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Phonon polaritons localized in polar nanoresonators and superlattices are being actively investigated as
promising platforms for midinfrared nanophotonics. Here we show that the nonlocal nature of the phonon
response can strongly modify their nanoscale physics. Using a nonlocal dielectric approach, we study
dielectric nanospheres and thin dielectric films taking into account optical phonons dispersion. We discover
a rich nonlocal phenomenology, qualitatively different from the one of plasmonic systems. Our theory
allows us to explain the recently reported discrepancy between theory and experiments in atomic-scale
superlattices, and it provides a practical tool for the design of phonon-polariton nanodevices.
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I. INTRODUCTION

Nanophotonics is predicated on the ability to concentrate
and control light on length scales substantially below the
diffraction limit [1]. The necessary deep subwavelength
self-sustaining electromagnetic oscillations are possible
through cycling electromagnetic energy into the kinetic
energy of charged particles [2] as in the ever-growing field
of plasmonics [3,4]. Plasmonic concentrators, reliant on
hybridization between photons and a free electron gas, are
inefficient for operating frequencies out of resonance with
the gas’s plasma frequency, which is typically in the near
ultraviolet. A promising alternative in the midinfrared is
surface phonon polariton (SPhP) light concentrators, which
permit deep subwavelength light confinement by storing
electromagnetic energy as vibrations of the crystal lattice
[5–7]. Localization of SPhPs in user-defined resonators [8]
allows for extremely small mode volumes [9,10] in highly
tunable low-loss modes [11–14], with applications in
sensing [15], nonlinear optics [16,17], and the creation of
nanophotonic circuitry [18–20].
Typical electromagnetic theories are parametrized by

frequency-dependent dielectric functions in which a spa-
tially local relationship between electric field and polariza-
tion is implicit. This approximation is known to fail in
plasmonic systems of nanometric length scale [21,22], when
longitudinal plasmawaves induced in the electron gas by the
transverse photon field at the particle boundary become

significant. Ignoring this nonlocal effect leads to erroneous
predictions of modal frequencies and significant overesti-
mation of the achievable field confinement [23–26].
Polar dielectrics support longitudinal optical (LO) pho-

nons, analogous to longitudinal plasma waves in noble
metals. As SPhP concentrators grow smaller the dielectric
local theory used to model them is also expected to break
down, as LO phonons hybridize with the photon field and
perturb the system response. Far from being a nuisance,
hybridization of LO phonons and SPhPs has been sug-
gested as a possible path toward electrical injection of
SPhPs, and was recently demonstrated by using elongated
silicon carbide (SiC) polytypes [27], where a weak phonon
mode [28] naturally crosses the SPhP dispersion.
In this article we develop a macroscopic nonlocal theory

describing the optical response of polar crystals. Initially
we use it to study 3C-SiC nanospheres discovering rich
nonlocal phenomenology. We then study epsilon-near-zero
(ENZ) resonances in aluminum nitride thin films and build
on these results to model crystal hybrids composed of
aluminum nitride (AlN)/gallium nitride (GaN) atomic-scale
superlattices. Our method provides an agile, numerically
lightweight toolset to simulate and understand the nonlocal
response of nanoscale polar structures, without the draw-
backs of numerically taxing molecular dynamics [29] or
density functional calculations [30,31]. By comparison to
experimental data, we demonstrate our approaches’ validity
for a variety of systems down to the nanometre scale. Our
theory allows us to explain recently reported discrepancies
between predictions of the dielectric theory and the
experimental data [31], providing the first experimental
evidence of nonlocal effects in polar dielectrics and
demonstrating its relevance as a design tool for SPhP
devices. For the sake of clarity, most of the technical details
of the calculations have been placed in the Appendixes.
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II. NONLOCAL DIELECTRIC RESPONSE

The optical response of polar dielectrics can be described
in the local response approximation (LRA) by assuming the
electric Eðr; tÞ and displacement Dðr; tÞ fields are spatially
local,

Dðr;ωÞ ¼ ϵ0ϵLRAðr;ωÞEðr;ωÞ; ð1Þ

in which ϵLRAðr;ωÞ is the frequency- and position-depen-
dent local dielectric function. This means that the material
response at r depends solely on the driving field at r.
Although such a formalism can be used to study SPhPs in
inhomogeneous systems [32], it remains accurate only
while dispersion of the material properties can be
neglected. To move beyond this local theory we model
the polar crystal as an isotropic continuum coupled to
Maxwell’s equations. Such an approach, detailed in
Appendixes A and B, leads to a theory describing a
dispersive LO phonon branch existing at all the frequencies
ω and (complex) wave vectors k satisfying ϵLðω; kÞ ¼ 0
[33], where ϵL is the longitudinal dielectric function:

ϵLðω; kÞ ¼ ϵ∞
ω2
L − ωðωþ iγÞ − β2Lk

2

ω2
T − ωðωþ iγÞ − β2Lk

2
: ð2Þ

Transverse fields in the lattice are instead described by the
transverse dielectric function,

ϵTðω; kÞ ¼ ϵ∞
ω2
L − ωðωþ iγÞ − β2Tk

2

ω2
T − ωðωþ iγÞ − β2Tk

2
; ð3Þ

and satisfy the dispersion relation ϵTðω; kÞω2 ¼ c2k2. In
Eqs. (2) and (3), βL and βT are phenomenological velocities
describing the LO and TO phonon dispersions, respec-
tively, both of which are treated in a quadratic approxi-
mation [34]. Both velocities may be extracted from
ab initio calculations or experimental measurements of
the polar lattice phonon dispersion, by fitting a quadratic
expansion to the low-wave-vector region.
Such an approach is analogous to established theories in

nonlocal plasmonics, where a hydrodynamic description of
the electron gas is typically employed [35–37], leading to
smearing of electromagnetic hot spots, plasmon spill-in-
induced frequency shifts, and the emergence of confined
longitudinal modes [38,39]. Notwithstanding the technical
similarities, we find that the impact of nonlocality on the
optical response of phonon polaritons qualitatively differs
from nonlocal plasmonics. This can be intuitively under-
stood by considering Fig. 1(a), which illustrates longi-
tudinal mode dispersion in plasmonic and phononic
systems. In a metal the bulk plasma frequency blueshifts
with increasing wave vector,

