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Far-from-equilibrium dynamics that lead to self-organization are highly relevant to complex dynamical
systems not only in physics but also in life, earth, and social sciences. However, it is challenging to find
systems with sufficiently controllable parameters that allow quantitatively modeling of emergent proper-
ties. Here, we study a nonequilibrium phase transition and observe signatures of self-organized criticality in
a dilute thermal vapor of atoms optically excited to strongly interacting Rydberg states. Electromagneti-
cally induced transparency provides excellent control over the population dynamics and enables high-
resolution probing of the driven-dissipative dynamics, which also exhibits phase bistability. Increased
sensitivity compared to previous work allows us to reconstruct the complete phase diagram, including in
the vicinity of the critical point. We observe that interaction-induced energy shifts and enhanced decay only
occur in one of the phases above a critical Rydberg population. This case limits the application of generic
mean-field models; however, a modified, threshold-dependent approach is in qualitative agreement with
experimental data. Near threshold, we observe self-organized dynamics in the form of population jumps
that return the density to a critical value.
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I. INTRODUCTION

Self-organization and nonequilibrium dynamics in com-
plex dynamical systems are responsible for a diverse range
of phenomena not only in physics but also other fields
such as earth sciences, biology, and economics [1]. Many
nonequilibrium systems exhibit self-organized criticality
(SOC) [2] as they evolve to an attractor that coincides
with a critical point in their phase diagram. SOC is
considered a source of complexity in nature; it produces
scale invariance and “pink” 1=f-frequency noise, and it
makes systems insensitive to parameter fluctuations.
Quantitative modeling of simple experimental systems

displaying nonequilibrium dynamics and dynamical phase
transitions is a key to enhancing our understanding of
nonequilibrium phenomena [3]. However, finding systems
with both strong and controllable dynamical nonlinearities
is challenging. Although laser excitation in dilute atomic
gases allows precision measurements of state populations
and phase diagrams, typical interatomic interactions are too
weak to affect nonlinear excitation dynamics. For example,
the observation of optical bistability in nonequilibrium
light-matter systems [4–7] initially required cavity feedback
or decoupling from the environment in cryogenic setups [7].
Much stronger interactions can be achieved in ensembles of
Rydberg atoms [8,9] with strong dipolar interactions and
high sensitivity to charges originating from ionized Rydberg
atoms. Thanks to these mechanisms, Rydberg gases exhibit
rich nonequilibrium dynamics and can form exotic phases
of matter [10–13]. Ultracold atom experiments have
observed aggregate formation [14,15] around seed excita-
tions [16–20] or ions [21], which facilitate Rydberg
excitation, bistable or metastable thermodynamical phases
[14,22], or SOC [23]. Nonequilibrium phase transitions
[24–28] and aggregate formation [29] are also observed in
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experiments using room-temperature Rydberg vapors. In
this paper, we investigate the nonequilibrium dynamics of a
driven-dissipative ensemble of strongly interacting Rydberg
atoms in a room-temperature atomic vapor. We show that
the resulting excitation dynamics can be simulated using an
analogue of the “forest-fire” model [30], a prominent
example of SOC (Sec. II).
Below, we introduce the nonequilibrium system, which

features two thermodynamical phases: one with low
Rydberg atom density and thus no interaction (NI phase),
and another with high Rydberg density, in which strong
interactions facilitate excitation (I phase). In our experi-
ments (setup in Sec. II), we exploit the narrow linewidths
achievable using electromagnetically induced transparency
(EIT) [31,32] to probe the system with MHz-scale fre-
quency resolution—an enhancement of 2 orders of magni-
tude compared to previous work [24–26]. This method
allows us to probe the dynamical phase diagram with
unprecedented precision and observe previously unob-
served spectral features in the vicinity of the critical point
(Secs. IVA and IV B). We show that a combination of
interaction-induced line shifts and broadening are respon-
sible for this rich structure. The results are suggestive of the
importance of ionizing collisions in the bistable dynamics
as identified in other recent work [26,28]. We also show
that the transition threshold can be manipulated by adding a
second probe beam that enhances the Rydberg excitation
rate (Sec. IVA).
Finally, we observe behavior indicative of SOC near

the phase transition. The system is highly susceptible to
small variations, and even short-term fluctuations in the
Rydberg density can induce a phase transition, giving rise to
self-organization and pink noise (Sec. IVD). We also

observe power-law scaling for the size of aggregate clusters
(Sec. IV E), which is consistent with our forest-fire-
type model.

II. BACKGROUND AND MODEL

We work with the following nonequilibrium system
[Fig. 1(a)]: A probe beam propagates through a thermal
vapor of three-level atoms and drives the transition between
a ground state jgi and a low-lying, short-lived excited state
jei. A coupling field couples jei to a highly excited and
long-lived Rydberg state jri. The probe (coupling) Rabi
frequency, angular frequency, and detuning are denoted by
ΩpðcÞ, ωpðcÞ, and ΔpðcÞ, respectively, while ΓeðrÞ are the
decay rates of jei (jri). Since Γr ≪ Γe, we observe ladder
EIT [32], where for Ωp ≪ Ωc, the ensemble is rendered
transparent to the probe in a narrow frequency window
around two-photon resonance Δp ¼ −Δc. In the experi-
ment, we observe the probe transmission on resonance
(Δp ¼ 0) while scanning Δc, Ωp, or Ωc.
The interaction between Rydberg atoms introduces

a strong dynamical nonlinearity as required for self-
organization. Moreover, SOC relies on interaction-induced
avalanches in the nonequilibrium dynamics [33] to trigger a
dynamical phase transition. In a thermal Rydberg vapor,
such an avalanche can be induced by either dipolar
interactions [29] or ionizing collisions with electrons, ions,
or other atoms [34–37]. In either case, the avalanche occurs
above a critical Rydberg densityNR;ðcÞ, and we observe two
distinct thermodynamic phases: a noninteracting phase
(with Rydberg density NR < NR;ðcÞ) and a strongly inter-
acting phase (NR > NR;ðcÞ). In the latter, interactions cause
an effective, NR-dependent detuning of the coupling field,

FIG. 1. (a) Overview of experimental setup. A probe and an identical reference beam are propagating in parallel through a heated Rb
cell (length 5 cm). The probe beam is overlapped with a counterpropagating EIT coupling beam. Their transmission signals are detected
on a differencing photodetector (DD). The probe and reference fields drive the jgi ¼ j5S1=2; F ¼ 3i → jei ¼ j5P1=2; F0 ¼ 2i, and the
coupling light couples the jei → jri ¼ jnD3=2i transition in 85Rb. A switch beam can be added to enhance the Rydberg population
without changing the probe intensity. PBS is for polarizing beam splitter, DM is for dichroic mirror, and λ=2 stands for half-wave plate.
(b) Excitation and interaction dynamics in the different phases. In the noninteracting (NI) phase, the probe transmission under EIT
conditions remains unaffected. Above a critical Rydberg atom density NR;ðcÞ, the system is found in an interacting (I) phase, where
strong interactions lead to energy shifts and enhanced decay of jri.

