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We present a methodology to simulate the quantum thermodynamics of thermal machines which are
built from an interacting working medium in contact with fermionic reservoirs at a fixed temperature and
chemical potential. Our method works at a finite temperature, beyond linear response and weak system-
reservoir coupling, and allows for nonquadratic interactions in the working medium. The method uses
mesoscopic reservoirs, continuously damped toward thermal equilibrium, in order to represent continuum
baths and a novel tensor-network algorithm to simulate the steady-state thermodynamics. Using the
example of a quantum-dot heat engine, we demonstrate that our technique replicates the well-known
Landauer-Büttiker theory for efficiency and power. We then go beyond the quadratic limit to demonstrate
the capability of our method by simulating a three-site machine with nonquadratic interactions.
Remarkably, we find that such interactions lead to power enhancement, without being detrimental to
the efficiency. Furthermore, we demonstrate the capability of our method to tackle complex many-body
systems by extracting the superdiffusive exponent for high-temperature transport in the isotropic
Heisenberg model. Finally, we discuss transport in the gapless phase of the anisotropic Heisenberg
model at a finite temperature and its connection to charge conjugation parity, going beyond the predictions
of single-site boundary driving configurations.
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I. INTRODUCTION

The miniaturization of technologies in combination with
the exquisite control now available over nanoscale systems
has motivated increasing interest in thermal machines that
operate in the quantum regime [1–5]. While recent
demonstrations with trapped ions [6–9], nanomechanical
oscillators [10] and diamond color centers [11] serve as
impressive proofs of principle, practical applications
such as thermoelectric power generation call for ele-
ctronic devices. To that end, the focus of experiments
in mesoscopic physics has expanded beyond traditional
questions of charge transport to include the manipulation of
heat currents in platforms such as semiconductor quan-
tum dots [12], superconducting circuits [13], and mole-
cular junctions [14]. Understanding the nonequilibrium

thermodynamics of these systems is a formidable theoreti-
cal challenge, due to the simultaneous presence of strong
system-reservoir coupling, interparticle interactions, and
finite temperatures.
Existing approaches to modeling energy transport in

complex quantum systems typically depend on perturbative
arguments, which require a clear separation of energy or
timescales. For example, a quantum master equation can be
derived under the assumption of weak system-reservoir
coupling [15]. However, the approximations needed to
ensure positivity of the density matrix may fail to capture
quantum coherences far from equilibrium [16–19], while a
first-principles derivation requires full diagonalization of
the system Hamiltonian and, thus, becomes infeasible for
large open systems. A more tractable approach for many-
body problems is a local master equation, where incoherent
sinks and sources create and remove excitations at the
system’s boundaries. This method has been successfully
applied to study infinite-temperature transport in strongly
interacting systems [20], but its finite-temperature predic-
tions may violate basic thermodynamic laws [21–24]
unless a specific kind of periodically modulated system-
bath interaction is assumed [25–29]. Alternatively, non-
equilibrium Green functions [30] can be used to model
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energy transport under strong system-reservoir coupling
but at the cost of treating many-body interactions within the
system perturbatively [31,32]. Another possibility is the
numerical renormalization group, which can handle strong
interactions but is typically limited to near-equilibrium
transport properties [33]. The related chain representation
of unitary system-bath dynamics [34] is also capable of
nonperturbative transport calculations [35] at finite temper-
atures [36], but its scalability to large system sizes remains
unclear.
In this work, we put forward a general and efficiently

scalable numerical approach to quantum thermodynamics
that can deal with simultaneously strong intrasystem and
system-bath interactions and which works arbitrarily far
from equilibrium. We focus on autonomous thermal
machines, where macroscopic fermion reservoirs held at
different temperatures and chemical potentials drive cur-
rents through a complex quantum working medium. We
model the macroscopic reservoirs by a finite collection of
fermionic modes that are continuously damped toward
thermal equilibrium by an appropriate Lindblad master
equation. We use a purification scheme based on auxiliary
“superfermion” modes [37] to compute the nonequilibrium
steady states of both noninteracting and interacting work-
ing media. For interacting systems, we develop a tensor-
network algorithm to efficiently simulate the real-time
dynamics of the entire configuration, working directly in
the energy eigenbasis of the reservoirs. Our approach is
well suited to far-from-equilibrium problems in which all
energy scales are comparable, such that perturbative or
linear-response theories fail. To exemplify the power of our
method, we demonstrate that the efficiency of a three-site
quantum heat engine is enhanced by repulsive interactions
and is further improved when the system-reservoir coupling
is increased.
The concept of modeling infinite baths by a finite set of

damped modes has been widely adopted and adapted since
the seminal work of Imamoglu [38] and Garraway [39,40].
In the context of open quantum systems coupled to bosonic
reservoirs, this representation has been placed on a math-
ematically rigorous footing [41,42], while its amenability to
tensor-network simulations has been demonstrated [43].
Related approaches have been used to study quantum heat
engines [44,45] and thermalization in few-level [46] and
many-particle systems [47,48]. In the fermionic setting,
conditions under which continuum baths can be modeled
by mesoscopic reservoirs have been recently discussed in
Refs. [49–51]. Such mesoscopic reservoirs have been used
quite extensively over the past several years for studying
transport in noninteracting systems [37,49,50,52–55],
including under time-dependent driving fields [56]. For
interacting systems, a mesoscopic-reservoir description
was recently applied to study particle transport and
Kondo phenomena in impurity models [57,58], while a
related approach to simulating nonequilibrium many-body