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
P þ β2k2

q
; ð4Þ

where β is a characteristic velocity governing the dispersion
of the plasma wave. This equation has real wave vector
solutions for ω > ωP, illustrated by gray shading in
Fig. 1(a). Surface plasmons, mediated by the negative
dielectric function of the metal, are supported in the region
ωSP < ωP, illustrated by the green shading. Here Eq. (4)
only has evanescent solutions and longitudinal plasma
waves decay with typical skin depth of order 1 Å.
Optical phonons exhibit a redshift with increasing wave

vector, as is clear from Eq. (2). This means propagative
longitudinal phonons coexist with the region where the
dielectric function is negative, illustrated by the hatched
region in Fig. 1(a). Local theories imply deltalike screening
charges at the particle surface. The charge profile is
smoothed in a nonlocal theory by longitudinal modes
excited at the particle edge which push charge away from
the surface [36]. In metallic particles this electronic spill-in
causes a nonlocal change in electron density, leading to
blueshifted mode frequencies for ω < ωP [40]. Additional
peaks appear forω > ωP, where Eq. (4) has real wave vector
solutions and the longitudinal waves can propagate into the
sphere. Peaks correspond to quantized plasma waves in the
sphere [21,41]. In the polar case we observe equivalent
effective ionic charge spill-in, with the difference that the
equation determining the longitudinal modes ϵLðω; kÞ ¼ 0
has real wave vector solutions for ω < ωL. The modes
responsible for the spill-in are thus discrete propagative
modes occupying the same spectral region as SPhPs.
To illustrate the striking impact of this difference on the

nonlocal optical features, we show a comparison of extinc-
tion spectra calculated utilizing nonlocal Mie theory for 10-
nm-diameter gold and 3C-SiC spheres in Figs. 1(b) and
1(c), respectively. The theory underlying this calculation is
presented in the Appendixes.

A. Nonlocal length scales

Nonlocal systems can be assessed by a simple figure of
merit, the skin depth of nonlocal excitations,

l ¼ 1

Im½k� ; ð5Þ

where the wave vector is assumed perpendicular to the
surface of the metal or polar crystal. To understand this we
consider the LO phonon dispersion, given by the zeros of
the longitudinal dielectric function in Eq. (2). The quality
factor of optical phonon resonances is usually large enough
to justify a lowest-order expansion in the loss rate around
γ ¼ 0: γ ≪ ω, ωL. We obtain

βLk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L − ω2

q
−

iωγ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L − ω2

p þOðγ2Þ: ð6Þ

In the propagative phonon regime ω < ωL the square root
yields a real quantity and the imaginary wave vector is
given by the second term, leading to length scale:
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lph ¼
2βL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L − ω2

p
ωγ

: ð7Þ

In the plasmonic case, using Eq. (4), we obtain the
equivalent of Eq. (6), but with imaginary and real parts
inverted. For ω < ωP we find

lpl ¼
βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
P − ω2

p : ð8Þ

Evaluating at the Fröhlich frequency in each material we
find lph ≈ 12 nm for 3C-SiC and lpl ≈ 1 Å for gold.

III. SCATTERING FROM SiC NANOSPHERES

In Fig. 2(a) we plot the extinction cross section σext, for
3C-SiC spheres of 5, 10, and 20 nm radius, calculated using
an extendedMie theory detailed in Appendix C. In the local

case deep subwavelength spheres exhibit a dipolar Fröhlich
resonance where ϵLRAðωFÞ ¼ −2, at ωF ≈ 934 cm−1 for
3C-SiC. In nonlocal extinction spectra this resonance
remains; however, in smaller particles additional closely
spaced peaks appear for ω < ωL. These are the result of the
screening charge induced at the particle surface. The
induced charges repulse, producing density waves which
spread from the interface into the nanoparticle bulk. As in
this spectral region ϵLðω; kÞ ¼ 0 has real wave vector
solutions, the excited longitudinal waves are propagative
and have a discrete spectrum. These peaks become promi-
nent when the particle radius reduces below ≈10 nm, in
agreement with the prediction of Eq. (7).
As the sphere radius decreases we observe level repul-

sion and the onset of strong coupling between the Fröhlich
resonance and the longitudinal modes. In a bulk crystal
such coupling is forbidden due to the orthogonal nature of
longitudinal and transverse modes, which are only coupled

(b)

FIG. 1. (a) Illustration of nonlocal effects in gold and SiC nanospheres. The two panels illustrate the dispersion of the longitudinal
plasma (left) and longitudinal optical phonon (right) as a function of frequency. Regions with real wave vector solutions are shaded gray.
Green shading illustrates instead the region where the dielectric function is negative and can sustain surface modes, plasmonic or
phononic. The Fröhlich resonance frequency, where ϵLRAðωFÞ ¼ −2, is shown by the solid blue line, and the frequency axis is
normalized to ωF in each case. The two spheres in the center sketch the longitudinal mode electric field distribution in the case of
imaginary (top) and real (bottom) wave vectors, relevant, respectively, for the metallic and dielectric cases. (b),(c) Extinction cross
section for a 10-nm-radius (b) gold and (c) 3C-SiC nanosphere. Results calculated with a local response approximation (LRA) are
shown by red dashed curves, and those calculated with a full nonlocal model by blue solid curves. Parameters used in the calculations for
both gold and 3C-SiC are reported in Appendix C.
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by the system’s interfaces. Accordingly, the effect becomes
more visible in Fig. 2(b), where we consider smaller radii
and focus on the peak region. Note that this phenomenon,
due to the existence of discrete propagative longitudinal
modes which can become resonantly coupled to the
Fröhlich resonance, is absent in the plasmonic case. The
coupling is proportional to the SPhP line shape and is
therefore enhanced for longitudinal modes near to reso-
nance with the SPhP [42].
When the SPhP is not on resonance with the LO modes,

