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In locally interacting quantum many-body systems, the velocity of information propagation is finitely
bounded, and a linear light cone can be defined. Outside the light cone, the amount of information rapidly
decays with distance. When systems have long-range interactions, it is highly nontrivial whether such a
linear light cone exists. Herein, we consider generic long-range interacting systems with decaying
interactions, such as R−α with distance R. We prove the existence of the linear light cone for α > 2Dþ 1

(D, the spatial dimension), where we obtain the Lieb-Robinson bound as k½OiðtÞ; Oj�k ≲ t2Dþ1ðR − v̄tÞ−α
with v̄ ¼ Oð1Þ for two arbitrary operators Oi and Oj separated by a distance R. Moreover, we provide an
explicit quantum-state transfer protocol that achieves the above bound up to a constant coefficient and
violates the linear light cone for α < 2Dþ 1. In the regime of α > 2Dþ 1, our result characterizes the best
general constraints on the information spreading.
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I. INTRODUCTION

In deep understanding of many-body physics, we nec-
essarily encounter the question on how fast information
propagates in the dynamics. In this context, the most
fundamental principle is the causality; that is, in relativistic
systems, information propagation is completely prohibited
outside the light cone. On the other hand, in nonrelativistic
quantum many-body systems, a rigorous light cone is not
defined. Lieb and Robinson proved in 1972 [1] that an
effective light cone can be defined, outside which infor-
mation propagation exponentially decreases with distance.
In their study, the effective light cone is characterized by the
so-called Lieb-Robinson velocity.
The Lieb-Robinson bound imposes one of the most

fundamental restrictions to the dynamics [2–13] and has
been improved in various ways [9,14–20]. Moreover, after
Hastings’ work on the Lieb-Schultz-Mattis theorem [21],
the Lieb-Robinson bound has been recognized as a crucial

ingredient for analyzing the universal physics in many-
body systems, such as quasiadiabatic continuation [22],
the area law of entanglement [23–26], thermalization
[27–30], quantization of Hall conductance [31,32],
stability of topological order [33–35], the clustering theo-
rem for correlation functions [14,15,36–38], the effective
Hamiltonian theory [39,40], and classical simulation of
many-body systems [41–47]. More recently, the Lieb-
Robinson bound has been further applied to the digital
quantum simulation of many-body systems [48–50] and
quantum information scrambling [51–63], where the Lieb-
Robinson velocity gives an upper bound of butterfly speed
[51]. In addition, experimental advancement enables direct
observation of the Lieb-Robinson bounds [64–70].
In the case of short-range interacting spin systems, an

effective light cone is characterized by a finite velocity, and
information propagation is restricted inside the “linear light
cone.” However, when we consider long-range interacting
systems, the existence of a linear light cone is quite subtle,
because long-range interactions enable immediate commu-
nication between two arbitrarily distant parties. Here, long-
range interaction implies that the interaction strength
between separated sites shows a power-law decay of R−α

with the distance R. Depending on the exponent α, both the
linear and nonlinear light cones can appear. Recent experi-
ments have realized long-range interacting systems with
various values of α [71–80], and, hence, exploring the
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universal aspects of long-range interacting systems is
attracting increasing attention [81–87]. From these back-
grounds, one of the most important and intriguing open
problems is the so-called linear light cone problem, which
clarifies whether linear right cones can exist in long-range
interacting systems, and what the general criterion is for it.
So far, various studies have clarified dynamical proper-

ties in the long-range interacting systems [88–104]. As one
of the generic aspects of the Lieb-Robinson bound,
Refs. [15,17,105–107] show that the amount of information
propagation is suppressed at least outside the effective light
cone exponentially growing in time, irrespective of α.
Later, a more detailed universal upper bound was provided
by Foss-Feig et al. [108]. They prove that the effective light
cone is at most polynomial with respect to time; in more
detail, the shape of the light cone is given by tðα−Dþ1Þ=ðα−2DÞ
(α > 2D) with D as the spatial dimensions. However,
despite significant efforts [49,109–111], the critical value
of α to obtain a linear light cone is still unclear even at the
numerical level.
In this work, we rigorously prove that a linear light cone

is obtained in generic long-range interacting systems under
the condition of α > 2Dþ 1. As related work, in one-
dimensional two-body interacting systems, the long-range
Lieb-Robinson bound has been proved very recently in the
form of k½OiðtÞ; Oj�k≲ t=R for α > 3 [112], which gives a
nontrivial upper bound up to the time t ¼ OðRÞ. In our
analyses, the Hamiltonian is not restricted to few-body
interactions and is applicable to arbitrary spatial dimen-
sions. Our Lieb-Robinson bound is given in the stronger
form of k½OiðtÞ; Oj�k≲ t2Dþ1ðR − v̄tÞ−α. However, only
the above commutation relation is not sufficient to upper
bound the entire information propagation outside the light
cone. To obtain a linear light cone in a strict sense [see
Eq. (5) and Fig. 1], we also prove that the error of the local
approximation of OiðtÞ decays as tDþ1R−αþD outside the