DING, BUSCHE, SHI, GUO, and ADAMS PHYS. REV. X 10, 021023 (2020)

021023-2



Δc → Δc þ Δ0ðNRÞ [Fig. 1(b)]. The jnDJi-Rydberg states
used in this work are also subject to broadening and
enhanced dephasing, Γr → Γr þ Γ0ðNRÞ [38,39], resulting
from the motional averaging over dipolar interaction
potentials or position-dependent Stark shifts and atom loss
due to ionization [37,40] (Appendixes A and B). These
result in facilitated Rydberg excitation in the I phase and
changes in macroscopic properties of the system. Here, we
observe the changes of the optical response, i.e., discrete
changes in the probe transmission, as the optical suscep-
tibilities of the EIT systems are strongly affected by the
level shifts and broadening in the I phase.
The Rydberg density NR depends not only on the current

parameters of the driving fields but also on the phase of the
system determined by previous excitations. This case
effectively introduces an element of system memory.
Hence, the effective values of Δc and Γr depend on the
scan direction and give rise to hysteresis effects that result
in a bistable optical response. Near NR;ðcÞ, even small
fluctuations can disturb the equilibrium and trigger a
dynamical phase transition due to the avalanche effect [1].

A. Self-organization

To model self-organization in our Rydberg system, we
adapt a model first employed to describe the spreading
of forest fires based on cellular automata that exhibits

self-organized criticality [30]. We consider a 3D array of
100 × 100 × 100 cells. First, the cells are randomly filled
with NR Rydberg and NG ground-state atoms. A cell is in
the NI phase if NR < NR;c [green in Fig. 2(a)], in the I
phase for NR > NR;c (red), or depleted of Rydberg exci-
tations (black). These situations correspond to a healthy
tree, a burning tree, or an empty site in the original forest-
fire model. The thermodynamic phase of each cell is then
iterated according to the rules illustrated in Fig. 2(a): Cells
in the I phase facilitate Rydberg excitation and trigger an
excitation avalanche in adjacent cells in the NI phase such
that they undergo a transition to the I phase. This case
corresponds to the spreading of fire to adjacent trees;
see Figs. 2(a1)–2(a3). Following the excitation avalanche,
the Rydberg population in a cell is depleted to zero.
Nonfacilitated Rydberg excitation induces transitions of
depleted cells to the NI phase (0 < NR < NR;c) with
probability p, corresponding to the growth of a new tree
on an empty site and of cells in the NI to the I phase with
probability f even if not adjacent to cells in the I phase as
NR, corresponding to trees catching fire due to lightning. In
practice, the probabilities p and f that a cell undergoes a
phase transition depend on probe and control detunings and
Rabi frequencies and the phase in neighboring cells [13].
The closed boundary of our array reflects the finite
excitation volume in the experiment as defined by the
laser beam geometry. Figure 2(b) shows the distribution of

FIG. 2. Self-organization as a result of facilitated Rydberg excitation. (a) In analogy to the forest-fire model, cells in the NI phase
(green) transition to the I phase (red) as neighboring cells in the I-phase Rydberg facilitate excitation [(a1) to (a2)]. Following the
transition to the I phase, cells are depleted of Rydberg excitations (black) due to enhanced decay [(a2) to (a3)]. (b) Example showing
phases in a single plane of a system with 100 × 100 × 100 cells following 30 iterations (here, p ¼ 0.3 and f ¼ 0.1). (c) Size distribution
of I-phase clusters for simulations with different p. The initial fraction of the cells in the I phase is 0.5. (d) Power-law exponent jbj vs
f=p for f ¼ 0.1, 0.25, and 0.5. The inset shows a zoom-in for f=p < 5. (e) The simulated I fraction vs NI fraction as a threshold near a
NI fraction of 0.3. Here, the system is initially depleted in the first plane of 100 × 100 cells.
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phases in a single plane following 30 iterations. Figure 2(c)
depicts the result of our model. We record the number of
cells nt in each isolated cluster of cells in the I phase
following each iteration. The cumulative distribution of
cluster sizes following all iterations has a power-law
behavior

mðntÞ ¼ n−bt ; ð1Þ
with exponent b. The shape of the distribution is scale
invariant, that is,

mðCntÞ ¼ ðCntÞ−b ¼ C−bmðntÞ ∝ mðntÞ; ð2Þ
where C is a constant that characterizes the scaling trans-
formation. The scaling invariance implies that the cells
organize themselves into a critical state where events of all
sizes occur. We obtain jbj from 1.7–4 for p ¼ 0.01, 0.05,
and 0.1. For larger p, the occurrence of large cluster sizes
increases. We also vary f and record jbj against p [see
Fig. 2(d)] and find jbj close to 2 in the limit f=p → 0. We
also compare the fraction of I vs NI cells accounting for
much longer lifetimes of the I phase (burning trees), which
corresponds to the case of fast scanning of Δc or Ωp in the
experiment. We observe a clear threshold effect [Fig. 2(e)],
and the strongly nonlinear response in the interval 0.3–0.35
predicts a critical threshold Rydberg population.