coupling decreases and we instead recover behavior typical
of dark state hybridization, in which a broad bright state
hybridizes with narrower dark states resulting in a Fano
scattering spectra [42]. Here the Fröhlich resonance, radi-
ative in the far field, plays the part of the bright state while
longitudinal modes are dark. This behavior is analogous to
theweak phonon coupling previously observed in larger 4H-
SiC particles, where the weak phonon frequency was
determined by the lattice periodicity rather than particle
morphology [9,27]. Fano interference acts to reduce the
bright state’s far-field scattering, while increasing absorp-
tion as energy is funneled into nonradiative dark states
[43,44]. This is visible in the comparison of scattering and
absorption efficiencies for a 4-nm-radius sphere in Fig. 2(c),
where both cross sections are normalized to unity in order
that theymay be presented on the samevertical scale.On this
plot vertical lines indicate the pure longitudinal resonances,
calculated assuming the longitudinal electric field vanishes
at the particle boundary. As shown in the inset, the longi-
tudinal modes at 905 and 950 cm−1 suppress scattering
while enhancing absorption, giving a Fano line profile.

A. Frequency shifts

In plasmonic systems the dominant nonlocal effect is
typically a blueshift in mode frequency [21], manifested in
a quasistatic model as an increase in the effective local
dielectric function. In the case of polar dielectrics the
Fröhlich resonance also undergoes a nonlocal shift, in this
case to the red, but of much smaller amplitude. This can be
verified from Fig. 3(a), in which we compare the absolute
plasmonic and phononic frequency shifts from their local
values ωF as a function of the absolute value of the
dimensionless parameter quantifying nonlocal effects
δNL, precisely defined in Appendix C. The reduced shift
in the polar dielectric case is due to the narrow nature of the
reststrahlen band, which leads to a faster frequency
dispersion of the local dielectric function. The system
can accommodate a change in the dielectric function due
to a certain value of the nonlocal parameter δNL by a smaller
shift in frequency.

B. Enhanced nonlocal broadening

Another nonlocal effect often observed in the optics of
small plasmonic particles is a size-dependent damping,
initially described by Kreibig and Fragstein [45]. This can

(a)

(b)

(c)

FIG. 2. Panels (a) and (b) show a comparison of nonlocal
extinction efficiencies for 3C-SiC spheres of different radii. (c) De-
tailed comparison of the extinction (σext) and scattering (σsca) cross
sections for a 4-nm-radius sphere in the local and nonlocal cases.
Both curves have beennormalized to unity so theymaybepresented
on the same vertical scale. The inset is an enlargement of the
resonance near 905 cm−1. The vertical dashed lines indicate the
frequencies of the bare, discrete longitudinal resonances.
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be introduced phenomenologically in a hydrodynamic
nonlocal theory as a diffusive term [24,46]. Any broad-
ening is size dependent, requiring electrons to diffuse
during the bare mode lifetime over a distance comparable
to the field confinement length. The reason why size-
dependent damping does not emerge from a pure hydro-
dynamic model in the absence of diffusion is because the
longitudinal plasma waves excited in the electron gas obey
Eq. (4), and are thus evanescent. In the polar system studied
in this paper, the LO modes excited by the SPhPs are
instead propagative, and can thus transport energy away
from the interface. This allows them to act as an additional
loss channel, leading to hydrodynamic Kreibig damping,
which remains important even for relatively large particles.
In order to calculate the size-dependent broadening we

use a semianalytical approximation of the full nonlocal Mie

theory, described in Appendix C, which yields the fre-
quency-dependent polarizability of the sphere. SPhP mode
frequency and linewidth are then extracted by a Lorentzian
fit. In Fig. 3(b) we plot the resulting quality factor of the
fundamental Fröhlich resonance for 3C-SiC spheres with
radii between 10 and 1000 nm. In this region the particle is
sufficiently large to support many closely spaced longi-
tudinal modes, whose finite linewidth means they form a
continuum and do not appear as discrete peaks in the
extinction cross section. The results show that for particles
with radii less than 1 μm, coupling to these nonresonant
modes leads to a broadening relative to the local result
which grows with decreasing particle radius. We can form a
model analogous to that of Kreibig to fit the data, assuming
nonlocal damping rate of the form

γNL ¼ γ þ AβL
R

; ð9Þ

where γ is the local damping rate and R is the nanosphere
radius.
The dimensionless constant A describes the magnitude

of the size-dependent damping. Fitting this formula to the
numerical data, we find A ¼ 0.03. We can utilize this to
calculate a typical length scale for which damping via LO
phonon emission becomes dominant,

rNL ¼ AβL
γ

≈ 6.1 nm; ð10Þ

which is comparable to that for diffusive damping in
plasmonic systems where the characteristic velocity and
bare damping rate are both enhanced by around 2 orders of
magnitude [24].