light cone [see Eq. (7) below]. Our result can improve
various existing analyses that depend on a polynomial light
cone [49,108].
We also discuss whether α ¼ 2Dþ 1 is the critical

value to ensure a linear light cone in general setups. In
other words, we investigate the achievability of our Lieb-
Robinson bound and the possibility to violate the linear
light cone for α < 2Dþ 1, by which we show that our
bound is the best general upper bound. We consider a
quantum-state transfer protocol through the dynamics on a
spin network and give an explicit example that achieves our
Lieb-Robinson bound for α > 2Dþ 1 and violates the
linear light cone for α < 2Dþ 1. Our protocol is applied to
(1=2)-spin systems and comprises only the Ising-type long-
range interactions and simple short-range interactions that
generate the controlled NOT gate operation. This example
ensures the optimality of our results.
The rest of this paper is organized as follows. In Sec. II,

we formulate the precise setting and state the main results
and their implications. In Sec. III, we sketch the intuitive
explanation for the condition that a linear light cone
appears. We also show the brief strategy for the proof.
In Sec. IV, we discuss the optimality of the present Lieb-
Robinson bound. In more detail, we explicitly show a
quantum-state transfer protocol which achieves our theo-
retical upper bound up to a coefficient. Finally, in Sec. V,
we summarize the paper, making a brief discussion.

II. MAIN RESULTS

We consider a quantum many-body system with n sites,
where each site is located on a D-dimensional lattice
with the total set Λ (jΛj ¼ n). We assume that a finite-
dimensional Hilbert space is assigned to each of the sites.
For simplicity, we restrict ourselves to two-body

interactions, but our results are extended to a more
general setup, as shown in the Appendix A. We focus
on the following Hamiltonian H with power-law decaying
interactions:

H ¼
X
i;j∈Λ

hi;j þ
Xn
i¼1

hi with khi;jk ≤
g0
dαi;j

; ð1Þ

where di;j is the distance between the sites i and j, namely,
the minimum path length from the site i to j, fhi;jgi<j are
the bipartite interaction operators, fhigni¼1 are the local
potentials, g0 is a positive constant of Oð1Þ, and k � � � k is
the operator norm. Although in some literature [113,114]
the long-range interaction often implies the power-law
decaying interactions with α ≤ D, we refer to systems
with arbitrary power-law decaying interactions as long-
range interacting systems in distinction from the finite-
range (or exponentially decaying) interactions.
Our analysis can be also applied to a time-dependent

Hamiltonian, but, for simplicity, we present the analysis

FIG. 1. When we consider time evolution OiðtÞ of a local
operator Oi, the quasilocality of the interaction ensures that OiðtÞ
is well approximated by an operator defined on a ball region i½r�
having the maximum distance of r from i. The dynamics define
the linear light cone if we can achieve an arbitrary approximation
error for r ¼ OðtÞ as in Eq. (5).
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only for the time-independent case. One typical example is
the following one-dimensional long-range Ising model:

H ¼
X
i<j

g0
dαi;j

σxi σ
x
j þ B

X
i

σzi ðD ¼ 1Þ; ð2Þ

where fσx; σy; σzg are the Pauli matrices. This class of
Hamiltonians is experimentally realized for the power-law
exponent in α ≤ 3 [69,79].
We are now interested in the time evolution using the

Hamiltonian H. For simplicity, we consider an operator Oi
that is locally defined on the site i and analyze

OiðtÞ ≔ eiHtOie−iHt:

Mainly, we focus on the following two quantities:

k½OiðtÞ; Oj�k ∀ j ∈ Λ ð3Þ

and

k½OiðtÞ −Oiðt; i½r�Þ�k with

Oiðt; i½r�Þ ≔
1

tri½r�cð1̂Þ
tri½r�c ½OiðtÞ� ⊗ 1̂i½r�c ; ð4Þ

where i½r� denotes the set of sites having a maximum
distance of r from the site i and i½r�c is its complement set.
The quantity (4) characterizes the error of the local
approximation for the time-evolved operator OiðtÞ into
the region i½r� (see Fig. 1). We note that the decay of Eq. (4)
is not necessarily derived only from the decay of Eq. (3).
Here, we define the linear light cone in the following

sense. We say that the Hamiltonian dynamics e−iHt has a
linear light cone if the following inequality holds for an
arbitrary error δ ∈ R and t:

k½OiðtÞ −Oiðt; i½r�Þ�k ≤ δ for r ≥ vt;δjtj; ð5Þ

where vt;δ decreases in time and eventually converges to a
finite value (i.e., v∞;δ ¼ const). From the definition, the
amount of information propagation is smaller than δ
outside the region separated by the distance vt;δjtj.
Here, we show our main results. For α > 2Dþ 1, the