B. Rydberg EIT in a thermal vapor

To model the effect of the dynamical phase transition on
the probe transmission, we compute the evolution of the
ensembles’ density matrix ρ by adopting a threshold-
modified mean-field approach where the additional detun-
ing Δ0 ¼ η1NR and the enhanced decay Γ0 ¼ η2NR
are proportional to the Rydberg density above a critical

Rydberg population ρðcÞrr corresponding to NR;ðcÞ. The full
master equation and Hamiltonian are given in Appendix C.
This approach is applicable independent of whether inter-
actions originate from dipolar interactions or ion-induced
Stark shifts. The complex susceptibility of the EIT medium,
including the Doppler effect due to atomic motion, is

χðvÞdv ¼ jμgej2
ϵ0ℏ

ρegðvÞdv ð3Þ

with

ρegðvÞ ¼
NðvÞ(Γr þ 2iðδþ ΔDÞ)

ð2Δp þ 2ωpv=c − iΓeÞðΓr þ 2iðδþ ΔDÞ − iΩ2
eff

where ΔD ¼ ðωp − ωcÞv=c denotes Doppler shift experi-
enced by an atom moving with velocity v and δ ¼ Δc þ Δp

the two-photon detuning. Note that Ωeff is the effective
Rabi frequency of coupling laser. The transmission of the
probe beam through the EIT medium can be obtained from
the susceptibility via

T ∼ e−Im½
R

kLχðvÞdv�; ð4Þ

where L is the medium length and k the wave vector of the
probe field. To model the bistability in the EIT spectra, we
compute χðvÞdv, substituting Δc → Δc þ Δ0ðNRÞ and
Γr → Γr þ Γ0ðNRÞ once the critical threshold population

ρrr > ρðcÞrr is reached.

III. EXPERIMENTAL SETUP

The experimental setup and a scheme of the relevant
85Rb energy levels are depicted in Fig. 1. The probe and
coupling fields counterpropagate through a 5-cm-long
Rb vapor cell at a temperature of T ≈ 50 °C. The atomic
density is 1.5 × 1011 cm−3, corresponding to a mean
interatomic spacing of approximately 1 μm. The probe
beam (1=e2-waist radius of approximately 500 μm) couples
jgi ¼ j5S1=2; F ¼ 3i to jei ¼ j5P1=2; F0 ¼ 2i. The cou-
pling beam (1=e2-waist radius of approximately 200 μm)
is resonant with the transition from jei to jri ¼ jnD3=2i.
The estimated peak values of Ωc=2π are approximately
20 MHz for n ¼ 47 and approximately 10 MHz for n ¼ 70
unless stated otherwise. A reference beam identical to the
probe, but not overlapping with the coupling light, is sent
through the cell in parallel, and its transmission signal is
subtracted from the probe signal following detection on a
pair of balanced amplified photodiodes.
The nonequilibriumphase transition is investigated as three

parameters are varied: the coupling detuningΔc and the Rabi
frequenciesΩp andΩc. ScanningΔc allows us to obtain EIT
transmission spectra, while the probe light is kept on reso-
nance, Δp=2π ¼ 0 MHz, such that the Doppler-broadened
absorption background can be neglected. Scanning Ωp

alters the Rydberg population, and thus mean interaction
strength, as NR ∝ ρrr ∝ Ω2

p (see above). Here, we make an
approximation that all atoms undergo the same Ωp and Ωc

along probe propagation by ignoring its attenuation.
In addition to the probe, an additional switching beam

can be applied to alter the Rydberg density and control the
threshold of the phase transition without changing the
properties of the probe itself. It also couples jgi and jeiwith
detuning Δp but an independent Rabi frequency Ωs. It
intersects with probe and coupling beams at the center of
the cell at 2° to avoid crosstalk between the switching,
probe, and reference beams at the detector.

IV. EXPERIMENTAL RESULTS

A. Optical bistability

In order to observe Rydberg-mediated optical bistability
in the optical response of the three-level EIT medium, we
initially observe the EIT line shape asΔc is scanned through
resonance from negative to positive detuning and vice versa.
Figure 3 shows the results for a range of differentΩp as well
as results of the threshold model [panel (b), dashed lines
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indicate where the system is in the I phase]. At Ωp=2π ¼
6.3 MHz [Fig. 3(a1)], identical EIT spectra are observed for
either scan direction without bistability. At 6.7 MHz—
and, consequently, only slightly higher Rydberg density
NR—we observe almost symmetric optical bistability
above and below resonance [Fig. 3(a2)]. A sudden drop
in the transmission occurs on resonance, where the
excitation rate is highest, independent of the scan direc-
tion indicating the transition from the NI to the I phase. In
this regime, the energy shift Δ0 induced on jri is small
compared to both Δc and the EIT linewidth. This behavior
at low Ωp is distinctively different compared to previous
experiments on Rydberg-induced optical bistability that
used shelving techniques with higher Ωp and linewidths
[24,26]. These observed bistability at large red detuning as
the peak transmission was strongly shifted due to higher
ρrr, and transmission in the I phase (scanning from
positive to negative Δc) exceeded the NI phase. The
ability to probe this new regime and detection of the phase

transition with sub-MHz frequency resolution is a con-
sequence of the narrow EIT resonance. The bistability
windows observed in Fig. 3(a2) have widths <0.5MHz,
2 orders of magnitude narrower compared to previous
experiments [24,26].
AsΩp is increased [Figs. 3(a3)–3(a5)], the spectra become

asymmetric as an increasingly strong spectral shift Δ� [see
definition in Fig. 3(a5)] of the peak transmission relative to
Δc=2π ¼ 0 MHz is observed. The shift increases withΩp as
NR ∝ ρrr ∝ Ω2

p. At Ωp=2π ¼ 6.8 MHz [Fig. 3(a3)], bist-
ability is still observable within the EIT resonance feature,
but the phase transition occurs at lower or higherΔc value for
positive or negative scan directions, respectively. The on-
resonancephase transitiondisappears, as the system is in the I
phase for either scan direction.
For Δ0 comparable to the EIT linewidth, near-resonant

bistability features disappear entirely. Instead, new bistability
windows appear on both sides of the EIT window, as in
shelving experiments [24,26]. Unlike above, the transmission

