges in
quantum gravity. Holographic duality has provided a
firm foundation for attacking this problem; we now
know that supersymmetric large N matrix theories can
lead to emergent geometry [1,2]. What remains is the
technical challenge of solving these strongly quantum
mechanical systems and extracting the emergent space-
time dynamics from their quantum states. Recent years
have seen significant progress in numerical studies of
large N matrix quantum mechanics at nonzero temper-
ature. Using Monte Carlo simulations, quantitatively
correct features of emergent black hole geometries have
been obtained; see, e.g., Refs. [3–5]. To grapple with
questions such as the emergence of local spacetime
physics, and its associated short-distance entanglement
[6,7], new and inherently quantum mechanical tools are
needed.
Variational wave functions can capture essential aspects

of low-energy physics. However, the design of accurate
many-body wave-function ansatze has typically required
significant physical insight. For example, the power of
tensor network states, such as matrix product states, hinges
upon an understanding of entanglement in local systems

[8,9]. In contrast, we are faced with models where there is
an emergent locality that is not manifest in the micro-
scopic interactions. This locality cannot be used a priori;
it must be uncovered. Facing a similar challenge of
extracting the most relevant variables in high-dimensional
data, deep learning has demonstrated remarkable success
[10–12], in tasks ranging from image classification [13] to
game playing [14]. These successes, and others, have
motivated tackling many-body physics problems with the
machine learning toolbox [15]. For example, there has
been much interest and progress in applications of
restricted Boltzmann machines to characterize states of
spin systems [16–19].
In this work, we solve for low-energy states of quantum

mechanical Hamiltonians with both bosons and fermions,
using generative flows (normalizing flows [20–22] and
masked autoregressive flows [23–25], in particular) and the
variational quantum Monte Carlo method. Compared with
spin systems, the problem we are trying to solve contains
continuous degrees of freedom and gauge symmetry, and
there is no explicit spatial locality. Recent works have
applied generative models to physics problems [26–28] and
have aimed to understand holographic geometry, broadly
conceived, with machine learning [29–31]. We use gen-
erative flows to characterize emergent geometry in large N
multimatrix quantum mechanics. As we have noted above,
such models form the microscopic basis of established
holographic dualities.
We focus on quantum mechanical models with three

bosonic large N matrices. These are among the simplest
models with the core structure that is common to holo-
graphic theories. The bosonic part of the Hamiltonian takes
the form
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Here, the Xi are N-by-N traceless Hermitian matrices,
with i¼1, 2, 3. The Πi are conjugate momenta, and ν is
a mass deformation parameter. The potential energy
in Eq. (1.1) is a total square: VðXÞ ¼ 1

4
tr½ðνϵijkXk þ

i½Xi; Xj�Þ2�. The supersymmetric extension of this model
[32], discussed below, can be thought of as a simplified
version of the BMN matrix quantum mechanics [33].
We refer to the supersymmetric model as mini-BMN,
following Ref. [34]. For the low-energy physics we are
exploring, the large N planar diagram expansion in this
model is controlled by the dimensionless coupling
λ≡ N=ν3. Here, λ can be understood as the usual
dimensionful ’t Hooft coupling of a large N quantum
mechanics at an energy scale set by the mass term
(cf. Ref. [35]).
The mass deformation in the Hamiltonian (1.1) inhibits

the spatial spread of wave functions—which will be helpful
for numerics—and leads to minima of the potential at

½Xi; Xj� ¼ iνϵijkXk: ð1:2Þ

In particular, one can have Xi ¼ νJi, with the Ji being, for
example, the N-dimensional irreducible representation of
the suð2Þ algebra. This set of matrices defines a “fuzzy
sphere” [36]. There are two important features of this
solution. First, in the large N limit, the noncommutative
algebra generated by the Xi approaches the commutative
algebra of functions on a smooth two-dimensional sphere
[37,38]. Second, the large ν limit is a semiclassical limit in
which the classical fuzzy sphere solution accurately
describes the quantum state. In this semiclassical limit,
the low-energy excitations above the fuzzy sphere state are
obtained from classical harmonic perturbations of the
matrices about the fuzzy sphere [39]. See also Ref. [40]
for an analogous study of the large-mass BMN theory. At
large N and ν, these excitations describe fields propagating
on an emergent spatial geometry.
By using the variational Monte Carlo method with

generative flows, we obtain a fully quantum mechanical
description of this emergent space. This result, in itself, is
excessive given that the physics of the fuzzy sphere is
accessible to semiclassical computations. Our variational
wave functions will quantitatively reproduce the semi-
classical results in the large ν limit, thereby providing a
solid starting point for extending the variational method
across the entire N and ν phase diagram. Exploring the
parameter space, we find that the fuzzy sphere collapses
upon moving into the small ν quantum regime. We consider
two different “sectors” of the model, with different fermion

number R. The first will be purely bosonic states, with
R ¼ 0. The second will have an R ¼ N2 − N. In this latter
sector, the fuzzy sphere state is supersymmetric at large
positive ν, so we refer to it as the “supersymmetric sector.”
In the bosonic sector of the model, the fuzzy sphere is a
metastable state, and it collapses in a first-order large N
transition at ν ∼ νc ≈ 4. See Figs. 2 and 3 below. In the
supersymmetric sector of the model, where the fuzzy
sphere is stable, the collapse is found to be more gradual.
See Figs. 6 and 7. In Fig. 8, we start to explore the small ν
limit of the supersymmetric sector.
Beyond the energetics of the fuzzy sphere state, we

define a factorization of the microscopic quantum
mechanical Hilbert space that leads to a boundary-law
entanglement entropy at large ν. See Eq. (5.14) below.
This factorization both captures the emergent local
dynamics of fields on the fuzzy sphere and also reveals
a microscopic cutoff to this dynamics at a scale set by N.
The nature of the emergent fields and their cutoffs can be
usefully discussed in string theory realizations of the
model. In string-theoretic constructions, fuzzy spheres
arise from the polarization of D branes in background
fields [41–44]. A matrix quantum mechanics theory such
as Eq. (1.1) describes N “D0 branes”—see Ref. [32] and
the discussion section below for a more precise charac-
terization of the string theory embedding of mini-BMN
theory—and the maximal fuzzy sphere corresponds to a
configuration in which the D0 branes polarize into a single
spherical D2 brane. There is no gravity associated with
this emergent space; the emergent fields describe the low-
energy worldvolume dynamics of the D2 brane. In this
case, the emergent fields are a Maxwell field and a single
scalar field corresponding to transverse fluctuations of the
brane. In the final section of the paper, we discuss how
richer, gravitating states may arise in the opposite small ν
limit of the model.