Hamiltonian in Eq. (1) satisfies the Lieb-Robinson bound
for Eq. (3) as

k½OiðtÞ; Oj�k ≤ CHjtj2Dþ1ðR − v̄jtjÞ−α ð6Þ

with R ¼ di;j. In addition, the Lieb-Robinson bound for
Eq. (4) is given by

k½OiðtÞ −Oiðt; i½R�Þ�k ≤ C0HjtjDþ1ðR − v̄jtjÞ−αþD; ð7Þ

where R > v̄jtj is considered and CH, C0H, and v̄ are
constants that depend only on the parameters fD; g0; αg

and a geometric constant defined by the lattice structure.
We emphasize that the same upper bound is obtained for
generic operators OX and OY (see Appendix A).
As long as we consider the commutator for local

observables, the first inequality (6) is stronger than the
second one (7) in the sense that asymptotic decay is as
small as OðR−αÞ. From the inequality (7), we can calculate
the Lieb-Robinson velocity vδ;t defined in Eq. (5):

vδ;t ¼ v̄þ cδ−½1=ðα−DÞ�jtjð−αþ2Dþ1Þ=ðα−DÞ⟶
t→∞

v̄;

where c is a constant of Oð1Þ and where we use the
condition α > 2Dþ 1.

III. INTUITIVE EXPLANATION OF THE
CONDITION α > 2D+ 1

We here show an intuitive explanation of why the
condition α > 2Dþ 1 appears. The point to obtain the
linear light cone is that the contribution to the Lieb-
Robinson velocity from the long-range interaction with
very large distance becomes asymptotically negligible. To
get better insights into this condition, we consider the
simplest setup as follows.
Let us consider the Hamiltonian given byH ¼ H1 þH2,

where H1 has only nearest-neighbor interactions, while H2

consists of the long-range interactions with the length
scales from l to 2l as H2 ¼

P
l≤di;j≤2l hi;j. Note that

the condition (1) implies khi;jk ≤ g0d−αi;j . We eventually
take the large l limit to consider asymptotic behavior
arising from the interactions of the large distance. Note that
the Hamiltonian H1 consists of short-range interactions;
hence, the unitary operator e−iH1t satisfies the standard
Lieb-Robinson bound [1,14,15] giving a finite Lieb-
Robinson velocity. Here, we denote it by v1. We focus
on the time range of t≲ l=v1 and then consider the
condition for which the Lieb-Robinson velocity for the
Hamiltonian H is given by a finite velocity related to v1 in
the large l limit.
As a simple exercise, we first consider the product of the

unitary operators e−iH1te−iH2t. Then, to estimate the con-
tribution from the long-range interactions, we have only to
consider the Lieb-Robinson bound for e−iH2t. The Lieb-
Robinson bound for H2 is given by e−cðx=l−vltÞ, and vl is
proportional to the one-site energy:

g ¼ max
i∈Λ

X
j∈Λ

khi;jk ¼ Oðl−αþDÞ;

where
P

j∈Λ khi;jk ≤ g0
P

j∶l≤di;j≤2l d
−α
i;j is a summation of

all the interaction terms that act on the site i. Hence, the
Lieb-Robinson velocity is proportional to l−αþDþ1, which
vanishes in the limit of l → ∞ for α > Dþ 1. Therefore,
the unitary operator e−iH1te−iH2t has finite Lieb-Robinson
velocity v1 as long as α > Dþ 1.
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Now, let us discuss the unitary operator e−iðH1þH2Þt. For
this unitary operator, we use the following representation to
decompose the contributions from H1 and H2:

e−iðH1þH2Þt ¼ e−iH1tT e−i
R

t

0
H2ðH1;τÞdτ; ð8Þ

where H2ðH1; τÞ ≔ eiH1τH2e−iH1τ and T denotes the time-
ordering operator. Because the one-site operator spreads
up to a distance OðτÞ owing to the time evolution e−iH1τ

(Fig. 2), the one-site energy is now given by

gðτÞ ¼ max
i∈Λ

X
Z∶Z∋i

khτ;Zk ¼ τDOðl−αþDÞ; ð9Þ

where hτ;Z is an interaction term on the subset Z that con-
stitutes H2ðH1; τÞ, i.e., H2ðH1; τÞ ¼