FIG. 3. Observation of optical bistability induced by a nonequilibrium phase transition in EIT transmission spectra. (a) Transmission
difference between probe and reference beams normalized by the reference field (negative values indicate stronger absorption compared
to the reference) as Δc is scanned from red to blue detuning (red) and vice versa (black) for increasing probe Rabi frequencies
Ωp=2π ¼ 6.3 (a1), 6.7 (a2), 6.8 (a3), 7.4 (a4), and 7.9 MHz (a5). Panel (a5) shows the definitions of the transmission difference between
the states at the point of the phase transition ΔT and the spectral shiftΔ� referred to subsequently. (b) Simulated transmission spectra for
increasing Rydberg densities with Nr ¼ 9.5 (b1), 10.0 (b2), 10.8 (b3), 15.0 (b4), and 18.0 (b5), where Nr is proportional to the number
of Rydberg atoms. The dashed line in panel (b) shows where the system is found in the strongly interacting I phase.
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in the I phase is now exceeding that in the NI phase as the
former’s enhanced decay leads to a broadened transmission
window. In the bistability window below Δc ¼ 0, the system
is found in the I phase for scans from positive to negativeΔc,
where the scan has already crossed through resonance and
sufficient Rydberg population has been built up to maintain
the state. Above Δc ¼ 0, the roles are reversed and system is
in the I phase if scanned from negative to positive detuning,
again after crossing through resonance. The bistability
window is narrower for Δc > 0 as the sign of Δ0 implies
an overall redshift of the spectra due to the choice of jri.
Bistability for blue detuning was also observed by Weller
et al. [24,26] but not in the original experiment by Carr et al.
[24] where the probe was significantly stronger.
Figure 3(b) shows the calculated EIT spectra with

Doppler averaging as given by Eq. (4). The critical density
is estimated to be Nr;ðcÞ ¼ 2.9 × 1010 cm−3 (assuming that
each probe photon creates a Rydberg atom). In the model,
we have set η1=2π ¼ 1.27 × 10−2 MHz μm3 and η2=2π ¼
7.96 × 104 MHz μm3, to match the calculated EIT spectra
to the experimental results. As dissipation is increased in

the I phase, we reduce the threshold population κρðcÞrr below
which the system reverts to the NI phase. Setting κ ¼ 0.78
gives the best fit with the experimental results shown in
Fig. 3(b). The features occurring as ρrr ∝ Ω2

p increases are
qualitatively consistent with the experimental data. When
the system is in the I phase, dissipation is increased due to
many-body dephasing, as discussed before. This case
results in a lower threshold for the transition from the I
phase to the NI phase compared to the reverse process. We
also note an increase in the peak transmission with Ωp in
the experimental data that is not reproduced by the model.
This increase may indicate that ionization processes lead to
a depletion of the atomic density and hence the optical
depth as previously observed in cold atoms [37]. Unlike
decay to the ground state, ionization leads to overall atoms
loss without repopulation of ρgg and is thus not accounted
for in the model. In practice, ionization could be considered
reversible on the timescales of the sweeps as atomic motion
perpendicular to the excitation volume and recombination
effectively repopulate ρgg.

B. Nonequilibrium phase diagram

The enhanced sensitivity of EIT in the detection of
Rydberg-induced optical bistability and the underlying
phases allows us to map out the phase diagram of the
driven-dissipative system and investigate the character of
the nonequilibrium phase transition. We scan Δc=2π over
96 MHz around resonance at a frequency of 10 Hz for
various Ωp with Ωc=2π ¼ 13.8� 0.5 MHz and obtain the
normalized difference in probe transmission between scan
directions shown in Fig. 4(a). The phase diagram emerges
from the phase boundaries that are separated by the red or
black dashed line within þ or − scan direction. As the

bistability is a consequence of the scan-direction-dependent
occupation of the two phases, the corresponding regions
represent the boundaries between the NI phase and the I
phase. Outside these areas, there is no transmission differ-
ence, indicating that the system is in the same phase
irrespective of scan direction, i.e., in the I phase in between
the bistable regions and the NI phase outside. We observe a

critical point at a threshold Rabi frequency of ΩðcÞ
p =2π ¼

5.9� 0.2 MHz with ΔðcÞ
c =2π ¼ 0 MHz. The spectra

shown in Figs. 3(a1) and 3(a2) correspond to regimes

slightly below and above ΩðcÞ
p . The difference in ΩðcÞ

p

between Fig. 3(a) and Fig. 4 results from a slight temper-
ature difference between data sets. As above, the bistable
branch is wider for negative Δc due to the sign of Δ0. In the
bistable branch for negative Δc, the system occupies the I
phase for scans from blue to red detuning and vice versa in
the branch for positive Δc as discussed above. Note that in
the direct vicinity of the critical point, the sign of the
transmission difference is switched compared to larger Ωp.
This case does not correspond to the occupancy of different
phases but the different regimes for the shiftΔ0 compared to
the EIT linewidth as discussed above (Fig. 3).
The onset of the phase transition is characterized by a

broken symmetry accompanied by a nonzero order param-
eter [41]. Figure 4(b) shows the shift in peak transmissionΔ�

[as defined in Fig. 3(a5)] vs Ω2
p ∝ ρrr ∝ NR. Depending on

the origin of the underlying interactions, either the charge
density (ion-induced interactions) or the mean spacing
between Rydberg atoms (dipolar interactions) would re-
present the order parameter, both of which are ultimately
related to NR. To determine the critical point, we fit

Δ� ∝

(
0 for Ω2

p < Ω2
p;ðcÞ

ðΩ2
p −Ω2

p;ðcÞÞβ for Ω2
p ≥ Ω2

p;ðcÞ
ð5Þ

and find Ω2
p;ðcÞ ¼ 37ð2π ×MHzÞ2 with β ¼ 1. This equa-

tion refers to the critical regime nearΔc ¼ 0. The continuity
at Ω2

p;ðcÞ indicates that the system undergoes a continuous

phase transition.
The observation of a clear threshold for Δ� has conse-

quences for possible physical origins of the phase transition
and theoretical descriptions of the system. The physical
origin of the phase transition is the broadening of the
Rydberg excitation above the critical Rydberg population