II. THE MINI-BMN MODEL

The mini-BMN Hamiltonian is [32]

H¼HBþ tr

�
λ†σk½Xk;λ� þ 3

2
νλ†λ

�
−
3

2
νðN2− 1Þ: ð2:1Þ

The bosonic part HB is given in Eq. (1.1). The σk are Pauli
matrices. The λ are matrices of two-component SO(3)
spinors. It can be useful to write the matrices in terms of
the suðNÞ generators TA, with A ¼ 1; 2;…; N2 − 1, which
obey ½TA; TB� ¼ ifABCTC and are Hermitian and ortho-
normal (with respect to the Killing form). In other words,
Xi ¼ Xi

AT
A and λα ¼ λαAT

A. The ijk and ABC indices are
freely raised and lowered. Lower αβ indices are for spinors
transforming in the 2 representation of SO(3), while upper
indices are for 2̄. We will not raise or lower spinor indices.
The full Hamiltonian can then be written as
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3

2
νðN2 − 1Þ; ð2:2Þ

where λα†A ≡ðλAαÞ† and fλα†A ;λBβg¼δABδ
α
β are complex

fermion creation and annihilation operators. This
Hamiltonian is seen to have four supercharges,

Qα ¼
�
−i

∂
∂Xi

A
þ iνXi

A −
i
2
fABCϵijkX

j
BX

k
C

�
σiβα λAβ;

Q̄α ¼ ðQαÞ†; ð2:3Þ

which obey

fQα; Q̄αg ¼ 4H: ð2:4Þ

States that are invariant under all supercharges therefore
have vanishing energy.
Matrix quantum mechanics theories arising from micro-

scopic string theory constructions are typically gauged.
This means that physical states must be invariant under the
SUðNÞ symmetry. In particular, physical states are annihi-
lated by the generators

GA ¼ −ifABC
�
Xi
B

∂
∂Xi

C
þ λα†B λCα

�
: ð2:5Þ

A. Representation of the fermion wave function

The mini-BMN wave function can be represented as a
function frombosonicmatrix coordinates to fermionic states
ψðXÞ ¼ fðXÞjMðXÞi. Here, X denotes the three bosonic
traceless Hermitian matrices. The function fðXÞ ≥ 0 is
the norm of the wave function at X, while jMðXÞi is a
normalized state of matrix fermions. A fermionic state with
definite fermion number R is parametrized by a complex
tensor Mra

Aα such that

jMi≡XD
r¼1

YR
a¼1

�X2
α¼1

XN2−1

A¼1

Mra
Aαλ

α†
A

�
j0i; ð2:6Þ

where j0i is the state with all fermionic modes unoccupied.
The definition (2.6) is parsed as follows: For any fixed r

and a, ηra† ¼ P
αA M

ra
Aαλ

α†
A is the creation operator for the

matrix fermionic modes, where A runs over some ortho-
normal basis of the suðNÞ Lie algebra and α ¼ 1, 2 for two
fermionic matrices. Then,

Q
a η

ra†j0i is a state of multiple
free fermions created by η†. The final summation over r in
Eq. (2.6) is a decomposition of a general fermionic state
into a sum of free fermion states. Such a representation is

seen to be completely general (but not unique) if we have
the number of free fermion states D sufficiently large.
For purely bosonic models, jMðXÞi is simply the phase

of the wave function.

B. Gauge invariance and gauge fixing

The generators (2.5) correspond to the following action
of an element U ∈ G ¼ SUðNÞ on the wave function:

ðUψÞðXÞ ¼ fðU−1XUÞjðUMU−1ÞðU−1XUÞi: ð2:7Þ

In other words, the group acts by matrix conjugation. The
wave function is required to be invariant under the group
action; i.e., Uψ ¼ ψ for any U ∈ G.
Gauge invariance allows us to evaluate the wave function

using a representative for each orbit of the gauge group. Let
X̃ be the representative in the gauge orbit of X. Gauge
invariance of the wave function implies that there must
exist functions f̃ and M̃ such that

fðXÞ ¼ f̃ðX̃Þ;
jMðXÞi ¼ jUM̃ðX̃ÞU−1i; where X ¼ UX̃U−1: ð2:8Þ

The functions f̃ and M̃ take gauge representatives as inputs
or may be thought of as gauge-invariant functions. The
wave function we use will be in the form (2.8). The
functions f̃ and M̃ will be parametrized by neural networks,
as we describe in Sec. III.
We proceed to describe the gauge fixing we use to select

the representative for each orbit, as well as the measure
factor associated with this choice. The SUðNÞ gauge
representative X̃ will be such that
(1) Xi ¼ UX̃iU−1 for i ¼ 1, 2, 3 and some unitary

matrix U.
(2) X̃1 is diagonal and X̃1

11 ≤ X̃1
22 ≤ … ≤ X̃1

NN .
(3) X̃2

iðiþ1Þ is purely imaginary, with the imaginary part
positive for i ¼ 1; 2;…; N − 1.

The third condition is needed to fix the Uð1ÞN−1 residual
gauge freedom after diagonalizing X1. The representative X̃
is well defined except on a subspace of measure zero where
the matrices are degenerate. Then, X̃ can be represented as a
vector in R2ðN2−1Þ with a positivity constraint on some
components. The change of variables from X to X̃ leads to a
measure factor given by the volume of the gauge orbit:

d3ðN2−1ÞX ¼ ΔðX̃Þd2ðN2−1ÞX̃; ð2:9Þ
with

ΔðX̃Þ ∝
YN
i≠j¼1

jX̃1
ii − X̃1

jjj
YN−1

i¼1

jX̃2
iðiþ1Þj: ð2:10Þ

Keeping track of this measure (apart from an overall
prefactor) will be important for proper sampling in the
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Monte Carlo algorithm. The derivation of (2.10) is shown
in Sec. A of the Supplemental Material (SM) [45].

III. ARCHITECTURE DESIGN FOR MATRIX
QUANTUM MECHANICS

In this work, we propose a variational Monte Carlo
method with importance sampling to approximate the
ground state of matrix quantum mechanics theories,
leading to an upper bound on the ground-state energy.
The importance sampling is implemented with generative
flows. The basic workflow is sketched as follows:
(1) Start with a wave function ψθ with variational

parameters θ. In our case, θ will characterize neural
networks.

(2) Write the expectation value of the Hamiltonian to be
minimized as

Eθ ¼ hψθjHjψθi ¼
Z

dXjψθðXÞj2HX½ψθ�

¼ EX∼jψθj2 ½HX½ψθ��: ð3:1Þ
In the mini-BMN case, X denotes three traceless
Hermitian matrices (indices omitted), and HX½ψθ� is
the energy density at X. Notationally, EX∼pðXÞ is the
expectation value, with the random variable X drawn
from the probability distribution pðXÞ.

(3) Generate random samples according to the wave-
function probabilities X ∼ pθðXÞ ¼ jψθðXÞj2, and
evaluate their energy densities HX½ψθ�. The varia-
tional energy (3.1) can then be estimated as the
average of energy densities of the samples.

(4) Update the parameters θ (via stochastic gradient
descent) to minimize Eθ:

θtþ1 ¼ θt − α∇θtEθt ; ð3:2Þ
where t ¼ 1; 2;… denotes the steps of training and
the parameter α > 0 sets the learning rate. The
gradient of energy is estimated from Monte Carlo
samples:

∇θEθ ¼ EX∼pθ
½∇θHX½ψθ��

þ EX∼pθ
½∇θ( lnpθðXÞ)ðHX½ψθ� − EθÞ�:

ð3:3Þ
The method is applicable even if the probabilities are
available only up to an unknown normalization
factor.

(5) Repeat steps 3 and 4 until Eθ converges. Observ-
ables of physical interest are evaluated with respect
to the optimal parameters after training.

In the following, we discuss details of parametrizing and
sampling from gauge-invariant wave functions with fer-
mions. Technicalities concerning the evaluation of HX½ψθ�
are spelled out in the SM, Sec. B [45]. More details

concerning the training are given in the SM, Sec. D [45].
Benchmarks are presented at the end of this section.