P
Z hτ;Z. Therefore,

the time evolution T e−i
R

t

0
H2ðH1;τÞdτ gives the Lieb-

Robinson bound as e−cðx=l−vt;ltÞ with the velocity vt;l ∝
gðtÞ ¼ tDOðl−αþDÞ. For t≲ l=v1, this estimation provides
the Lieb-Robinson velocity as tDl−αþDþ1 ≲Oðl−αþ2Dþ1Þ.
Hence, the contribution to the Lieb-Robinson velocity from
H2 vanishes in the limit of l → ∞ for α > 2Dþ 1. This
result leads to the finite Lieb-Robinson velocity v1 for the
unitary operator e−iðH1þH2Þt.
In summary, the spread of the operator changes the

effective one-site energy by tD times [see Eq. (9)], which
yields the condition of α > 2Dþ 1 for the linear light cone.
In our proof for the general Hamiltonian (1), we decompose
the total length scale into pieces and consider the multi-
unitary decomposition by generalizing Eq. (8) (see also
Appendix B). We then obtain the Lieb-Robinson bound for
each of the decomposed unitary operators and connect
them into a single Lieb-Robinson bound. The technical
difficulties lie in that we need to connect infinitely many
Lieb-Robinson bounds; in the step-by-step connections,
a simple estimation makes the Lieb-Robinson velocity

diverge rapidly, and, hence, highly refined analyses are
required to obtain a finite velocity.

IV. OPTIMALITY OF THE PRESENT
LIEB-ROBINSON BOUND

We have proved that the condition α > 2Dþ 1 is a
sufficient condition for arbitrary Hamiltonians to have the
linear light cone. We here discuss whether this condition
can be further improved. It has been conjectured in
previous studies [49,94] that the best general condition
may be given by α > Dþ 1 from numerical and theoretical
analyses of specific models. Against the conventional
expectation, we show that any improvement from α >
2Dþ 1 is impossible as long as we consider the general
long-range interacting systems (1). In the following, we
explicitly provide a quantum-state transfer protocol that
achieves a nonlinear light cone for α < 2Dþ 1.
We follow a similar setup as in Ref. [2] and consider the

quantum-state transfer between two separated spins A and
B through a spin network, where we define R as the
distance between the spins A and B (Fig. 3). We start from
the initial state jψi such that all spins are given by j0i,
namely, jψi ≔ j0i⊗n. We then apply the unitary operation
U0 or U1 to the spin A, where U0 is the identity operator

FIG. 2. Effect of the operator spreading. When a bipartite
interaction hi;j evolves using the Hamiltonian H1, interactions
between the sites i0 and j0 such that di;i0 ≲ vt and dj;j0 ≲ vt are
effectively induced. The operator hi;jðH1; tÞ now acts on a
subsystem with roughly OðtDÞ sites. Hence, one-site energy of
H2ðH1; tÞ defined as in Eq. (9) becomes OðtDÞ times the
original one.

FIG. 3. Schematic of our state-transfer protocol. We show many
copies of the input state here and transform the receiver into the
GHZ state. The protocol effectively amplifies the long-range
interaction strength between the sender and the receiver by t2D

times (D ¼ 1). We can see that this simple protocol gives an
example that realizes the intuitive picture in Fig. 2. We here
consider 1D systems, but the generalization to high-dimensional
systems is straightforward.
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and U1 is the spin flip operator (i.e., U1 ¼ j0ih1j þ j1ih0j).
After applying U0 or U1, the initial quantum state is
transformed into jψ si ¼ jsi ⊗ j0i⊗n−1 with s ¼ 0, 1.
After time t, the quantum state evolves according to the

unitary time operation UðtÞ ¼ T ½e−i
R

t

0
HðτÞdτ�. We then

define the output state for spin B as

ρðsÞB ≔ trBc ½UðtÞjψ sihψ sjUðtÞ†�: ð10Þ

If we can distinguish between the state ρð0ÞB from ρð1ÞB with
the probability 1, we can achieve the perfect quantum-state
transfer.
By utilizing the Lieb-Robinson bound (6), we have [2]

kρð1ÞB − ρð0ÞB k1 ≲ jtj2Dþ1R−α; ð11Þ

where k · k1 is the trace norm. When kρð1ÞB − ρð0ÞB k1 ¼ 2, the

two states ρð0ÞB and ρð1ÞB are orthogonal to each other and
completely distinguishable. We prove that the upper bound
of Eq. (11) is achievable by combining controlled-NOT-type
short-range interactions and the Ising-type long-range
interactions.
We here consider a one-dimensional (1=2)-spin system