ρðcÞrr . It can be observed both in blue and red detuning; thus,
the direction of bistability is not dependent on the sign of
Rydberg polarizability [26]. The threshold behavior implies
that the shift cannot originate directly from effects on
individual Rydberg atoms, e.g., ionization via collisions
with ground-state atoms, as one would expect Δ� ∝ ρrr for
any ρrr in this case. Hence, the transition must result from
processes that involve multiple Rydberg atoms, i.e., dipolar
interactions or plasma formation. Rydberg ground-state
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atom collisions have been observed in thermal Rydberg
ensembles as a charged mean field under EIT conditions
[32] and as a dominant ionization mechanism in a beam of
thermal Sr atoms, but the absence of significant shifts and

broadening below ρðcÞrr rules them out as the direct origin of
the phase transition. However, even though they have no
immediate effect on the spectra, the resulting ions and
electrons are crucial for ionization avalanches and plasma
formation [28].
For models describing the system, the threshold behavior

also implies that a standard mean-field model [10], where
the interaction is incorporated by introducing Δ0 ∝ ρrr, is
insufficient to describe the nonequilibrium dynamics near
the critical point but should remain a valid approximation
for Ωp ≫ Ωp;ðcÞ as in previous experiments [24–26].
However, by introducing a threshold-dependent mean-field

shift and broadening, the forest-fire model described in
Sec. II reproduces the characteristic features of trans-
mission spectra qualitatively well (Fig. 3). Data showing
analogous behavior for the linewidth of the transmission
feature at Ω2

p;ðcÞ can be found in Appendix B.
The inset in Fig. 4(b) shows the transmission difference

between the phases at the transition point. We also measure
the transmission difference [definition in Fig. 3(a5)] at the
transition point (for negative detunings) against Ωp as Δc is
scanned. The transmission difference between the phases
increases only slowly for larger Ωp, and the change in sign
(see also Fig. 3) near the critical point becomes, once again,
evident as Ωp becomes large enough for Δ0 to exceed the
narrow EIT linewidth.
To further characterize the phase transition,we investigate

the dynamics near the critical point. This process requires

FIG. 4. Characterizing the nonequilibrium phase transition. (a) Color map of the difference in probe transmission (normalized to the
respective maximal values) when scanning Δc in either direction, effectively representing the phase diagram of the nonequilibrium
system. In the white regions, the system is found in the same phase independent of the scan direction. In the shaded regions, the system is
bistable (red if transmission is higher for scans from negative to positive Δp, blue in the opposite case) and occupies different phases
depending on the scan direction. (b) Shift of peak transmission Δ� vs Ω2

p ∝ ρrr. Inset: Transmission difference at the transition point for
different Ωp [see Fig. 3(a5) for definitions]. (c) Measurement of transmission spectra vs Δc for Ωc=2π between 2.7 and 6.54 MHz; here,
Ωp=2π ¼ 6.59 MHz. (d) Susceptibility of the phase transition to variations in Ωc measured in terms of the change in transmission
dT=dΔc. The shaded region indicates where the system is in the I phase, and dT=dΔc is no longer continuous at the transition point. The
fit is given by dT=dΔc ¼ 1.97 × 106eðΩc=ξÞ þ 1.82; ξ ¼ 2π × 0.38 MHz is the fitted critical exponent.
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that we systematically vary further parameters such as the
number and excitation rate of Rydberg atoms or the
interaction strength, which influence the modified decay
rates, energy shift, and the transmission level. Here, we
change the coupling Rabi frequency Ωc while keeping
Ωp=2π ¼ 6.59 MHz constant and record the probe trans-
mission vs Δc [Fig. 4(c)]. As Ωc is increased, the change in
transmission dT=dΔc for red detuning becomes steeper up to
the point where the phase transition appears. Figure 4(d)
shows dT=dΔc vs Ωc and thus the susceptibility of the
system to Ωc. The slope diverges at the transition threshold
as expected for a continuous phase transition. In principle, it
would be possible to extract a critical exponent from a
similar measurement, but we refrain from this as the errors
on dT=dΔc are large and, unlike before, the conditionΩc >
Ωp for EIT is no longer met, which may significantly affect
the excitation dynamics compared to above. Here, the
universality class for this type of phase transition cannot
be determined from the fitted critical exponent ξ given in
Fig. 4(d) as the nonequilibrium dynamics is so complex that
the critical exponents in nature would be more various.
A more detailed analysis on this criticality can be found in
the Rydberg avalanche dynamics in Sec. IV E.

C. Manipulation of the threshold

In the previous experiments, the EIT field parameter, i.e.,
Ωp, and its current value determine ρrr and thus NR and the

onset of the phase transition. The bistability illustrates that
NR, and not any specific value of the EIT fields, is the
critical quantity. This quantity allows us to further explore
the threshold behavior and demonstrate control of the
threshold as we apply an additional weak switching field
with Rabi frequency Ωs=2π ¼ 4.1 MHz (see Fig. 1) to
enhance the Rydberg population and observe the effect on
the phase diagram. The switching field increases the
driving strength of the jgi → jei transition leading to a
higher Rydberg excitation rate without increasingΩp itself.
In the following, Δc=2π is scanned over 88 MHz at 20 Hz
and T ≈ 55 °C.
Figures 5(a) and 5(b) compare the phase diagram without

[compare Fig. 4(a)] and with application of the switching
field. The general structure of the phase diagram with the
switching field applied remains unchanged; however, the
threshold and thus the critical point of the phase diagram

appear at ΩðcÞ
p =2π ≈ 4 MHz instead of at approximately

5 MHz as ρrr is enhanced by the additional driving. We also
measure the spectral shift Δ� in the I phase [Figs. 5(c)
and 5(d)] and again find the critical point at a lower value

of ðΩðcÞ
p =2πÞ2 ¼ 16.2 MHz2] Fig. 5(d)] compared to

24.3 MHz2 without a switching field [Fig. 5(c)] as the
relation ρrr ∝ Ω2

p no longer holds. Without effective many-
body interaction, all atoms in the vapor could be described
individually, and the switching field should not affect the

(a) (b) (c)

(d) (f)

FIG. 5. Manipulating the phase diagram and optical switching. (a,b) Phase diagrams (at n ¼ 47) without (a) and with (b) the switching
field applied (colors are as in Fig. 4). While the structure of the diagram remains unaffected, the transition occurs at a reduced threshold
Ωp;ðcÞ with the switching field applied (T2 vs T1). (c) Interaction-induced shift Δ� vs ðΩp=2πÞ2 without (black) and with the switching
field (blue). (d) Transmission as Δc is scanned with and without the switching field applied (here, n ¼ 70). (e) Transmission over time at
constant detuning Δc=2π ¼ −20 MHz [line A in panel (d)] without (top, blue) and with the switching field (bottom, red). (f) Histogram
of transmitted intensity levels without (top, blue) and with the switching field (bottom, red).
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threshold. The threshold switch process cannot be
demonstrated by varying the coupling beam because we
cannot obtain the phase diagram with a threshold by only
sweeping Ωc.