A. Parametrizing and sampling the
gauge-invariant wave function

We first describe how gauge invariance is incorporated
into the variational Monte Carlo algorithm. As already
discussed, an important step is to sample according to
X ∼ jψðXÞj2. From Eq. (2.8), for a gauge-invariant wave
function, jψðXÞj2 ¼ jf̃ðX̃Þj2. However, in sampling X̃, we
must keep track of the measure factor ΔðX̃Þ in Eq. (2.10).
We do this as follows:
(1) Sample X̃ according to pðX̃Þ ¼ ΔðX̃Þjf̃ðX̃Þj2.
(2) Generate Haar random elements U ∈ SUðNÞ.
(3) Output samples X ¼ UX̃U−1.

The correctness of this procedure is shown in the SM,
Sec. A [45].
Conversely, at the evaluation stage, ψðXÞ can be com-

puted in the following steps for gauge-invariant wave
functions (2.8):
(1) Gauge fixX¼UX̃U−1 as discussed in the last section.
(2) Compute M̃ðX̃Þ and f̃ðX̃Þ. Details of the structure of

M̃ and f̃ will be discussed below.
(3) Return ψðXÞ ¼ f̃ðX̃ÞjUM̃ðX̃ÞU−1i according to

Eq. (2.8).
We now describe the implementation of M̃ and f̃ as

neural networks. The basic building block, a multilayer
fully connected (also called dense) neural network, is an
elemental architecture capable of parametrizing compli-
cated functions efficiently [12]. The neural network defines
a function F∶x ↦ y mapping an input vector x to an
output vector y via a sequence of affine and nonlinear
transformations:

F ¼ Am
θ ∘ tanh ∘Am−1

θ ∘ tanh ∘… ∘ tanh ∘A1
θ: ð3:4Þ

Here, A1
θðxÞ ¼ M1

θxþ b1θ is an affine transformation, where
the weights M1

θ and the biases b1θ are trainable parameters.
The hyperbolic tangent nonlinearity then acts elementwise
on A1

θðxÞ. We experimented with different activation
functions; the final result is not sensitive to this choice.
Similar mappings are applied m times, allowingMi

θ and b
i
θ

to be different for different layers i, to produce the output
vector y. The mapping F∶x ↦ y is nonlinear and capable
of approximating any square integrable function if the
number of layers and the dimensions of the affine trans-
formations are sufficiently large [46].
The function M̃ðX̃Þ is implemented as such a multilayer

fully connected neural network, mapping from vectorized
X̃ to M̃ in Eq. (2.6), i.e., R2ðN2−1Þ → RDR2ðN2−1Þ. The
implementation of f̃ðX̃Þ is more interesting, as both
evaluating f̃ðX̃Þ and sampling from the distribution
pðX̃Þ¼ΔðX̃Þjf̃ðX̃Þj2 are necessary for the Monte Carlo
algorithm. Generative flows are powerful tools to efficiently
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parametrize and sample from complicated probability
distributions. The function f̃ðX̃Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðX̃Þ=ΔðX̃Þ

p
, so we

can focus on sampling and evaluating pðX̃Þ, which will be
implemented by generative flows.
Two generative flow architectures are implemented for

comparison: a normalizing flow and a masked autoregres-
sive flow. The normalizing flow starts with a product of
simple univariate probability distributionspðxÞ ¼ p1ðx1Þ…
pMðxMÞ, where the pi can be different. Values of x sampled
from this distribution are passed through an invertible
multilayer dense network as in Eq. (3.4). The probability
distribution of the output y is then

qðyÞ ¼ pðxÞ
���� detDy

Dx

����
−1

¼ p(F−1ðyÞ)j detDFj−1: ð3:5Þ

The masked autoregressive flow generates samples
progressively. It requires an ordering of the components
of the input, say, x1; x2;…; xM. Each component is drawn
from a parametrized distribution pi(xi;Fiðx1;…; xi−1Þ),
where the parameter depends only on previous compo-
nents. Thus, x1 is sampled independently, and for other
components, the dependence Fi is given by Eq. (3.4). The
overall probability is the product

qðxÞ ¼
YM
i¼1

pi(xi;Fiðx1;…; xi−1Þ): ð3:6Þ

When piðxiÞ are chosen as normal distributions, both
flows are able to represent any multivariate normal dis-
tribution exactly. Features of the wave function (such as
polynomial or exponential tails) can be probed by exper-
imenting with different base distributions piðxiÞ. Choices
of the base distributions and performances of the two flows
are assessed in the following benchmark subsection and
also in the SM, Sec. D [45]. We use both types of flow in
the numerical results of Sec. IV.

B. Benchmarking the architecture

In Ref. [34], the Schrödinger equation for the N ¼ 2
mini-BMN model was solved numerically. Comparison
with the results in that paper allows us to benchmark our
architecture before moving to larger values of N. In
Ref. [34], the Schrödinger equation is solved in sectors
with a fixed fermion number

R ¼
X
Aα

λα†A λAα; ½R;H� ¼ 0; ð3:7Þ

and total SO(3) angular momentum j ¼ 0; 1=2. We do not
constrain j, but we do fix the number of fermions in the
variational wave function.
The variational energies obtained from our machine

learning architecture with R ¼ 0 and R ¼ 2 are shown
as a function of ν in Fig. 1. We take negative ν to compare
with the results given in Ref. [34], which uses an opposite
sign convention. (There is a particle-hole symmetry of the

Hamiltonian (2.2) via ν → −ν, λ → λ†, λ† → λ, and
X → −X). The masked autoregressive flow yields better
(lower) variational energies. These energies are seen to be
close to the j ¼ 0 results obtained in Ref. [34]. The
variational results seem to be asymptotically accurate as
jνj → ∞, while remaining a reasonably good approxima-
tion at small ν. Small ν is an intrinsically more difficult
regime, as the potential develops flat directions (visualized
in Ref. [34]), and hence the wave function is more
complicated, possibly with long tails. In the supersym-
metric R ¼ 2 sector, where quantum mechanical effects at
small ν are expected to be strongest, further significant
improvement at the smallest values of ν is seen with deeper
autoregressive networks and more flexible base distribu-
tions, as we describe shortly. Analogous improvements in
these regimes will also be seen at larger N in Sec. IV C and
the SM, Sec. D [45].
In Fig. 1, the base distributions piðxiÞ, introduced in the

previous subsection, are chosen to be a mixture of s
generalized normal distributions:

FIG. 1. Benchmarking the architecture: Variational ground-
state energies for the mini-BMN model with N ¼ 2 and fermion
numbers R ¼ 0 and R ¼ 2 (shown as dots) compared to the exact
ground-state energy in the j ¼ 0 sector, obtained in Ref. [34]
(shown as the dashed curve). Uncertainties are at or below the
scale of the markers; in particular, the variational energies slightly
below the dashed line are within the numerical error of the line.
NF stands for normalizing flows and MAF for masked autore-
gressive flows. As described in the main text, the numbers in the
brackets are, first, the number of layers in the neural networks
and, second, the number of generalized normal distributions in
each base distribution.
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piðxiÞ¼
Xs
r¼1

kir
βir

2αirΓð1=βirÞ
e−ðjxi−μirj=αirÞ

βir ;
Xs
r¼1

kir¼1: ð3:8Þ

Here, the kir are positive weights for each generalized
normal distribution in the mixture. In Eq. (3.8), the kir, αir,
βir, and μir are learnable (i.e., variational) parameters. For
autoregressive flows, these parameters further depend on
xj, with 1 ≤ j < i, according to Eq. (3.4).
Because of thegauge fixing conditions 2 and 3 in Sec. II B,

some components xi are constrained to be positive. In the
normalization flow, this case is implemented by an additional
map xi ↦ expðxiÞ. For the autoregressive flows, we have a
more refined control over the base distributions; in this case,
for components xi that must be positive, we draw from
Gamma distributions instead:

piðxi>0Þ¼
Xs

r¼1

kir
ðβirÞαir
ΓðαirÞ

ðxiÞαir−1e−βirxi ;
Xs
r¼1

kir¼1; ð3:9Þ

where again the kir, αir, and βir depend on xj, with 1 ≤ j < i,
according to Eq. (3.4).
In Fig. 1, we have shown mixtures with s ¼ 1, 3, 5

distributions. The number of layers in Eq. (3.4) has been
increased with s to search for potential improvements in the
space of variational wave functions. As noted, the only
improvement within the autoregressive flows in going
beyond one layer and one generalized normal distribution
is seen at the smallest values of ν with R ¼ 2. On the other
hand, the gap between the variational energies of the two
types of flows in Fig. 1 suggests that the wave function is
complicated in this regime, so the more sophisticated MAF
architecture shows an advantage. The recursive nature of
the MAF flows means that they are already “deep” with
only a single layer. The complexity of the small ν wave
function should be contrasted with the fuzzy sphere phase
at large positive ν as discussed in Sec. IV and shown in,

e.g., Figs. 2 and 3. The wave function in this semiclassical
regime is almost Gaussian, and indeed, the NF(1, 1) and
MAF(1, 1) flows give similar energies when initialized near
fuzzy sphere configurations. The NF architecture, in fact,
gives slightly lower energies in this regime, sowe have used
normalizing flows in Figs. 2 and 3 for the fuzzy sphere.
The numerics above and below are performed with

D ¼ 4 in Eq. (2.6), so the fermionic wave function
jMðXÞi is a sum of four free fermion states for each value
of the bosonic coordinates X. In the SM, Sec. D [45], we
see that increasing D above 1 lowers the variational energy
at small ν, indicating that the fermionic states are not
Hartree-Fock in this regime.

IV. EMERGENCE OF GEOMETRY

A. Numerical results, bosonic sector

The architecture described above gives a variational
wave function for low-energy states of the mini-BMN
model. With the wave function in hand, we can evaluate
observables. We start with the purely bosonic sector of the
model (i.e., R ¼ 0). Then, we add fermions. An important
difference between the bosonic and supersymmetric cases
is that the semiclassical fuzzy sphere state is metastable in
the bosonic theory but stable in the supersymmetric theory.
Figure 2 shows the expectation value of the radius

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
trðX2

1 þ X2
2 þ X2

3Þ
r

; ð4:1Þ

for runs initialized close to a fuzzy sphere configuration
(solid circles) and close to zero (open circles). For large ν, a
fuzzy sphere state with large radius is found, in addition to a
“collapsed” state without significant spatial extent. Below
νc ≈ 4, the fuzzy sphere state ceases to exist. The nature of
the transition at νc can be understood from the variational
energy of the states, plotted in Fig. 3. The bosonic semi-
classical fuzzy sphere state is seen to be metastable at large

FIG. 2. Expectation value of the radius in the zero fermion
sector of the mini-BMN model, for different N and ν. The dashed
lines are the semiclassical values (4.4). Solid dots are initialized
near the fuzzy sphere configuration, and the open markers are
initialized near zero. We have used normalizing and autoregres-
sive flows, respectively, as these produce more accurate varia-
tional wave functions in the two different regimes.

FIG. 3. Variational energies in the zero fermion sector of the
mini-BMN model, for different N and ν. The dashed lines are
semiclassical values: E ¼ − 3

2
νðN2 − 1Þ þ ΔEjbos, with ΔEjbos

given in Eq. (4.8). As in Fig. 2, solid dots are initialized near the
fuzzy sphere configuration, and the open markers are initialized
near zero.
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ν, as the collapsed state has lower energy. For ν < νc, the
fuzzy sphere is no longer even metastable. We gain a
semiclassical understanding of this transition in Sec. IV B.
Figures 2 and 3 show that the radius and energy of

the fuzzy sphere state are accurately described by semi-
classical formulas (derived in the following section)
for all ν > νc. In particular, E=N3 and r=N are rapidly
converging towards their large N values. Figure 4 further
shows that the probability distribution for the radius r
becomes strongly peaked about its semiclassical expect-
ation value at large ν.
Analogous behavior to that shown in Figs. 2 and 3 has

previously been seen in classical Monte Carlo simula-
tions of a thermal analogue of our quantum transition
[47–49]. These papers study the thermal partition func-
tion of models similar to Eq. (1.1) in the classical limit,
i.e., without the Π2 kinetic energy term. The fuzzy
geometry emerges in a first-order phase transition as a
low-temperature phase in these models. We see that, in
our quantum mechanical context, the geometric phase is
associated with the presence of a specific boundary-law
entanglement.

B. Semiclassical analysis of the fuzzy sphere

The results above describe the emergence of a (meta-
stable) geometric fuzzy sphere state at ν > νc. In this
section, we recall that in the ν → ∞ limit, the fluctuations
of the geometry are classical fields. For finite ν > νc, the
background geometry is well defined at large N, but
fluctuations will be described by an interacting (noncom-
mutative) quantum field theory.
In the large ν limit, the wave function can be described

semiclassically [39,40]. We now briefly review this limit,
with details given in the SM, Sec. C [45]. These results
provide a further useful check on the numerics and will
guide our discussion of entanglement in Sec. V.

The minima of the classical potential occur at

½Xi; Xj� ¼ iνϵijkXk: ð4:2Þ

These are supersymmetric solutions of the classical theory,
annihilated by the supercharges (2.3) in the classical limit;
therefore, they have vanishing energy. The solution of
Eq. (4.2) is

Xi ¼ νJi; ð4:3Þ

where the Ji are representations of the suð2Þ algebra,
½Ji; Jj� ¼ iϵijkJk. Here, we are interested in maximal,
N-dimensional irreducible representations. (Reducible rep-
resentations can also be studied, corresponding to multiple
polarized D branes.)
The suð2Þ Casimir operator suggests a notion of

“radius” given by

r2 ¼ 1

N

X3
i¼1

trðXiÞ2 ¼ ν2ðN2 − 1Þ
4

: ð4:4Þ

Indeed, the algebra generated by the Xi matrices tends
towards the algebra of functions on a sphere as N → ∞
[37,38]. At finite N, a basis for this space of matrices is
provided by the matrix spherical harmonics Ŷjm. These
harmonics obey