and decompose the time evolution into three steps (see
Fig. 3). In each of the steps, we take a time of OðtÞ (e.g.,
t=3). In the first step, we copy the state of the spin A using
the controlled NOT (CNOT) gate operation, which is gen-
erated by a simple bipartite interaction [94]. We define the
subset LA as the spins that are the same state as that of spin
A (see Fig. 3). We consider the dynamics by short-range
interactions, and the number of spins in the subset LA is
thus upper bounded by OðtÞ. At the same time, we prepare
the Greenberger-Horne-Zeilinger (GHZ) state that includes
the spin B. The GHZ state is also generated by combining
the rotation of the spin B and the CNOT gate operation. We
define the subset LB as the spins that are involved in the
GHZ state. Owing to the short-rangeness of the inter-
actions, the number of spins in LB is also of OðtÞ.
In the second step, we apply long-range Ising inter-

actions by the Hamiltonian

HIsing ¼
g
Rα

X
i∈LA

X
j∈LB

σzi ⊗ σzj; ð12Þ

with g ≤ g0. Because the states of spins LA are given by
j0…0i or j1…1i, the unitary time evolution by HIsing

changes only the phase factor of the GHZ state of spins LB;
that is, the GHZ state ðj00…0i þ j11…1iÞ= ffiffiffi

2
p

is rotated as
ðj00…0i þ e�2iθj11…1iÞ= ffiffiffi

2
p

with � depending on the
states of spins LA. Simple and straightforward calculations
can give the phase shift θ as θ ¼ gOðtÞjLAj · jLBjR−α.
Then, if θ is taken as θ ¼ π=4, the rotated GHZ states
ðj00…0i þ e�2iθj11…1iÞ= ffiffiffi

2
p

are mutually orthogonal.

In the final step, we untangle the rotated GHZ state and
concentrate the phase term on the spin B, which transforms
this state to j00…0i ⊗ ðj0i þ e�2iθj1iÞ= ffiffiffi

2
p

. This pro-
cedure is also performed by the CNOT gate operation;
hence, we need only the short-range interactions. In this
protocol, we obtain the lower bound of

kρð1ÞB − ρð0ÞB k1 ¼ 2 sinð2θÞ ≳ tjLAj · jLBjR−α: ð13Þ

Considering that jLAj ¼ jLBj ¼ OðtÞ, we can achieve the
theoretical upper bound of Eq. (6) with D ¼ 1. Thus, as
long as α < 3, the information can reach a distance of
R ¼ Oðt3=αÞ. This protocol can be generalized to high-
dimensional setups, and we obtain the same lower bound as
Eq. (13), where we have jLAj ¼ jLBj ¼ OðtDÞ. Then, the
shape of the light cone becomes tð2Dþ1Þ=α.
This simple quantum model [i.e., two-body interaction

and (1=2)-spin systems] already saturates the Lieb-
Robinson bound of Eq. (6); hence, our condition α >
2Dþ 1 for the linear light cone cannot be improved unless
we consider a special class of Hamiltonians. Recently, a
similar protocol to achieve the Lieb-Robinson bound (6)
was given [115] with a more explicit lower bound on the
commutator k½OiðtÞ; Oj�k.

V. SUMMARY AND DISCUSSION

In this study, we prove the existence of the linear light
cone [see Eq. (5) for the definition] in general long-range
interacting systems, where the interaction decays as accord-
ing to the relation R−α (α > 2Dþ 1) with respect to the
distance R. Our Lieb-Robinson bound in (6) provides
an approximate commutation relation as k½OiðtÞ; Oj�k≲
t2Dþ1ðR − v̄tÞ−α, with rapid decay beyond r≳ v̄t. More-
over, the error of the local approximation for OiðtÞ is
estimated as in Eq. (7), namely, kOiðtÞ −Oiðt; i½R�Þk≲
tDþ1ðR − v̄tÞ−αþD. Our result is obtained for Hamiltonians
with two-body interactions but can be extended to a more
general setup [see Eqs. (A1) with (A2) in Appendix A],
where even the few-body interactions are not assumed. We
also show an explicit example that our Lieb-Robinson
bound is saturated for α > 2Dþ 1, and the linearity of
the light cone deteriorates for α < 2Dþ 1. Therefore, our
condition for the linear light cone is optimal as long as we
consider the general class of Hamiltonians. Although we
consider Hamiltonian dynamics throughout this work,
we expect that the same analysis can be applied to
generic Markovian dynamics using the procedures in
Refs. [18,116].
We finally present an open question. In the present work,

although we provide the optimal Lieb-Robinson bound for
α > 2Dþ 1, it is still unclear what can be obtained in the
α ≤ 2Dþ 1 regimes. The most important problem is to
identify the regime of the exponent α that ensures the
polynomial (or superlinear) light cone. A state-of-the-art
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analysis [49] has defined the polynomial light cone in the
form r ¼ tðα−DÞ=ðα−2DÞ for α > 2D. In contrast, the super-
polynomial light cone has been explicitly shown for α ≤ D
[94]. In tackling this problem, the simplest case with only
two length scales as in Eq. (8) may be a good starting point.
We expect that our present analysis will provide a better
polynomial light cone for high-dimensional systems.
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APPENDIX A: FORMAL EXPRESSION OF
THE THEOREM