IV. NONLOCALITY IN PLANAR NITRIDE
SYSTEMS

A. Nonlocality in AlN ENZ modes

Nowwe investigate nonlocal effects in freestanding ultra-
thin AlN films. Details of the approach used are provided in
Appendix E. Optically thick films support degenerate SPhP
modes at each interface. When the thickness d decreases,
eventually these hybridize, yielding two distinct SPhP
branches which are symmetric and antisymmetric super-
positions of the modes on each interface. The symmetric
mode is blueshifted from the mode of the thick film and in
the d → 0 limit exists at the asymptotic zone-center LO
phonon frequency. As the dielectric function of the film
vanishes at this frequency, the mode is often referred to as an
epsilon-near-zero mode [14,47].
Just like the SiC spheres studied in the previous section, a

thin film also acts as a Fabry-Pérot cavity for longitudinal
phonons, supporting a series of discrete modes with quan-
tized out-of-plane wave vector, satisfying η ¼ ðnπ=dÞ, with
n a positive integer. For wave vectors in the film plane
kx ≪ η, the LO phonon modes have frequencies

(a)

(b)

FIG. 3. (a) Absolute nonlocal frequency shift of the main
Fröhlich peak in the extinction cross section as a function of
the absolute value of the parameter quantifying the nonlocality.
(b) Local and nonlocal quality factors for the Fröhlich resonance of
a 3C-SiC sphere, the dots represent the analytical model in Eq. (9).
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ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L −

�
nπβL
d

�
2

s
; ð11Þ

a result analogous to that observed for ENZ modes in thin
conductive films, where additional resonances obeying a
similar equation were observed above the film plasma
frequency [48]. In a sufficiently thin sample the fundamental
LO resonance ω1 can differ appreciably from the zone-
center frequency ωL, leading to a shift in the upper edge of
the reststrahlen band. This is illustrated for an AlN film by
the dots in Fig. 4, which show the n ¼ 1 solution of Eq. (11)
as a function of inverse film thickness. As the ENZmode lies
close to the LO phonon frequency, it can be expected to be
extremely sensitive to such a shift.
To study this we calculate the frequency of the ENZ

mode at constant in-plane wave vector kkc ¼ 1200 cm−1

for an AlN film as a function of inverse film thickness in the
local and nonlocal cases. In order to access the ENZ mode,
which lies outside the light line, we utilize an Otto prism
coupling configuration, schematically shown at the top of
Fig. 4, considering the AlN film of thickness d, surrounded
by vacuum with a high refractive index (n ¼ 2.4) KRS5
prism a distance h above. Results shown in Fig. 4 dem-
onstrate that nonlocal effects shift the ENZ resonance from

its ωL frequency, having it follow instead the effective edge
of the reststrahlen band ω1 for films less that 10 nm thick.
In the following we will see that similar shifts due to the
ENZ confinement can be observed also by embedding the
AlN between other materials, at frequencies for which
the reststrahlen bands do not overlap.

B. Nonlocality in AlN=GaN atomic-scale superlattices

Recently, the fabrication and optical characterization of
atomic-scale superlattices or crystal hybrids, composed of
alternating nanoscopic layers of GaN and AlN grown on a
semi-insulating SiC substrate, were reported [31]. Such a
work demonstrated the failure of a standard local response
theory to describe the observed optical properties of the
superlattice, requiring instead density functional perturba-
tion theory to correctly reproduce its features [30].
Using a nonlocal extension of the scattering matrix

approach, we simulated the two heterostructures, labeled A
and B, characterized in Ref. [31]. Heterostructure A consists
of 50 alternating layers of GaNð2.2 nmÞ=AlNð2.2 nmÞ on a
50 nm AlN buffer layer. Heterostructure B consists of 500
alternating layers of GaNð1.4 nmÞ=AlNð1.2 nmÞ. Both het-
erostructures are grown on a deep SiC substrate. In Fig. 5 we
show experimental data, courtesy of the authors, with blue
solid lines and we compare them to our optimized nonlocal
model (red dashed lines) and a separately optimized local
theory (green dot-dashed lines). More details on the fitting
procedure are presented in Appendix F. Not only does the
nonlocal theory provide a better fit, but we can recognize two
sets of features which are correctly reproduced by the non-
local theorywhile not captured at all by the local one. The first
is photonic hybridization with longitudinal modes, leading to
visible peaks in heterostructure A around 835 and 865 cm−1.
These are analogous to the nonlocality-induced additional
peaks visible in Fig. 2. The second is the strong redshift of the
resonance around 855 cm−1 for heterostructure B, which we
already discussed in Fig. 4 for the freestanding film. As
previously noted, our nonlocal theory treats phonon disper-
sions as quadratic. This approximation reproduces well the
phonon dispersion near the zone-center phonon frequencies,
but it diverges from the physical dispersion closer to the
Brillouin zone edge [49]. One consequence of the quadratic
approximation is the failure of our model to correctly
reproduce the dip observed at 795 cm−1 in Fig. 5(b). The
modes confined in the layers of the narrower structure have in
fact larger wave vectors through Eq. (11), thus probing a
region in which the quadratic dispersion underestimates the
longitudinal phonon frequency, pushing the longitudinal
modes at lower frequencies. The eventual breakdown of
the quadratic approximation is alsowhywe constrain the plot
region in Fig. 5 to around the SiC reststrahlen region. It is
a priori possible to overcome such a problem by considering
wave-vector-dependent, piecewise constant effective phonon
velocities, able to reproduce thephonondispersionover larger
portions of the Brillouin zone, but the advantages of such an

FIG. 4. Comparison of the local (blue solid line) and nonlocal
(red dashed line) ENZ mode frequencies in an AlN film as a
function of inverse film thickness d−1. The zone-center longi-
tudinal optical phonon frequencyωL is labeled on the axis and the
n ¼ 1 longitudinal mode energy from Eq. (11) by green circles.
Above the plot a sketch of the Otto configuration considered
is shown.
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approach have to be weighed against the increase of required
fitting parameters.
The calculated parameter for the AlN longitudinal

velocity βAlNL ¼ 5.1 × 105 cm s−1 and damping γAlN ¼
10.3 cm−1 leads through Eq. (7) to a predicted skin depth
of lph ¼ 1.5 nm at the n ¼ 1 resonant frequency 855 cm−1.
As for dielectric nanospheres, also in this case the use of
Eq. (7) provides the right order of magnitude for the length
scale at which nonlocal phenomena become important.