X3
i¼1

½Ji;½Ji;Ŷjm��¼jðjþ1ÞŶjm; ½J3;Ŷjm�¼mŶjm: ð4:5Þ

We construct the Ŷjm explicitly in the SM, Sec. C [45]. The
j index is restricted to 0 ≤ j ≤ jmax ¼ N − 1. The space of
matrices therefore defines a regularized or “fuzzy”
sphere [36].
Matrix spherical harmonics are useful for parametrizing

fluctuations about the classical state (4.3). Writing

Xi ¼ νJi þ
X
jm

yijmŶjm; ð4:6Þ

the classical equations of motion can be perturbed about
the fuzzy sphere background to give linear equations for the
parameters yijm. The solutions of these equations define
the classical normal modes. We find the normal modes in
the SM, Sec. C [45], proceeding as in Refs. [39,40]. The
normal mode frequencies are found to be νω, with

ω2 ¼ 0 multiplicity N2 − 1;

ω2 ¼ j2 multiplicity 2ðj − 1Þ þ 1;

ω2 ¼ ðjþ 1Þ2 multiplicity 2ðjþ 1Þ þ 1: ð4:7Þ

Recall that 1 ≤ j ≤ jmax ¼ N − 1. The three different sets
of frequencies in Eq. (4.7) correspond to the group theoretic

FIG. 4. Probability distribution, from the variational wave
function, for the radius in the fuzzy sphere phase for N ¼ 8
and different ν. The horizontal axis is rescaled by the semi-
classical value of the radius r0, given in Eq. (4.4) below. The
width of the distribution in units of the classical radius becomes
smaller as ν is increased.
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suð2Þ decomposition j ⊗ 1 ¼ ðj − 1Þ ⊕ j ⊕ ðjþ 1Þ.
Here, j is the “orbital” angular momentum, and the 1 is
due to the vector nature of the Xi. We will give a field
theoretic interpretation of these modes shortly. The modes
give the following semiclassical contribution to the energy
of the fuzzy sphere state:

ΔEjbos ¼
jνj
2

X
jωj ¼ 4N3 þ 5N − 9

6
jνj: ð4:8Þ

This energy is shown in Fig. 3. The scaling as N3 arises
because there areN2 oscillators, with maximal frequency of
order N. This semiclassical contribution will be canceled
out in the supersymmetric sector studied in Sec. IV C
below.
The normal modes (4.7) can be understood by mapping

the matrix quantum mechanics Hamiltonian onto a non-
commutative gauge theory. The analogous mapping for the
classical model has been discussed in Ref. [50]. We carry
out this map in the SM, Sec. C [45]. The original
Hamiltonian (1.1) becomes the following noncommutative
U(1) gauge theory on a unit spatial S2 [setting the sphere
radius to 1 in the field theory description will connect easily
to the quantized modes in Eq. (4.7)]:

H ¼ ν

Z
dΩ

�
1

2
ðπiÞ2 þ 1

4
ðfijÞ2

�
þ const: ð4:9Þ

The noncommutative star product ⋆ is defined in the SM
[45] and

fij ≡ iðLiaj − LjaiÞ þ ϵijkak þ i

ffiffiffiffiffiffiffiffi
4π

Nν3

r
½ai; aj�⋆; ð4:10Þ

where the derivatives generate rotations on the sphere Li ¼
−iϵijkxj∂k and ½f; g�⋆ ≡ f⋆g − g⋆f. In Eqs. (4.9) and
(4.10), the vector potential ai can be decomposed into
two components tangential to the sphere, which become the
two-dimensional gauge field, and a component transverse
to the sphere, which becomes a scalar field. This decom-
position is described in the SM, Sec. C [45]. The normal
modes (4.7) are coupled fluctuations of the gauge field and
the transverse scalar field. The zero modes in Eq. (4.7) are
pure gauge modes, given in Eq. (4.11) below. In Eq. (4.10),
the effective coupling controlling quantum field theoretic
interactions is seen to be 1=ðNνÞ3=2. The extra 1=N arises
because the commutator ½ai; aj�⋆ vanishes as N → ∞; see
the SM [45]. Corrections to the Gaussian fuzzy sphere state
are therefore controlled by a different coupling than that of
the ‘t Hooft expansion (recall λ ¼ N=ν3).
The SUðNÞ gauge symmetry generators (2.5) are real-

ized in an interesting way in the noncommutative field
theory description. We see in the SM [45] that upon
mapping to noncommutative fields, the gauge transforma-
tions become

δai ¼ −iLiy −
ffiffiffiffiffiffiffiffi
4π

Nν3

r
ðn ×∇y · ∇Þai: ð4:11Þ

Here, n is the normal vector and yðθ;ϕÞ a local field on the
sphere. The first term in Eq. (4.11) is the usual U(1)
transformation. The second term describes a coordinate
transformation with infinitesimal displacement n ×∇y.
Indeed, it is known that noncommutative gauge theories
mix internal and spacetime symmetries, which, in this case,
are area-preserving diffeomorphisms of the sphere [51,52].
The emergent U(1) noncommutative gauge theory thereby
realizes the large N limit of the microscopic SUðNÞ gauge
symmetry, as area-preserving diffeomorphisms [37,38].
The fluctuation modes about the fuzzy sphere back-

ground allow a one-loop quantum effective potential for the
radius to be computed in the SM, Sec. C [45]. The potential
at N → ∞ is shown in Fig. 5. At large ν, the effective
potential shows a metastable minimum at r ∼ Nν=2. For
ν < ν1-loopc;N¼∞, this minimum ceases to exist. The large N,
one-loop analysis therefore qualitatively reproduces the
behavior seen in Figs. 2 and 3. The quantitative disagree-
ment is mainly due to finite N corrections. The transition is
only sharp as N → ∞.

C. Numerical results, supersymmetric sector

We now consider states with fermion number
R ¼ N2 − N. The fuzzy sphere background is now super-
symmetric at large positive ν [32]. The contribution of the
fermions to the ground-state energy is seen in the SM,
Sec. C [45], to cancel the bosonic contribution (4.8) at one
loop:

−
3

2
νðN2 − 1Þ þ ΔEjfer þ ΔEjbos ¼ 0: ð4:12Þ

In Fig. 6, the variational upper bound on the energy of the
fuzzy sphere state remains close to zero for all values of ν.
Figure 7 shows the radius as a function of ν. Probing
the smallest values of ν requires a more powerful

FIG. 5. One-loop effective potential ΓðrÞ for the radius of the
bosonic (R ¼ 0) fuzzy sphere as N → ∞. The fuzzy sphere is
only metastable when ν > ν1-loopc;N¼∞ ≈ 3.03; see the SM [45].
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wave-function ansatz than those of Figs. 6 and 7. We will
consider that regime shortly.
In contrast to the states with zero fermion number in