We demonstrate our theorem here in a general manner.
First, some necessary notations are provided; for arbitrary
subsystems X; Y ⊂ Λ, we define dX;Y as the shortest path
length on the lattice that connects X and Y. If X ∩ Y ≠ ∅,
dX;Y ¼ 0. For a subset X ⊆ Λ, we define diamðXÞ ≔
maxi;j∈Xðdi;jÞ þ 1, the cardinality jXj as the number of
vertices contained in X, and the complementary subset of X
as Xc ≔ ΛnX.
We consider a general class of the Hamiltonian beyond

the two-body interaction (1) as

H ¼
X
Z⊆Λ

hZ; ðA1Þ

where each of the interaction terms fhZgZ⊆Λ acts on the
sites in Z ⊆ Λ. Notably, we do not assume the few-body
interaction here; i.e., jZj can be arbitrarily large up to
jZj ¼ n. Therefore, the Hamiltonian H includes macro-
scopic interactions such as σz1 ⊗ σz2 ⊗ � � � ⊗ σzn. However,
the assumption (A2) below restricts the amplitude of such

interactions as polyð1=nÞ. Here, the only assumption is the
following power-law decay of the interactions:

sup
i∈Λ

X
Z∶Z∋i;diamðZÞ≥r

khZk ≤ gr−αþD;

sup
i;j∈Λ

X
Z∶Z∋fi;jg

khZk ≤ g0ðdi;j þ 1Þ−α ðA2Þ

with

α > 2Dþ 1 ðA3Þ
for an arbitrary site pair of fi; jg ⊂ Λ. Here,

P
Z∶Z∋fi;jg

denotes the summation that encompasses all the interaction
terms fhZgZ⊆Λ, including the sites i and j, and k � � � k is the
operator norm. By considering an appropriate energy unit,
we set g ¼ 1.
To formulate our main theorem, we first define the

coarse-grained subsets (see Fig. 4). For a subset X ⊆ Λ, we
first define X½r� as the extended subset

X½r� ≔ fi ∈ ΛjdX;i ≤ rg; ðA4Þ
where X½0� ¼ X and r is an arbitrary positive number. We
also define the coarse-grained total set ΛðξÞ as the minimum
subset such that ΛðξÞ½ξ� ¼ Λ, namely,

ΛðξÞ ≔ arg min
Z⊆ΛjZ½ξ�¼Λ

jZj; ðA5Þ

where Λð0Þ ¼ Λ. Similarly, for an arbitrary subset X ⊆ Λ,
we define XðξÞ ⊆ ΛðξÞ as follows:

XðξÞ ≔ arg min
Z⊆ΛðξÞjZ½ξ�⊃X

jZj; ðA6Þ

where Xð0Þ ¼ X. From the definition, the cardinality of the
subset XðξÞ is roughly ð1=ξÞD times that of the original,
namely, jXðξÞj ≈ ð1=ξÞDjXj.

FIG. 4. (a) Extended subset. The subset X½r� is defined by extending the original subset X by a distance r. (b) The subset ΛðξÞ ⊆ Λ is
the coarse-grained lattice (orange sites) which is defined as the minimum subset such that ΛðξÞ½ξ� ¼ Λ. (c) For an arbitrary subset X ⊆ Λ
(pink region), XðξÞ ⊆ ΛðξÞ is the coarse-grained subset (red sites), which is defined as the minimum subset such that XðξÞ½ξ� ⊇ X. The
cardinality of the subset XðξÞ is roughly ð1=ξÞD times as the original one, namely, jXðξÞj ≈ ð1=ξÞDjXj.
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Using the notation XðξÞ, we state our main theorem as
follows.
Main theorem.—Let us consider the long-range inter-

acting HamiltonianH of the form (A1) with the assumption
(A2). For jtj ≥ 1, this Hamiltonian H satisfies the Lieb-
Robinson bound for arbitrary operators OX and OY that are
supported on X ⊆ Λ and Y ⊆ Λ, respectively:

k½OXðtÞ; OY �k
kOXk · kOYk

≤ CHjXðv̄jtjÞj · jYðv̄jtjÞj jtj
2Dþ1log2Dðxþ 1Þ
ðx − v̄jtjÞα

and

k½OXðtÞ; OY �k
kOXk · kOYk

≤ C0HjXðv̄jtjÞj2 jtj
Dþ1log2Dðxþ 1Þ
ðx − v̄jtjÞα−D ;

where CH, C0H, and v̄ are constants that depend only on
parameters fD; g0; αg and a geometric constant that is
determined by the lattice structure. Note that we use the
notation from Eq. (A6) with ξ ¼ v̄jtj.
Here, the coefficient log2Dðxþ 1Þ exists because of a

technical reason, which results from the macroscopic
interactions in Eq. (A1) [e.g., OðnÞ-body interactions]. If
we restrict ourselves to the few-body (or k-local)
Hamiltonians with k ¼ Oð1Þ, namely,

H ¼
X

Z⊆Λ; jZj≤k
hZ; ðA7Þ

the Lieb-Robinson bound is slightly improved as follows.
Main theorem (k-local Hamiltonians).—Let us consider

the long-range interacting Hamiltonian H of the form (A7)
with the assumption (A2). For jtj ≥ 1, this Hamiltonian H
satisfies the Lieb-Robinson bound as follows:

k½OXðtÞ; OY �k
kOXk · kOYk

≤ CðkÞH jXðv̄ðkÞjtjÞj · jYðv̄ðkÞjtjÞj jtj2Dþ1

ðx − v̄ðkÞjtjÞα

and

k½OXðtÞ; OY �k
kOXk · kOYk

≤ CðkÞ
0

H jXðv̄ðkÞjtjÞj2 jtjDþ1

ðx − v̄ðkÞjtjÞα−D ;

where CðkÞH , CðkÞ
0

H , and v̄ðkÞ are constants that depend only on
the parameters fD; g0; α; kg and a geometric constant that is
determined by the lattice structure.
The first and second inequalities in the above theorem

reduce to the inequalities (6) and (7) in the main part,
respectively; in deriving the inequality (7), we use the
discussion in Ref. [2] to relate the commutator inequality to
the local approximation.

APPENDIX B: SKETCH OF THE PROOF

We herein show the essential ideas, and further details
are provided in Supplemental Material [117]. For the proof,
we first decompose the length scale into ≤ lt and> lt for a
fixed t and consider the following decomposition for the
total Hamiltonian: H ¼ H≤lt þH>lt , where we define
H≤l for arbitrary l ∈ N as the operator that includes all
the interaction terms whose length scales are less than l:
H≤l ¼ P

diamðZÞ≤l hZ. In the case where the length l is
short range or l ¼ Oð1Þ, the HamiltonianH≤l provides the
Lieb-Robinson bound with a finite velocity. However, we
consider the case of l ¼ lt with lt depending on time t
here. In the following computations, we choose lt ¼ jtjη̃
with η̃ ≔ 1 − f½α − 2D − 1�=½2ðα −DÞ�g < 1. When the
length scale l is in the middle range between l ¼ Oðt0Þ
and l ¼ ∞, it is no longer considered trivial if the light
cone for the dynamics by H≤lt is retained.
To obtain the Lieb-Robinson bound for H≤l with a

generic l, we further decompose H≤l as follows (Fig. 5):

H≤l ¼
Xq�
q¼1

Hq; Hq ≔
X

lq−1≤diamðZÞ<lq
hZ:

We define a set of length scales flqgq
�

q¼1 as lq ¼ l
1þηq
q−1 with

ηq > 0, where fηqgq
�

q¼2 is appropriately chosen such that

flqgq
�

q¼1 is an integer and there exists an integer q� ∈ N

satisfying lq� ¼ l
ð1þη2Þð1þη3Þ…ð1þηq� Þ
1 ¼ l. In this case,

lq increases by the double exponential function with
respect to q.

FIG. 5. Decomposition of the length scale. We first decompose the total Hamiltonian into two regimes: H≤lt and H>lt
. The