V. DISCUSSION AND CONCLUSIONS

We studied the emergence of nonlocal effects in isotropic
polar dielectric systems, demonstrating their importance for
technologically relevant nanostructures. We demonstrated
that the negative dispersion of optical phonons, and the

existence of a finite transverse frequency bounding the
reststrahlen band from below, leads to a rich and unique
nonlocal phenomenology. In particular, opening the possibil-
ity to resonantly couple photonic excitations to propagative
longitudinal modes makes it possible to engineer hybrid
longitudinal-transverse SPhPs, recently highlighted as an
important stepping stone toward the realization of electrically
pumped SPhP devices [27], in generic nanoscale objects.
By modeling recently published experimental data, we

proved that some of their unexplained features result
directly from nonlocal effects, showing their immediate
importance to the design of dielectric nanodevices. This
also constitutes a first experimental verification that our
theory provides quantitatively correct results for systems
down to few atomic lattices in size. This can mean that the
physics at that level is already acceptably well described by
a continuous theory or, alternatively, that the average effect
of the microscopic degrees of freedom can be described by
a renormalization of the effective nonlocal system param-
eters. Future experimental and numerical investigations
will be required to gain a better understanding of the
boundary of applicability of our approach. When used in
conjunction with experimental data or microscopic calcu-
lations [29,30], required to fix some of the model param-
eters, our theory thus allows for agile design and simulation
of nanoscopic polar devices. Although in this paper
all materials are treated as isotropic, our model could be
extended to consider anisotropic systems. This would entail
numerical calculation of the modal dispersion, replacing
the ionic equation of motion with its anisotropic analog. We
were able to implement our nonlocal theory in a number of
numerical and analytical techniques adapted to different
geometries (Mie theory, quasistatic, scattering matrix). It
remains an open question whether at least some of the
nonlocal phenomenology due to the propagating longi-
tudinal modes can be captured by using local models as in
the plasmonic case [50], thus allowing for simple integra-
tion into existing commercial numerical software.
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APPENDIX A: CONTINUUM
DIELECTRIC MODEL

We treat our polar crystal as an isotropic lattice,
described in the continuum limit by [33,51]

½ω2
T −ωðωþ iγÞþβ2L∇ð∇·Þ−β2T∇×∇×�X¼μ

ρ
E; ðA1Þ

in which X is the relative ionic displacement, ωT is the
transverse optical (TO) phonon frequency, and ρ and μ are

(a)

(b)

FIG. 5. Comparison of experimental reflectance data [31] (blue
solid line), a local dielectric description (green dot-dashed line),
and a nonlocal description (red dashed line) of nitride super-
lattices. Panel (a) shows results for heterostructure A and (b) for
heterostructure B as described in the text.
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the effective mass and charge densities. We suppress space
(wave vector) and time (frequency) dependencies where
possible. For simplicity we consider a single loss rate γ,
independent of both frequency and polarization. The
spatially dispersive terms in Eq. (A1) are calculable as
the divergence of a tensor τ̄,

∇ · τ̄¼∇ ·fβ2T ½∇Xþð∇XÞT �þðβ2L−2β2TÞ∇ ·XĪg; ðA2Þ

in which Ī is the identity tensor. In a model of acoustic
phonons, τ̄ is the mechanical stress tensor, parametrized by
the Lamé coefficients which describe the acoustic phonon
velocities. As here we consider optical phonons, the
coefficients βL, βT are instead phenomenological velocities
which describe LO and TO phonon dispersions, respec-
tively [34]. Note that this formalism only accounts for terms
up to quadratic order in the phonon dispersion, potentially
leading to deviation far from either phonon frequency. We
can then introduce the total polarization P, which is a sum
of the ionic polarization μX and the high-frequency
nonresonant background,

P ¼ μXþ ϵ0ðϵ∞ − 1ÞE; ðA3Þ

in which ϵ∞ is the high-frequency dielectric constant.
The longitudinal and transverse dielectric functions,

given in Eqs. (2) and (3) of the main text, can then be
derived. For the longitudinal mode∇ ×X ¼ 0, and Fourier
transforming Eq. (A1), we can write

PL ¼
�
ϵ0ðϵ∞ − 1Þ þ μ2=ρ

ω2
T − ωðωþ iγÞ − β2Lk

2

�
EL: ðA4Þ

Using the standard constitutive relation,

D ¼ ϵ0ϵðω; kÞE ¼ ϵ0Eþ P; ðA5Þ

we find

ϵLðω; kÞ ¼ ϵ∞ þ μ2=ρϵ0
ω2
T − ωðωþ iγÞ − β2Lk

2
; ðA6Þ

which simplifies to that given in Eq. (2) defining the LO
phonon frequency:

ω2
L ¼ ω2

T þ μ2

ρϵ0ϵ∞
: ðA7Þ

A similar relation for the transverse dielectric function
ϵTðω; kÞ in Eq. (3) can be derived considering instead
∇ ·X ¼ 0 in Eq. (A1).