The ability to shift the critical valueΩðcÞ
p via the switching

field can be used to implement an optically controlled
switch between two transmission states for the probe light
[Figs. 5(d)–5(f)] similar to experiments on latching detection
of THz fields using Rydberg optical bistability [27]. To
implement the switch, we change the Rydberg state to
jri ¼ j70D3=2i, thus increasing the sensitivitywhile all other
parameters remain unchanged. Figure 5(d) shows the trans-
mission vs Δc with and without switching field. When
present, the transition to the I phase is reduced by approx-
imately 2 MHz such that a switch can be implemented by
fixing Δc=2π¼−20MHz in between the two transition
points. We record the transmission over time at fixed
detuning, both with and without the switching field
[Fig. 5(e)]. Figure 5(f) shows the corresponding histograms
of the probe transmission for the two transmission states that
highlight the change in the statistical distribution of the
transmission level. Bimodal counting statistics depending on
interaction strength have been predicted by theoretical
investigations of Rydberg-mediated optical bistability
[13]. Multiple switching fields that only intersect with parts
of the excitation volume could be used to realize switching
between more than two transmission states cascading

multiple bistability regions with different thresholds.
Analogously, a setup addressing different Rydberg states
in different regions could give further insight about whether
the phase transition originates from dipolar interactions or
ions, similar to experiments that used different isotopes
excited to different states as field probes [26] and to study
energy exchange processes [42,43].
While the transmission levels are clearly distinguishable,

short-term fluctuations between them can be observed
[Fig. 5(e)]. We attribute these to short-term fluctuations in
the Rydberg density that result in a phase transition.
Remarkably, the system quickly reverts to its initial phase,
further supporting the presence of self-organization dynamics.

D. Sensitivity to fluctuations

In the following, we further investigate the sensitivity of
the phase transition to fluctuations and the resulting self-
organizing response. So far, we have investigated the
dynamics for probe and coupling fields with parallel linear
polarization. By rotating the polarization of the two beams
with respect to each other, the rate at which different
magnetic sublevels of the Rydberg state are populated is
enhanced. As a result, the system becomes more sensitive
to fluctuations in the NR-dependent interaction strength,
and Γr þ Γ0ðNRÞ of jri in the I phase is further increased as
previously uncoupled mJ states become more populated.
Figure 6(a) shows transmission scans vs Δc for various

FIG. 6. (a) Transmission spectra vs Δc (n ¼ 70) for different angles of the coupling beam polarization with respect to the probe
(θ: angle of half-wave plate in coupling beam path, θ ¼ 0∘ parallel, 45° orthogonal linear polarization). Red spectra correspond to the
scan direction from red to blue detuning and vice versa for black spectra. (b) Width of the hysteresis window in which bistability is
observed vs θ. (c) For orthogonal polarization, the bistability window is narrowest, and the system’s phase is unstable as Δc is scanned.
(d) Transmission over time for fixed Δc=2π ¼ −25.5 MHz near the center of the instability window. (e) Histogram of the time intervals
between phase jumps. Inset: Bimodal distribution of transmission levels subtracted from the maximal transmission. (f) Fourier spectrum
of the phase fluctuations. The fits in panels (b) and (e) are guides to the eye.
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angles θ of the half-wave plate controlling the polarization
(θ ¼ 0° corresponds to parallel, 45° to orthogonal polari-
zation) at jri ¼ j70D3=2iwithmJ ∈ f�3=2;�1=2g. As the
parallel polarization component is reduced, the bistability
window becomes narrower and is almost closed for
orthogonal polarization [Fig. 6(b)]. Interestingly, the polari-
zation dependence of the hysteresis width cannot be
observed at lower Rydberg states (jri ¼ j47D3=2i (see
Appendix E), which further indicates that enhanced
dephasing occurs at higher n due to a wider range of
polarizabilities (∝ n7) among the mJ states that lead to a
wider spread of level shifts. This case is in stark contrast to
the fact that Γr is reduced to an isolated Rydberg atom with
higher n due to their longer lifetimes (∝ n3).
For orthogonal polarization, the hysteresis loop is almost

closed; the phase of the system is particularly sensitive to
fluctuations. Transmission fluctuates between the levels
associated with the two phases when scanning Δc (Δc=2π
is scanned over 96 MHz at 10 Hz) over the bistability
window [Fig. 6(c)]. Here, even small fluctuations in ρrr can
induce a phase transition due to the strong dynamic
nonlinearities in excitation and decay rates, which are even

noncontinuous at the threshold ρrr ¼ ρðcÞrr and characteristic
for self-organizing systems.
To characterize the response time to fluctuations, we fix