Hamiltonian H≤lt includes all the interactions up to the length scale lt that is dependent on time, and H>lt includes the other
interactions. To obtain the middle-range Lieb-Robinson bound, we further decompose the range ½1;lt� into q� segments. We start from
the Hamiltonian that includes only the length scale l1 and iteratively consider the increasing length scales.
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In deriving the Lieb-Robinson bound for e−iH≤lt, we
iteratively take in the increasing length scales. We begin
with the unitary operator e−iH1t; as long as l1 is indepen-
dent of t, the Lieb-Robinson bound for e−iH1t is in the
shorter range with a velocity of v1 ¼ Oð1Þ. Then, using this
Lieb-Robinson bound, we derive a new Lieb-Robinson
bound for e−iðH1þH2Þt ¼ e−iH1∶2t, where we define H1∶q ≔Pq

s¼1Hs with 1 ≤ q ≤ q�. This process is repeated to
extend the length scales for l1 → l2 → � � � → lq� ¼ l. In
each of these steps, based on the Lieb-Robinson bound for
e−iH1∶q−1t, we update the Lieb-Robinson bound for e−iH1∶qt.
In the first update, we start from the following decom-

position of the unitary operator e−iH1∶2t:

U2;t ≔ e−iðH1þH2Þt ¼ e−iH1tT e−
R

t

0
H2ðH1;τÞdτ:

The operator spreading by e−iH1t is of the order of Oðv1tÞ;
hence, as long as t ≤ Δt2 ≈ l2=v1,H2ðH1; τÞ (τ ≤ Δt2) has
the same interaction length as the original, namely, l2.
Thus, we can obtain the Lieb-Robinson bound with a linear

light cone for T e−
R

Δt2
0

H2ðH1;τÞdτ. For any unspecified time t,
we consider U2;t ¼ Um

2;Δt2U2;Δt0
2
, with t ¼ mΔt2 þ Δt02,

where Δt2 ∝ l2=v1 and Δt02 < Δt2. By appropriately con-
necting all the Lieb-Robinson bounds, this process results
in a Lieb-Robinson bound of the following form:

k½OXðH≤l2 ; tÞ; OY �k≲ ð1þ x=l2ÞD−1e−2ðx−v2jtjÞ=l2

with x ¼ dX;Y , where the velocity v2 > v1 is upper
bounded using the Lieb-Robinson velocity v1 for e−iH1t.
For general q − 1, we define vq−1 as the Lieb-Robinson

velocity for e−iH1∶q−1t and analyze the unitary opera-
tor Uq;t ≔ e−iH1∶qt, which we decompose as Uq;t ¼
Um

q;ΔtqUq;Δt0q with

Uq;Δtq ¼ e−iH1∶q−1ΔtqT e−
R

Δtq
0

HqðH1∶q−1;τÞdτ

and t ¼ mΔtq þ Δt0q; here, Δtq ∝ lq=vq−1 and Δt0q < Δtq.
From the choice of Δtq, we can ensure that HqðH1∶q−1; τÞ
has the same interaction length as that of Hq, namely, lq.
We then obtain the Lieb-Robinson bound for H1∶q as
follows:

k½OXðH1∶q; tÞ; OY �k≲ ð1þ x=lqÞD−1e−2ðx−vqjtjÞ=lq ;

where vq depends on the vq−1. Thus, we iteratively estimate
the Lieb-Robinson velocity vq using vq−1. Furthermore, we
can derive the following recursion relation:

vq ¼ vq−1

�
1þ c logðlqÞ

lη
q−1

þ c0

logðlq−1Þ
�
;

where η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f½α − ð2Dþ 1Þ�=½Dþ 2�gp

− 1 and c, c0

are constants. We provide the explicit form in Ref. [117].
The length scale lq is now lower bounded by a
double exponential function with respect to q. Therefore,
limq→∞ vq converges to a constant v�, and we obtain
the following “middle-range Lieb-Robinson bound” for
e−iH≤lt:

k½OXðH≤l; tÞ; OY �k≲ ð1þ x=lÞD−1e−2ðx−v�jtjÞ=l: ðB1Þ

In this manner, we can ensure that H≤l retains the linear
light cone for l≲ t from Eq. (B1), whereas no such
confirmation is possible for l≳ t. Thus, we consider the
case of l ¼ lt and decompose the total time evolution as

e−iHt ¼ e−iH≤lt tU>lt ;

where U>lt ≔ T e−i
R

t

0
H>lt ðH≤lt ;τÞdτ. In order to estimate the

quasilocality of the interaction for H>ltðH≤lt
; τÞ, we apply

the middle-range Lieb-Robinson bound (B1). Based on the
quasilocality, we utilize the standard recursion approach
[14,15] to obtain the Lieb-Robinson bound for U>lt. After
intricate calculations, we obtain the Lieb-Robinson bound
for U>lt as

k½U†
>lt

OXU>lt ; OY �k≲ jtj2Dþ1log2Dðxþ 1Þ
ðx − κ0v�jtjÞα

; ðB2Þ

where κ0 is a constant. We then connect the two Lieb-
Robinson bounds for e−iH≤lt t [Eq. (B1)] and U>lt
[Eq. (B2)] to derive the total Lieb-Robinson bound in
the main theorem.
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