APPENDIX B: ADDITIONAL BOUNDARY
CONDITIONS

In the LRA mode, amplitudes at the interface between
two piecewise continuous media are determined by appli-
cation of the Maxwell boundary conditions (MBCs) to
electric and magnetic fields E and H. As a nonlocal
formalism entails consideration of additional fields in each
layer, additional boundary conditions (ABCs) are necessary
to uniquely determine the model. In order to find the correct
boundary conditions we use the ionic equation of motion
Eq. (A1) to derive a hybrid Poynting vector describing the
total energy transported in both the electromagnetic and
mechanical fields. We start from Poynting’s theorem,Z
δΩ
ðE×HÞ · n̂dS¼−

Z
Ω
½ϵ0E · _EþE · _Pþμ0H · _H�dV;

ðB1Þ

which relates the change in energy enclosed in volume Ω
with the flux through its surface δΩ. Substituting Eq. (A1)
into Eq. (B1) via the constitutive relation Eq. (A3), an
approach proposed by Loudon [52], we can writeZ

δΩ
ðE×HÞ · n̂dS

¼−
Z
Ω
fϵ0ϵ∞E · _Eþμ0H · _H

þρ½ω2
T−ωðωþ iγÞ�X · _Xþρð∇ · τ̄Þ · _XgdV: ðB2Þ

The final term in this equation describes mechanical
transport. It can be recast asZ
Ω
dVρ½∇ · τ̄i� _Xi ¼

Z
Ω
dVρ½∇ · ð _Xiτ̄iÞ − τ̄i · ∇ _Xi�

¼
Z
δΩ

dSρ½ _Xiτ̄i� · n̂ −
Z
Ω
dVρτ̄i ·∇ _Xi;

ðB3Þ

where the latter term describes a nonlocal adjustment of the
energy density and the former is an energy flux. Combining
the flux term with the local Poynting flux from Eq. (B1), we
derive the hybrid Poynting vector,

S ¼ E ×Hþ ρτ̄ _X; ðB4Þ

where the tensor τ̄ is defined by Eq. (A2). In order to ensure
that interfaces act as neither energy sources nor sinks, we
impose continuity of the normal component of S. This
requires, in addition to the standard MBC, continuity of X
and of the normal components of the tensor τ̄.
At an interface between nonlocal and local media, the

boundary conditions are underspecified. This is a problem
well known in the case of exciton polaritons, where
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multiple solutions have been proposed, derived either from
microscopic considerations [53], by application of sym-
metry conditions to the fields [35], or by considering
explicitly the nonlocal surface potential near the boundary
[54]. The most commonly utilized ABCs are the Pekar-
Ridley [53] and Fuchs-Kliewer [35] which, assuming for
definiteness an interface lying in the xy plane, read X ¼ 0
and ∂zXfx;yg ¼ Xz ¼ 0, respectively. Both of these choices

satisfy ρτ̄ _X ·ẑ ¼ 0, ensuring conservation of energy across
the interface when the mechanical excitations cannot
propagate (e.g., at a dielectric-vacuum interface).
In the isotropic model we are considering, the additional

high-momentum transverse mode coupled by the non-
locality is closely resonant with the bare TO phonon,
and thus it has a negligible associated electric field. ABCs
then predominantly mix the low-momentum transverse
photonlike mode and the dispersive LO excitation. The
condition on Xfx;yg is then trivially satisfied without
affecting the optical response. This means that calculations
of observables such as reflectance utilizing the Fuchs-
Kliewer and Pekar-Ridley boundary conditions are practi-
cally indistinguishable. We then use Fuchs-Kliewer-type
ABCs as they are derived by symmetry arguments, and they
are equivalent to assuming specular reflection from the
interface, which is the relevant symmetry in our case.

APPENDIX C: SCATTERING FROM
DIELECTRIC SPHERES

In order to include nonlocal effects in the treatment of the
optical response of small dielectric spheres, we used an
extended Mie theory, conceptually similar to previous
nonlocal extensions of Mie theory utilized to describe
nonlocal effects in noble metallic systems [21] and
described fully in the Appendix D. In order to test our
calculations, and to provide a better understanding of the
results, we also used a semianalytic model valid in the
quasistatic limit, that is assuming the impinging radiation
field does not vary appreciably over the sphere diameter
[40]. This is a good approximation for the parameters
considered in this paper, with radii R normalized over the
resonant wavelength of the order of 0.01. For the param-
eters presented in Fig. 2(b), the extinction cross section
given in Eq. (C5) is indistinguishable from the full Mie
theory.
In the quasistatic limit the polarizability of a sphere in

vacuum has the form

α ¼ 4πR3
ϵ̃ðωÞ − 1

ϵ̃ðωÞ þ 2
; ðC1Þ

where

ϵ̃ðωÞ ¼ ϵLRAðωÞ
1þ δNL

ðC2Þ

is the local dielectric function renormalized by nonlocal
effects through the nonlocal parameter,

δNL ¼ 1

ξR
ϵLRAðωÞ − ϵ∞

ϵ∞

j1ðξRÞ
j01ðξRÞ

; ðC3Þ

with j1ðxÞ and j01ðxÞ a spherical Bessel function of the first
kind and its derivative, and ξ is the longitudinal mode wave
vector defined by the equation

ξ2 ¼ ½ω2
L − ωðωþ iγÞ�=β2L: ðC4Þ

Within this formalism we can quickly evaluate the extinc-
tion cross section:

σext ¼
1

πR2

ω

c

�
ω3

6πc3
jαj2 þ ImðαÞ

�
: ðC5Þ

Further details on both the extended Mie theory and the
semianalytic quasistatic theory can be found in
Appendix D.
In the 3C-SiC case we use transverse optic phonon

frequency ωT ¼ 796.1 cm−1, longitudinal optic phonon
frequency ωL ¼ 973 cm−1 [7], high-frequency dielectric
constant ϵ∞ ¼ 6.52, damping rate γ ¼ 4 cm−1, and non-
local velocities βSiCT ¼ 9.15 × 105 cm s−1, βSiCL ¼ 15.39 ×
105 cm s−1 approximated from studies of phonon dispers-
ion [49]. For the LO phonon damping rate we extrapolate
the low-temperature results of Debarnardi et al. to room
temperature, assuming a two-phonon decay channel [55].
In the gold case we use plasma frequency ωP ¼

72670 cm−1, damping rate γ ¼ 580 cm−1 [56], and non-
local velocity β ¼ 1.08 × 108 cm s−1 [23,50].