Fig. 3, here the fuzzy sphere is seen to be the stable ground
state at large ν. However, the fuzzy sphere appears to merge
with the collapsed state below a value of ν that decreases
with N, which is physically plausible: While the classical
fuzzy sphere radius r2 ∼ ν2N2 decreases at small ν,
quantum fluctuations of the collapsed state are expected
to grow in space as ν → 0. This is because the flat
directions in the classical potential of the ν ¼ 0 theory,
given by commuting matrices, are not lifted in the presence
of supersymmetry [53]. Eventually, the fuzzy sphere should
be subsumed into these quantum fluctuations. This
smoother large N evolution towards small ν (relative to
the bosonic sector) is mirrored in the thermal behavior of
classical supersymmetric models [54,55].
Indeed, exploring the small ν region with more precision,

we observe a physically expected feature. In Fig. 8, we see
that as ν decreases towards zero, the radius not only ceases
to follow the semiclassical decreasing behavior but turns

around and starts to increase. The variance in the distri-
bution of the radius is also seen to increase towards small ν,
revealing the quantum mechanical nature of this regime.
These behaviors (nonmonotonicity of radius and increasing
variance) are expected—and proven for N ¼ 2—because
the flat directions of the classical potential at ν ¼ 0 show
that the extent of the wave function is set by purely
quantum mechanical effects in this limit.
The small ν regime here is furthermore an opportunity to

test the versatility of our variational ansatz away from
semiclassical regimes. In the SM, Sec. D [45], we see that
for small ν, MAFs achieve much lower energies than NFs.
Increasing the number of distributions in the mixture and
the number D of free fermions states in Eq. (2.6) further
lowers the energy. These facts mirror the behavior we found
in our N ¼ 2 benchmarking in Sec. III B at small ν,
increasing our confidence in the ability of the network
to capture this regime for large N also. The error in a
variational ansatz is, as always, not controlled, and there-
fore, further exploration of this regime is warranted before
very strong conclusions can be drawn. We plan to revisit
this regime in future work, to search for the possible
presence of emergent “throat” geometries, as we discuss in
Sec. VI below.

V. ENTANGLEMENT ON THE FUZZY SPHERE

In this section, we show that the large ν fuzzy sphere
state discussed above contains boundary-law entanglement.
To compute the entanglement, one must first define a
factorization of the Hilbert space. For our emergent space at
finite N and ν, the geometry is both fuzzy and fluctuating,
and hence lacks a canonical spatial partition. The fuzziness
of the sphere is captured by a toy model of a free field on a
sphere with an angular-momentum cutoff. Recall from
Sec. IV that the noncommutative nature of the fuzzy sphere
amounts to an angular-momentum cutoff jmax ¼ N − 1.

FIG. 7. Expectation value of radius in the SUSY sector of the
mini-BMN model, for different N and ν. Solid dots are initialized
near the fuzzy sphere configuration, and the open markers are
initialized near zero. The dashed lines are the semiclassical
values (4.4).

FIG. 8. Distribution of radius for differentN and small ν. Bands
show the standard deviation of the quantum mechanical distri-
bution of r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞP trX2

i

p
, not to be confused with numeri-

cal uncertainty of the average. Recall that the numbers in the
brackets are, first, the number of layers in the neural networks
and, second, the number of generalized normal distributions in
each base distribution.

FIG. 6. Variational energies in the SUSY sector of the mini-
BMN model, for different N and ν. Solid dots are initialized near
the fuzzy sphere configuration, and the open markers are
initialized near zero. We use normalizing and autoregressive
flows, respectively, as these produce more accurate variational
wave functions in the two different regimes.
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We will start, then, by defining a partition of the space of
functions with such a cutoff.

A. Free field with an angular-momentum cutoff

Consider a free massive complex scalar field φðθ;ϕÞ on a
unit two-sphere with the following Hamiltonian:

H ¼
Z
S2
dΩ½jπj2 þ j∇φj2 þ μ2jφj2�: ð5:1Þ

Here, π is the field conjugate to φ. We impose a cutoff
j ≤ jmax on the angular momentum, rending the quantum
mechanical problem well defined. The fields can therefore
be decomposed into a sum of spherical harmonic modes:

φðθ;ϕÞ ¼
Xjmj≤j

0≤j≤jmax

ajmYjmðθ;ϕÞ: ð5:2Þ

The wave functional of the quantum field φðθ;ϕÞ is then a
mapping from coefficients ajm to complex amplitudes. The
ground-state wave functional of the Hamiltonian (5.1) is

ψðajmÞ ∝ e−
P

jm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ1Þþμ2

p
jajmj2 : ð5:3Þ

To calculate entanglement for quantum states, a factori-
zation of the Hilbert spaceH ¼ H1 ⊗ H2 is prescribed. To
motivate the construction of such a factorization in the
fuzzy sphere case, we now review the general framework of
defining entanglement in (factorizable) quantum field
theories.
In quantum mechanics, a quantum state is a function

from the configuration space Q to complex numbers, and
the Hilbert space of all quantum states is commonly that of
square integrable functions H ¼ L2ðQÞ. In quantum field
theories, the space Q is furthermore a linear space of
functions on some geometric manifold M, and thus an
orthogonal decomposition Q ¼ Q1 ⊕ Q2 induces a fac-
torization of H ¼ L2ðQ1Þ ⊗ L2ðQ2Þ, which can be
exploited to define entanglement.
To define entanglement, it then suffices to find an

orthogonal decomposition of the space of fields on the
fuzzy sphere. Without an angular-momentum cutoff, i.e.,
with jmax → ∞, there is a natural choice for any region A on
the sphere, which sets Q1 to be all functions supported on
A, and Q2 all functions supported on Ā, the complement of
A. Any function f onM can be uniquely written as a sum of
f1 ∈ Q1 and f2 ∈ Q2, where f1¼fχA and f2 ¼ fð1 − χAÞ.
Here, χA is the function on the sphere that is 1 on A
and 0 otherwise. Note that the map of multiplication
by χA, f ↦ fχA, acts as the projection Q1 ⊕ Q2 → Q1.
Conversely, given any orthogonal projection operator
P∶Q → Q, we can decompose Q ¼ imP ⊕ kerP.
When the cutoff jmax is finite, multiplication by χA will

generally take the function out of the subspace of functions

with j ≤ jmax. However, we can still do our best to
approximate the projector P∞

A of multiplication by χA, as
defined in the previous paragraph, with a projector Pjmax

A
that lives in the subspace with j ≤ jmax. Formally, let Qjmax

be the space of functions on the sphere spanned by
Yjmðθ;ϕÞ, with j ≤ jmax. Define the orthogonal projector

Pjmax
A ∶Qjmax →Qjmax to minimize the distance kPjmax

A − P∞
A k.

The projector Pjmax
A annihilates all functions in the orthogo-

nal complement of Qjmax , when viewed as an operator
acting on Q∞. It is convenient to choose k·k to be the
Frobenius norm, and in the SM, Sec. E [45], an explicit
formula for Pjmax

A is obtained.
The projector Pjmax

A then defines a factorization of the
Hilbert space L2ðQjmaxÞ ¼ L2ðimPjmax

A Þ ⊗ L2ðkerPjmax
A Þ for

any region A, and entanglement can be evaluated in the
usual way. In particular, the second Rényi entropy of a pure
state jψi on a region A is

S2ðρAÞ ¼ − ln
Z

dxAdxĀdx
0
Adx

0̄
AψðxA þ xĀÞψ�ðx0A þ xĀÞ

× ψðx0A þ x0̄AÞψ�ðxA þ x0̄AÞ

¼ − ln
Z

dxdx0ψðxÞψ�ðPx0 þ ðI − PÞxÞψðx0Þ

× ψ�ðPxþ ðI − PÞx0Þ; ð5:4Þ

where xA ¼ Px and xĀ ¼ ðI − PÞx are integrated over imP
and kerP, for P ¼ Pjmax

A , and xA and xĀ can be more
compactly combined into a field x with j ≤ jmax. Note that
the various x’s in Eq. (5.4) denote functions on the sphere.
The projector Pjmax

A is found to have two important
geometric features:
(1) The trace of the projector, which counts the number

of modes in a region, is proportional to the size of the
region. Specifically, at large jmax, trP

jmax
A ∝ j2maxjAj

as is seen numerically in Fig. 9 and understood
analytically in the SM, Sec. E [45].