Δc=2π ¼ 25.5 MHz and record the probe transmission
over time [Fig. 6(d)]. The system is mostly found in the
I phase, but occasionally, fluctuations induce a transition to
the NI phase, resulting in a drop in transmission; yet it
quickly reverts to the I phase again [see also Fig. 5(e)]. We
investigate the distribution of response times required to
restore the phase. Figure 6(e) shows the distribution of the
time between adjacent phase jumps. We find that most
intervals last below 100 μs, corresponding to the brief
transitions to the NI phase apparent in Fig. 6(d). Measuring
the width of one of the spikes yields a similar result of
110 μs (Appendix D). The transition from the I phase to the
NI phase is slower than the NI to I phase transition, which
occurs as an avalanche process. The inset in Fig. 6(e) shows
a histogram of the transmission difference between adja-
cent data points. The bimodal distribution confirms that the
observed fluctuations are not only artifacts originating from
noise induced in data acquisition but also correspond to
fluctuations between two distinct transmission states.
Whether the I or NI phase is predominantly occupied
depends on the value of Δc, with detuning closer to
resonance favoring the I phase. Here, the system is restored
to the I phase, and the histogram is biased to higher
transmission as predicted in Ref. [13]. Similar behavior can
also be observed in spontaneous recovery processes in
dynamical networks [44], where the network switches back
and forth between two collective modes characterized by
high and low network activity in analogy to the weakly and
strongly interacting phases.
Finally, we analyze the Fourier spectrum of the probe

transmission [Fig. 6(f)]. For low frequencies f, the noise

spectrum follows a 1=f power law corresponding to pink
noise, which occurs in systems exhibiting self-organized
criticality [2]. If we split the data over time into individual
data sets each only including data points corresponding to
the same phase, a separate analysis of the Fourier spectra
yields white noise instead, confirming that the pink noise is
induced by the dynamical phase transition.

E. Power-law scaling

Besides the sensitivity to perturbations and pink noise
observed above, scale invariance, and power-law scaling of
the avalanche size, here the fraction of the system under-
going the transition from the NI to the I phase is another
characteristic feature of self-organized criticality (Sec. II).
It can be experimentally observed in the magnitude of
fluctuations in probe transmission, as the two phases have
distinct transmission levels.
In its simplest form, the ensemble displays two non-

equilibrium steady states corresponding to predominant
occupation of the NI and I phases, respectively. In the
experiment, the switching between these two states is
controlled by varying Δc. In the NI phase (Δc=2π ¼
−15 MHz), transmission is saturated at the level character-
ized by ΔE ¼ 0 in Fig. 7, and in the I phase by ΔE ¼ 1
(Δc=2π ¼ −25 MHz). The level of the transmission relative
to the steady states, 0 ≤ ΔE ≤ 1, thus indicates the fraction
of the ensemble that has transitioned to the I phase. In
contrast to our simulations, we can only observe the macro-
scopic transmission of the entire ensemble, corresponding to
the cumulated size of all microscopic I-phase clusters in the
model introduced in Sec. II. The bounded distribution on
avalanche sizes differs from the original Oslomodel of SOC,
where there is no upper cutoff [45,46], but is similar to the
forest-firemodel [30],whichwehave identified as analogous
to our system. As predicted, we still observe a power-law
dependence in the switching dynamics as shown in Figs. 7(b)
and 7(f) as a result of balanced transfer between the non-
equilibrium steady states.
Fitting the experimental data, we find power-law expo-

nents jbj of 2.2 and 2 for Δc=2π ¼ −25 MHz and
−15 MHz, respectively, close to the regime of f=p → 0
in the model of Sec. II. Both cases are far away from the
point of the macroscopic transition, and the predominance
of a single phase results from a low probability for
nonfacilitated transition to the I phase, f ≪ p. The signs
of the exponents are opposite, as the macroscopic phases of
the system are characterized by a low and high number of
NI clusters, respectively. If we tune the system to Δc=2π ¼
−19 MHz near the transition point [Figs. 7(c) and 7(d)], the
evolution exhibits two peaks as shown in Fig. 7(d).
Approaching the transition point, the system dynamics
become more complex, and the exponents jbj increase
to values between 2 and 11 as nonfacilitated transition to
the I phase becomes more likely, f=p ≥ 1, as predicted in
Fig. 2(d) in Sec. II.
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V. DISCUSSION AND CONCLUSION

In this work, we have studied an optically driven non-
equilibrium phase transition and optical bistability in a
thermal vapor of Rydberg atoms. By applying the driving
fields in an EIT configuration, the sensitivity in the frequency
domain was enhanced by 2 orders of magnitude compared to
previous experiments, which allows us to map out the phase
diagram in the vicinity of the system’s critical point, where a
continuous phase transition can be observed. In particular, the
observed threshold behavior for the interaction-induced shift
Δ0 and broadeningΓ0 limited to the I phase at lowΩp suggests
that the shift originates not directly from ionizing collisions
between Rydberg and ground-state atoms but either from
avalanche ionization and plasma formation, as has been
confirmed for stronger excitation fields [28], or dipolar
interactions. Further insight on the role of dipolar interactions
or avalanche ionization on the phase transition could bemade
in experiments that combine the sensitivity of a weak EIT
probe demonstrated here with simultaneous charge detection
[26,47,48] or spectroscopy of a resulting plasma [28].
Independent of the exact mechanism, the many-body

nature of the resulting Rydberg interaction is the key
ingredient for the phase transition and self-organization.
Besides fundamental studies, the susceptibility to noise also
plays a crucial role in phase-transition-enhanced sensors for
electromagnetic fields such asmicrowave or THz fields [27].
Our results highlight that a rich range of nonequilibrium

phenomena can be studied even in a relatively simple

experiment and provide observational data that help us to
refine theoretical models as highlighted by the modifica-
tions needed to a standard mean-field approach. The
underlying physics of self-organization dynamics observed
suggest that the system could provide a controllable
environment to study analogous dynamical systems from,
e.g., biology [49], economics [44], and many-body physics
in condensed matter [50]. Finally, the sensitivity of the
phase to small fluctuations could be applied to the sensing
of not only optical fields as demonstrated here but also THz
fields [27], system noise, microwaves, or, more generally,
any weak fluctuations of parameters linked to the EIT laser
fields or external perturbations.
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APPENDIX A: ENERGY SHIFTS AND
BROADENING OF RYDBERG TRANSITIONS

The many-body interaction underlying the nonequili-
brium dynamics may either result from pairwise dipolar
interactions or ionization of Rydberg atoms, i.e., avalanche
ionization [37]. Either mechanism can introduce the broad-
ening of Rydberg transitions that accompanies the non-
equilibrium phase transition between the NI and I phases.
Figure 8(a) shows dipole-dipole interaction potentials for
47D3=2 vs distance for relevant pair states. The broadening is
characterized by dipole-dipole interaction energy C3=r3 at
the distance of closest approach r ¼ 5=9N−1=3. Similarly,
we calculate the Stark shift against ion density based on the
resulting mean spacing and find that there is also an
increasing spread of energies over different mJ states. In
the ionization case given by Fig. 8(b), shifts and broadening
resulting from ionized Rydberg atoms vanish from the
excitation volume at a different rate compared to the
Rydberg atoms and are not explicitly included in the density
matrix ρ. If the phase transition is indeed caused by ions, the
model in Sec. II could be extended by introducing a charge
population in ρ that is incoherently populated by including
ionization rates in L.