APPENDIX D: NONLOCAL MIE THEORY

In Appendix C we derived the extinction cross section in
the quasistatic limit for a nanosphere supporting longi-
tudinal nonlocal modes. To consider transverse nonlocality
it is necessary to develop a full nonlocal Mie theory. When
considering the mechanical boundary conditions it is
necessary to construct a set of spherical vector harmonics
which also yield spherical vector harmonics under appli-
cation of the divergence and curl operators. A suitable
choice is [57]

Yplmðθ;ϕÞ ¼ êrYplmðθ;ϕÞ; ðD1Þ

Ψplmðθ;ϕÞ ¼ r∇Yplmðθ;ϕÞ; ðD2Þ

Φplmðθ;ϕÞ ¼ r ×∇Yplmðθ;ϕÞ; ðD3Þ

where Yplmðθ;ϕÞ are scalar spherical harmonics with p ¼
fe; og denoting even or odd parity in ϕ,
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Yelm ¼ Plmðcos θÞ cosmϕ; ðD4Þ

Yolm ¼ Plmðcos θÞ sinmϕ; ðD5Þ

and Plmðcos θÞ are the associated Legendre polynomials.
Single-valued vector fields vanishing at infinity (F) can be
written in this basis,

F ¼
X
plm

½VplmðrÞYplm þ Vð1Þ
plmðrÞΨplm þ Vð2Þ

plmðrÞΦplm�;

ðD6Þ

where expansion coefficients can be found exploiting the
orthogonality of the spherical vector harmonics. For
example,

VplmðrÞ ¼
R
d3rF · YplmR

d3rYplm · Yplm
: ðD7Þ

This choice of spherical harmonics allows for segregation
into longitudinal and transverse modes. Modes propor-
tional to Φplm are always transverse, while those propor-
tional toYplm,Ψplm can be decomposed into transverse and
longitudinal components satisfying, respectively, the equa-
tions

2VplmðrÞ
r

þ d
dr

VplmðrÞ ¼
lðlþ 1Þ

r
Vð1Þ
plmðrÞ; ðD8Þ

Vð1Þ
plmðrÞ
r

þ d
dr

Vð1Þ
plmðrÞ ¼

VplmðrÞ
r

: ðD9Þ

This theory can be applied to any layered spherical
resonator supporting longitudinal and transverse nonlocal-
ity. As an example, we calculate the fields in a single-layer
nanosphere of radius R, supporting a longitudinal mode.
An impinging plane wave can be expanded in the region
r > R as

EI ¼ E0eikzx̂

¼ E0

X∞
l¼1

il
�
lðlþ 1ÞjlðρÞ

ρ
Yel1 þ

�
jlðρÞ
ρ

þ j0lðρÞ
�
Ψel1

− jlðρÞΦol1

�
; ðD10Þ

where E0 is the field intensity and k the wave number
outside the sphere, jlðρÞ is a spherical Bessel function of
the first kind, and ρ ¼ kr. The scattered field in region
r > R can be similarly written as

ES ¼ −E0

X∞
l¼1

il
�
al

�
lðlþ 1Þhð1Þl ðρÞ

ρ
Yel1

þ ½ρhð1Þl ðρÞ�0
ρ

Ψel1

�
− blh

ð1Þ
l ðρÞΦol1

�
; ðD11Þ

where we enforced transversality through Eq. (D8). al, bl
are the Mie scattering coefficients and hð1Þl ðρÞ is a spherical
Hankel function of the first type, chosen to ensure an
outgoing spherical wave in the limit ρ → ∞.
The transverse field in the region r < R can be written as

ET ¼ E0

X∞
l¼1

il
�
cl

�
lðlþ 1ÞjlðρTÞ

ρT
Yel1

þ ½ρtjlðρTÞ�0
ρT

Ψel1

�
− dljlðρTÞΦol1

�
; ðD12Þ

where ρT ¼ ffiffiffiffiffiffiffiffiffiffi
ϵðωÞp

kr and cl, dl are unknown coefficients.
The longitudinal phonon electric field inside the particle is
given by

EL ¼ E0

X∞
l¼1

ilgl

�½ρLjlðρLÞ�0
ρL

Yel1 þ
jlðρLÞ
ρL

Ψel1

�
; ðD13Þ

where we used Eq. (D9) and ρL ¼ ξr, where ξ is the
longitudinal wave vector defined in Eq. (C4).
The unknown coefficients al, bl, cl, dl, gl can be

calculated by application of the appropriate boundary
conditions. In this case these are the standard Maxwell
boundary conditions on the components of E and H
parallel to the sphere surface, in addition to the boundary
condition on the radial component of the ionic displace-
ment X. In conjunction with continuity of the radial
displacement field D, this boundary condition can be recast
as one on the radial component of ϵ∞E. This leads to
extinction and scattering cross sections:

σext ¼
2π

k2
X∞
l¼1

ð2lþ 1ÞRe½al þ bl�; ðD14Þ

σsca ¼
2π

k2
X∞
l¼1

ð2lþ 1Þðjalj2 þ jblj2Þ: ðD15Þ

APPENDIX E: NONLOCAL MODEL OF A
LAYERED DIELECTRIC

The application of the nonlocal theory to a layered
structure can be performed by calculating a complete set of
modes for each layer and then applying MBCs and ABCs
to match their amplitudes at the boundaries. In the case of
the four layers considered for the AlN-vacuum ENZ
resonance (prism-vacuum–AlN-vacuum), this leads to 12
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independent modes: two transverse counterpropagating
modes for each nonactive layer and four transverse and
two longitudinal modes for the AlN slab. The AlN slab
(region 2) occupies −d < z < 0, vacuum occupies regions
1 z < −d and 3 h > z > 0, and region 4, z > h, contains a
high-index prism. The photon fields in the multilayer stack
are given by

E1 ¼ B1

ffiffiffiffiffi
ϵ1

p
k

α1
p̂þ1eα1ðzþdÞeikxxeiωt; ðE1Þ

E3 ¼
ffiffiffiffiffi
ϵ3

p
k

α3
½Ba

3p̂þ3eα3ðz−hÞ þ Bb
3p̂−3e−α3ðz−hÞ�eikxxeiωt;

ðE2Þ

E4 ¼
ffiffiffiffiffi
ϵ4

p
k

α4
½Ba

4p̂þ4eα4ðz−hÞ þ Bb
4p̂−4e−α4ðz−hÞ�eikxxeiωt;

ðE3Þ

in which kx is the in-plane wave vector, ω the mode
frequency, k its free-space wave vector, Bi are unknown
coefficients to be determined by the boundary conditions,
and ϵi is the ith layer’s dispersionless dielectric function.
The unit vector is given by

p̂�i ¼
αix̂ ∓ ikxẑffiffiffiffi

ϵi
p

k
; ðE4Þ

and the out-of-plane transverse wave vector in layer i ¼ 1,
3, 4 is

αi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x − ϵik2

q
: ðE5Þ

Assuming illumination from medium 4, we can set Ba
4 ¼ 1

and recognize Bb
4 as the reflectance.

In the nonlocal AlN film, two transverse and one
longitudinal mode are supported. The electric field profile
for TO phonons and photons can be written as

E2;T ¼
�
Ba
�

�
x̂ −

ikx
α�

ẑ

�
eα�ðzþdÞ

þ Bb
�

�
x̂þ ikx

α�
ẑ

�
e−α�ðzþdÞ

�
eikxxeiωt; ðE6Þ

where α� represents the two solutions to the nonlocal
dispersion relation ϵTðω; kÞω2 ¼ c2k2. The longitudinal
mode field can be written as

E2;L ¼
�
Aa

�
x̂ −

iη
kx

ẑ

�
eηðzþdÞ

þ Ab

�
x̂þ iη

kx
ẑ

�
e−ηðzþdÞ

�
eikxxeiωt; ðE7Þ

where Afa;bg are further undetermined coefficients and the
out-of-plane wave vector,

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x −

ω2
L − ωðωþ iγÞ

β2L

s
; ðE8Þ

is the solution to ϵLðω; kÞ ¼ 0.
From these electric fields the fields entering the boun-

dary conditions are calculable. The magnetic field is
calculable by the Maxwell-Faraday equation. As additional
boundary conditions we constrain the in- and out-of-plane
components of the ionic displacement X. The AlN film is
clad in vacuum where X ¼ 0. As the nonlocal model
eliminates charge surface charging, the normal component
of the displacement field,

Dz ¼ ϵ0ϵ∞Ez þ μXz; ðE9Þ

is continuous at the AlN boundary. The additional boun-
dary condition on the perpendicular component of X ¼ 0
can therefore be recast to one on ϵ∞Ez. The final boundary
condition is Xk ¼ 0. Applying these conditions yields a
10 × 10 matrix problem for the unknown coefficients A, B.

APPENDIX F: FITTING PROCEDURE

Transfer matrix algorithms, the tool of choice to model
optical properties of planar semiconducting heterostruc-
tures, are generally unstable in the limit of thick absorbing
layers. As in a nonlocal model the phonon mode out-of-
plane wave vectors are very large, this problem emerges
even when considering optically thin films. This instability
forced us to utilize a scattering matrix approach. In a
scattering matrix model we start by calculating the matrix
of the pth layer sðpÞ, which relates the up- and down-
propagating incoming modes uðpÞ and dðpþ1Þ to the out-
going ones, uðpþ1Þ and dðpÞ. The scattering matrix for the
full P-layer stack,

�
uðPþ1Þ

dð0Þ

�
¼ SðPÞ

�
uð0Þ

dðPþ1Þ

�
; ðF1Þ

can then be obtained by calculating the Redheffer star
product of the single-layer matrices. We then fitted the
experimental data using both local and nonlocal theories. In
both cases we allowed the layers’ thickness to vary around
the nominal value in order to take into account atomic
intercalation or screening [29] at the interface, which
reduces the effective thickness which can be described
by bulk crystal structure. Consistently with such a picture
we found optimal thickness reductions roughly equal to one
lattice constant per interface.
The longitudinal phononvelocity in the nonresonant GaN

layer was fixed at βGaNL ¼ 6.5 × 105 cm s−1, approximated
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from numerical phonon dispersion curves [58]. In order to
reduce the fitting parameters we neglected TO phonon
velocities, which have a very limited impact on the calcu-
lated spectra, thus imposing βAlNT ¼ βGaNT ¼ 0 also in the
nonlocal theory. Our fitting procedure used two unknown
parameters for the local theory and three in the nonlocal one:
the shift in layer thickness δ, the damping rate in the AlN
γAlN, and the longitudinal velocity in the AlN layer βAlNL ,
the latter being unique to the nonlocal theory. Optimal
parameters are found to be βAlNL ¼ 5.1 × 105 cm s−1,
δ ¼ 0.94 nm, and γAlN ¼ 10.3 cm−1.
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