FIG. 9. Trace of the projector versus fractional area of the
region (a spherical cap with polar angle θA), with different
angular-momentum cutoffs jmax. A linear proportionality is
observed at large jmax. The discreteness in the plot arises because
the finite jmax space of functions cannot resolve all angles.
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(2) The second Rényi entropy defined by the projector
follows a boundary law. At large jmax, with the mass
fixed to μ ¼ 1, the entropy S2 ≈ 0.03jmaxj∂Aj as is
seen numerically in Fig. 10 and understood analyti-
cally in the SM, Sec. E [45].

This boundary entanglement law in Fig. 10 is of course
precisely the expected entanglement in the ground state of a
local quantum field [6,7]. As the cutoff jmax is removed, the
entanglement grows unboundedly.
The partition we have just defined can now be adapted to

the fluctuations about the large ν fuzzy sphere state in the
matrix quantum mechanics model. We do this in the
following subsection. Intuitively, we would like to replace
the jðjþ 1Þ þ μ2 spectrum of the free field in the wave
function (5.3) with the matrix mechanics modes (4.7).
Recall that the matrix modes are cut off at angular
momentum jmax ¼ N − 1.

B. Fuzzy sphere in the mini-BMN model

Now, we address two additional subtleties that arise
when adapting the free field ideas above to the mini-BMN
fuzzy sphere. First, the mini-BMN theory is an SUðNÞ
gauge theory. It is known that entanglement in gauge
theories may depend upon the choice of gauge-invariant
algebras associated with spatial regions [56]. Different
prescriptions correspond to different boundary or gauge
conditions [57]. However, for a fuzzy geometry, the
boundaries of regions and gauge edge modes are not
sharply defined. To introduce the fewest additional degrees
of freedom, we choose to factorize the physical Hilbert
space, instead of an extended one [58,59], to evaluate
entanglement in the mini-BMN model. This method is
similar to the “balanced center” procedure in Ref. [56],
where edge modes are absent [60].
Second, the emergent fields include fluctuations of the

geometry itself. The factorization that we have discussed in
the previous subsection is tailored to a region on the sphere

and does not need to approximate a spatial region in other
geometries. The partition is even less meaningful in non-
geometric regions of the Hilbert space. The variational
wave function we have constructed can be used to compute
entanglement for any given factorization of the Hilbert
space, but it is unclear if preferred factorizations exist away
from geometric limits. In this work, we focus on the
entanglement in the ν → ∞ limit where the fields are
infinitesimal and hence do not backreact on the spherical
geometry. In this limit, the factorization is precisely—up to
issues of gauge invariance—that of the free-field case
discussed in the previous subsection.
The matrices corresponding to the infinitesimal fields on

the fuzzy sphere are, cf. Eq. (4.6),

Ai ¼ Xi − νJi; ð5:5Þ

which should be thought of as living in the tangent space at
Xi ¼ νJi. At large ν, the wave function is strongly
supported on the classical configuration, and hence in this
limit, the infinitesimal description is accurate. Gauge
transformations then act as

Ai → Ai þ iϵ½Y; νJi� þ…; ð5:6Þ

where ϵ is infinitesimal and Y is an arbitrary Hermitian
matrix. The ϵ½Y; Ai� term is omitted in Eq. (5.6) as it is of
higher order. Gauge invariance of the state is manifested as

ψðνJi þ AiÞ ¼ ψðνJi þ Ai þ iϵ½Y; νJi�Þ: ð5:7Þ

Physical states are wave functions on gauge orbits ½Ai�,
the set of infinitesimal matrices differing from Ai by a
gauge transformation (5.6). Similarly to the discussion of
free fields above, a partition of the space of gauge orbits is
specified by a projector P. We now explain how this
projector is constructed. Given a projector P0 acting on
infinitesimal matrices Ai, a projector acting on gauge orbits
can be defined as

Pð½Ai�Þ ¼ ½P0ðAiÞ�: ð5:8Þ

However, for P to be well defined, P0 must preserve gauge
directions:

P0ðAi þ iϵ½Y; νJi�Þ ¼ P0ðAiÞ þ iϵ½Y 0; νJi�; ð5:9Þ

for any Ai, Y and some Y 0 dependent on Y. Let V be the
subspace of gauge directions:

V ¼ fi½Y; Ji�∶Yis Hermitiang: ð5:10Þ

Then, Eq. (5.9) is equivalent to the requirement that
P0ðVÞ ⊂ V. The strategy for finding the projector P is to
solve for the projector P0 that minimizes kP0 − χAk subject

FIG. 10. The second Rényi entropy for a complex scalar free
field (with mass μ ¼ 1) versus the polar angle θA of a spherical
cap. The entropy with different cutoffs jmax is shown. At large
jmax, the curve approaches the boundary law 0.03 × 2π sin θA,
shown as a dashed line. Discreteness in the plot is again due to the
finite jmax space of functions.
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to the constraint that Eq. (5.9) is satisfied. Then, P is
defined via P0 as in Eq. (5.8).
The problem of minimizing kP0 − χAk for orthogonal

projectors P0 such that P0ðVÞ ⊂ V is exactly solvable as
follows. The condition that P0ðVÞ ⊂ V is equivalent to
imposing that P0 ¼ PV ⊕ PV⊥ , where PV is some projector
in the subspace V and PV⊥ in its orthogonal complement
V⊥. Here, kP0 − χAk is minimized if and only if
kPV − χAjVk and kPV⊥ − χAjV⊥k are both minimized.
Via the correspondence between matrix spherical harmon-
ics Ŷjm and spherical harmonic functions Yjmðθ;ϕÞ—in the
SM, Sec. C [45]—both of these minimizations become the
same problem as in the free field case, with a detailed
solution in the SM, Sec. E [45].
The second Rényi entropy, in terms of gauge orbits, is

evaluated similarly to Eq. (5.4):

S2ðρAÞ ¼ − ln
Z

d½A�d½A0�Δð½A�ÞΔð½A0�Þ

× ψ invð½A�Þψ�
invðP½A0� þ ðI − PÞ½A�Þ

× ψ invð½A0�Þψ�
invðP½A� þ ðI − PÞ½A0�Þ; ð5:11Þ

where Δ are measure factors for gauge orbits and
ψ invð½A�Þ ¼ ψðνJ þ AÞ. Recall that ψ is gauge invariant
according to Eq. (5.7). The formula (5.11) as displayed
does not involve any gauge choice. However, there are
some gauges where evaluating Eq. (5.11) is particularly
convenient. The gauge we choose for this purpose, which is
different from that in Sec. II B, is that A ∈ V⊥; i.e., the
fields are perpendicular to gauge directions. In this gauge,
measure factors are trivial, and the projector is simply PV⊥,
which minimizes kPV⊥ − χAjV⊥k:

S2ðρAÞ ¼ − ln
Z
V⊥

dAdA0ψ⊥ðAÞψ�⊥ðPV⊥A
0 þ ðI − PV⊥ÞAÞ

× ψ⊥ðA0Þψ�⊥ðPV⊥Aþ ðI − PV⊥ÞA0Þ; ð5:12Þ

where ψ⊥ðAÞ is defined as ψðνJ þ AÞ for A ∈ V⊥ [61].
The bosonic fuzzy sphere wave function can bewritten in

the ν→∞ limit as follows. As in Eq. (4.6), the perturbations
can be decomposed as Ai¼P

aδxa
P

jmy
i
jmaŶjm, where the

yijma diagonalize the potential energy at quadratic order in A
so that V¼ðν2=2ÞPaω

2
aðδxaÞ2þ��� (see SM, Sec. C [45]).