APPENDIX B: THRESHOLD-DEPENDENT
MODIFICATION OF THE DECAY RATE

In addition to the interaction-induced shift in peak
transmission (Fig. 4), we also measure the width ΔωEIT
of the EIT transmission window as Ωp, and thus NR is
increased (Fig. 9). For Ω2

p ≥ Ω2
p;ðcÞ ¼ 37 ð2π ×MHzÞ2, the

nonequilibrium phase transition appears. As for Δc →
Δc þ Δ0ðNRÞ, we observe an increase in the I phase scaling
linearly with NR ∝ ρrr ∝ Ω2

p, indicating a modified decay
rate Γr → Γr þ Γ0ðNRÞ above threshold.

APPENDIX C: MASTER EQUATION

In the absence of Rydberg-mediated interactions, the
interaction of the EIT light fields with an ensemble of three-
level atoms is governed by the master equation

d
dt
ρ ¼ −

i
ℏ
½H; ρ� þ 1

ℏ
L; ðC1Þ

where ρ is the atomic ensemble’s density matrix and H ¼P
k H½ρðkÞ� the atom-light interaction Hamiltonian summed

over all the single-atom Hamiltonians

H½ρðkÞ� ¼ −
ℏ
2

0
BB@

0 Ωp 0

Ωp −2Δp Ωc
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1
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The Lindblad superoperator L ¼ P
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the single-atom superoperators
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accounts for the finite lifetime of jei and jri.

APPENDIX D: MEASUREMENT
OF RESPONSE TIME

The transition between the two nonequilibrium phases
has a characteristic response time. Treating these two

FIG. 8. (a) Potential for pairwise dipole-dipole interactions for
47D3=2 (left). (b) Stark shifts for 47D3=2, mJ ¼ 3=2 (right)
assuming an electric field amplitude E ∼ ρion proportional to the
mean ion density based on the corresponding mean spacing
between ions. Calculations were made using Alkali Rydberg
Calculator [51].

FIG. 9. Width of EIT transmission window vs Ω2
p ∝ NR for the

same data set as in Fig. 4(b) (n ¼ 47). As for the shift in peak
transmission Δ�, a linear increase can be observed above the
phase transition threshold Ω2

p;ðcÞ ¼ 37 ð2π ×MHzÞ2 as expected
for a modified decay rate Γr → Γr þ Γ0ðNRÞ.
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phases as two energy states of the system, we use a two-
level model of the instability oscillation. The enlarged
collective jump given in Fig. 10(a) illustrates the competing
dynamics of decay and recovery. We solve the master
equation of a simplified two-level system with a decay
rate of γ ¼ 9.2 kHz corresponding to the lifetime of
the 70D3=2 Rb Rydberg state at 320 K. The correspond-
ing lifetime τ0 ¼ 1=γ characterizes the minimum ρrr
population required to trigger a phase transition. The
interaction duration is slower than the natural response
time, leading to the appearance of optical instability as
in Figs. 5(e) and 6(d).
Figure 10(b) shows an example of the change in probe

transmission as Ωp is scanned away from the transition
point while Δc=2π ∼ −15 MHz remains fixed. Unlike at
the critical point, the difference in transmission is not
continuous. The sudden decrease in transmission with
increasing intensity represents a self-induced opacity that
is contrary to the behavior of most media, which commonly
exhibit self-induced transparency. This behavior indicates a
blockade effect resulting from many-body interactions. The
transmission signal is noisier for high Ωp and thus higher
Rydberg fractions, indicating a higher degree of instability
beyond the transition to the I phase.
Finally, we measure the width of hysteresis associated

with the bistability as a function of scan frequency
[Fig. 10(c)]. The hysteresis loop results from the distinct
decay rates of the two phases, causing higher energy loss
in the I phase. This dependence implies that the transition
has a long relaxation time on a ms scale, as the higher ρrr
population supports the I phase in a self-organizing

manner [1]. The width is highest near 50 Hz, with
ΔT ∼ 0.48 ms. We thus estimate that the facilitation
support in the I phase is strongest for ΔT=τ0 ≈ 4.4, where
τ0 ¼ 0.11 ms represents the measured natural response
time of the nonequilibrium phase transition. The natural
response time of the nonequilibrium phase transition
characterizes the amount of the minimum value of ρrr
population. For stronger facilitation, the corresponding
hysteresis width is larger as the system is more robust to
external perturbations. The timescale of τ0 is comparable
to avalanche ionization processes in cold Rydberg ensem-
bles [37] and further indicates that the phase transition is
induced by ionization processes.

APPENDIX E: POLARIZATION
DEPENDENCE OF OPTICAL
BISTABILITY FOR n= 47

In addition to n ¼ 70, we also investigate the influence
of the relative polarization between the probe and coupling
fields at a lower principle quantum number n ¼ 47. At
lower n, the weaker interaction-induced shifts result in
lower relative shifts between the mJ sublevels of jri and
thus a much weaker modification Γ0ðNRÞ of the decay rate.
This result is reflected in a much weaker dependence of the
width of the bistability window on the probe and coupling
polarizations (Fig. 11).

FIG. 10. (a) Details of an instability spike from Fig. 6(d). The
fitted curve is based on a two-level system. (b) The phase
transition as Ωp is swept. The red (black) line corresponds to
the þ (−) scan direction, respectively. The detuning is set to
Δc=2π ∼ −15 MHz. (c) Hysteresis width of phase vs sweep
frequency.

FIG. 11. (a) Recorded spectra for different polarization of the
coupling beam (n ¼ 47). The red or black line corresponds the þ
(−) scan direction from red to blue detunings (red) and vice versa
(black). Note that θ is defined as the angle of a half-wave plate
inserted in the optical path of the coupling beam. (b) Angular
dependence of hysteresis width for n ¼ 47.
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