The wave function is then, analogously to Eq. (5.3),

ψ⊥ðAÞ ∝ e−
jνj
2

P
a
jωajðδxaÞ2 : ð5:13Þ

The frequencies are given by Eq. (4.7), excluding the pure
gauge zero modes. Using this wave function, the Rényi
entropy (5.12) can be computed exactly and is shown as a
solid line in Fig. 11. As N → ∞, these curves approach a
boundary law

S2ðρAÞ ≈ 0.03Nj∂Aj: ð5:14Þ

Here, j∂Aj ¼ 2π sin θA is again the circumference of the
spherical cap A [in units where the sphere has radius one,
consistent with the field theoretic description in Eq. (4.9)].
The result (5.14) is the same as that of the toy model in
Fig. 10, with jmax now set by the microscopic matrix
dynamics to be N − 1. (A simpler instance of entanglement
revealing the inherent graininess of a spacetime built from
matrices is two-dimensional string theory [62,63]). This
regulated boundary-law entanglement underpins the emer-
gent locality on the fuzzy sphere at large N and ν. Recall
from the discussion around Eq. (4.9) that there are only two
emergent fields on the sphere: a Maxwell field and a scalar
field. The perpendicular gauge choice we have made trans-
lates into the Coulomb gauge for the emergent Maxwell
field, cf. the discussion around Eq. (4.11) above. The factor
of N in Eq. (5.14) is due to the microscopic cutoff at a
scale Lfuzz ∼ Lsph=N.
Previous work on the entanglement of a free field on a

fuzzy sphere involved similar wave functions but a different
factorization of the Hilbert space, which was inspired
instead by coherent states [64–67]. Those results did not
always produce boundary-law entanglement. Here, we see
that the UV/IR mixing in noncommutative field theories
does not preclude a partition of the large N and large ν
Hilbert space with a boundary-law entanglement.
We can also evaluate the entropy (5.12) using the large ν

variational wave functions, without assuming the asymp-
totic form (5.13). The results are shown as dots in Fig. 11.
However, we stress that only the ν → ∞ limit has a clear
physical meaning, where fluctuations are infinitesimal. The
variational results are close to the exact values in Fig. 11,
showing that the neural network ansatz captures the
entanglement structure of these matrix wave functions.
The results in this section are for the bosonic fuzzy

sphere. The projection we introduced in order to partition

FIG. 11. The second Rényi entropy for a spherical cap on the
matrix theory fuzzy sphere versus the polar angle θA of the cap.
Solid curves are exact values at ν ¼ ∞, and dots are numerical
values from variational wave functions at ν ¼ 10 for different N.
The wave functions are NF(1, 1) in the zero fermion sector as
shown in Figs. 2 and 3.
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the space of matrices can be extended in a similar, but more
involved, way to factorize the fermionic Hilbert space.

VI. DISCUSSION

We have seen that neural network variational wave
functions capture, in detail, the physics of a semiclassical
spherical geometry that emerges in the mini-BMN model
(2.1) at large ν. Away from the semiclassical limit, the
spherical geometry either abruptly or gradually collapses
towards a new state. In Fig. 8, we saw that in the “super-
symmetric” sector, this new state was characterized by an
increase in both the expectation value and quantum
mechanical variance of the radius as ν → 0. To understand
the physics of this process, and to start thinking about the
nature of the collapsed state as ν → 0, it is helpful to
consider the string theoretic embedding of the model.
The mini-BMN model can be realized in string theory as

the description of N D-particles in an AdS4 spacetime.
Let us review some aspects of this realization [32]. The
parameter

1

ν3
∼ gs

�
LAdS

Ls

�
3

: ð6:1Þ

Here, LAdS is the AdS radius, Ls is the string length, and gs
is the string coupling. The proportionality in Eq. (6.1)
depends on the volume, in units of the string length, of
internal cycles wrapped by the branes in the compactifi-
cation down to AdS4. In particular, the mass of a single D-
particle is proportional to 1=gs times the wrapped internal
volume. The strength of the gravitational backreaction of N
coincident D-particles is then controlled by GN × N=gs.
Here, GN ∼ g2s is the four-dimensional Newton constant,
where we have suppressed a factor of the volume of the
compactification manifold. Therefore, if we keep the
AdS radius fixed in string units, gravitational backreation
becomes important when gsN ∼ N=ν3 ≳ 1. Up to factors of
the volume of compactification cycles, this is equivalent to
the statement that the dimensionless ’t Hooft coupling
λ ¼ N=ν3, introduced below Eq. (1.1), becomes large.
ForN=ν3 ≲ 1, then, the D-particles can be treated as light

probes on the background AdS spacetime. The fuzzy
sphere configuration describes a polarization of the D-
particles into spherical “dual giant gravitons.” From the
string theory perspective, this polarization is driven by
the fourform flux Ω ∼ 1=LAdS supporting the background
AdS4 spacetime. Together with the discussion in the
previous paragraph on the strength of the gravitational
interaction, we can write the heuristic relation N=ν3∼
gravity=flux. At large ν, the flux wins out, and semiclassical
fuzzy spheres can exist; however, at small ν, gravitational
forces cause the spheres to collapse. The entanglement and
emergent locality that we have described in this paper is that
of the polarized spheres, whose excitations are described by

the usual gauge fields and transverse scalar fields of string
theoretic D-branes.
For N=ν3 ≫ 1, it is possible that the strongly interacting,

collapsed D-particles will develop a geometric “throat,” in
the spirit of the canonical holographic correspondence [1].
It is not well understood when such a throat would be
captured by the mini-BMN matrix quantum mechanics.
The variational wave functions that we have developed here
provide a new window into this problem. In particular, we
hope to investigate the small ν collapsed state in more detail
in the future, with the objective of revealing any entangle-
ment associated with emergent local dynamics in the throat
spacetime. If the emergent dynamics includes gravity, there
are two potentially interesting complications. First, the
entanglement of bulk fields may be entwined with entan-
glement due to the “stringy” degrees of freedom that seem
to be manifested in the Bekenstein-Hawking entropy of
black holes as well as in the Ryu-Takayanagi formula
[68–71]. Second, and perhaps relatedly, it may become
crucial to understand the edge-mode contribution to the
entanglement, which we have avoided in our discussion
here [72,73].
More generally, the methods we have developed will be

applicable to a wide range of quantum problems of interest
in the holographic correspondence. The benefit of the
variational neural network approach is direct access to
properties of the zero-temperature quantum mechanical
state. Optimizing the numerical methods and variational
ansatz further, and with more computational power, it
should not be difficult to work with larger values of N.
In addition to understanding the emergence of spacetime
from first principles, it should also be possible to study,
for example, the microstates and dynamics of quantum
black holes.
The code used in the paper is available online [74].
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