problems via an auxiliary master equation has been
reported [59,60].
A key feature of our work that differs from previous

approaches is a novel tensor-network algorithm that
exploits the superfermion representation to simulate
Lindblad dynamics directly in the energy eigenbasis of
the baths (the so-called star geometry). This configuration
is particularly favorable in fermionic systems, where only a
limited energy window participates in the dynamics at a
finite temperature due to Pauli exclusion effects at low
energies. Although we focus here on steady states of
autonomous machines, our methods can be adapted to
study transient dynamics or time-dependent Hamiltonians.
Moreover, our tensor-network algorithm is inherently
scalable to many-body problems, as we demonstrate by
first extracting the superdiffusive transport exponents of the
isotropic Heisenberg model at a high temperature and then
studying finite-temperature regimes in the gapless phase of
the anisotropic Heisenberg model beyond the predictions
of single-site boundary driving configurations. Our work
thus paves the way for simulations of heat transport in
strongly correlated systems that probe heretofore inacces-
sible regimes of temperature and system size.
In the remainder of the article, we build our methodology

step by step. We begin with an introduction to autonomous
thermal machines in Sec. II, where the problem to be solved
is precisely defined. We then outline the mesoscopic-
reservoir approach and demonstrate its connection to the
infinite-bath scenario in Sec. III. Subsequently, in Sec. IV,
we detail the superfermion representation and use it to
find an analytical expression for the nonequilibrium steady
state of a noninteracting (quadratic) system. In Sec. V, we
explain how to compute particle and energy currents within
our framework. Equipped with the exact solution for
quadratic systems, in Sec. VI, we study a noninteracting
quantum-dot heat engine and compare the results with
Landauer-Büttiker theory in order to identify the number
and distribution of modes in the mesoscopic reservoirs
needed to accurately reproduce the continuum limit. Next,
in Sec. VII, we detail our tensor-network algorithm for
studying interacting problems. We then apply this algo-
rithm in Sec. VIII to study a three-site interacting heat
engine and a many-body Heisenberg spin model at infinite
and finite temperatures. Finally, we summarize and con-
clude in Sec. IX.

II. AUTONOMOUS QUANTUM
THERMAL MACHINES

This work is concerned with autonomous thermal
machines whose working medium is a quantum system S,
whichmay be a complex entity comprisingmany interacting
subsystems. The working medium is connected to multiple
fermionic reservoirs labeled by the index α. These reservoirs
are macroscopic systems described by equilibrium temper-
atures Tα ¼ 1=βα and chemical potentials μα (we set
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kB ¼ 1 ¼ ℏ). The total Hamiltonian of such a setup takes the
form

Ĥtot ¼ ĤS þ
X
α

ðĤα þ ĤSαÞ; ð1Þ

where ĤS is the system Hamiltonian, Ĥα is the Hamiltonian
of bath α, and ĤSα describes its coupling to the system. We
consider exclusively Hamiltonians Ĥtot that conserve fer-
mion number N̂ ¼ N̂S þ

P
α N̂α, where N̂S and N̂α are the

total particle number operators for the system and each bath
α, respectively.
Crucially, the baths are taken to have an infinite volume

and heat capacity, implying a diverging number of degrees
of freedom, N → ∞. Moreover, it is typical to assume a
factorized initial state of the form

ρ̂totð0Þ ¼ ρ̂ð0Þρ̂B; ð2Þ

where ρ̂ð0Þ is the initial system state and ρ̂B ¼ Q
α ρ̂α, with

ρ̂α ¼ e−βαðĤα−μαN̂αÞ=Zα a thermal state and Zα the partition
function of each reservoir. Evolving into the long-time
limit, the system S generically relaxes to a steady state
given by

ρ̂ð∞Þ ¼ lim
t→∞

lim
N→∞

TrB½e−iĤtottρ̂totð0ÞeiĤtott�; ð3Þ

where TrB denotes the trace over all bath degrees of
freedom. If the temperatures or chemical potentials of
the reservoirs differ, ρ̂ð∞Þ is a nonequilibrium steady state
(NESS) possessing currents of particles and energy.
We focus especially on the simplest scenario depicted in

Fig. 1, with two reservoirs labeled by α ¼ L, R. The
sustained fluxes of particles and energy in this setup can be
exploited, for example, by operating the device as an
autonomous heat engine. In this case, a temperature
gradient TL > TR drives a current that performs work by
moving fermions against a chemical-potential difference
V ¼ μR − μL > 0. The power developed per unit time is
given by

P ¼ VJP; ð4Þ

where JP is the particle current, defined to be positive when
flowing from left to right. The concomitant energy current
JE (also from left to right) transfers heat out of the left lead
and into the right lead at a rate [3]

_Qα ¼ JE − μαJP; ð5Þ

so that the first law of thermodynamics can be written
as P ¼ _QL − _QR. The second law of thermodynamics
imposes the relation βR _QR ≥ βL _QL. The efficiency of
heat-to-work conversion is thus given by

η ¼ P
_QL

¼ 1 −
_QR

_QL

≤ ηC; ð6Þ

where ηC ¼ 1 − TR=TL is the Carnot efficiency. Thus, the
performance of an autonomous thermal machine depends
on the currents and their relationship to the thermodynamic
properties of the reservoirs.
Evaluating the currents requires finding the NESS of the

quantum system. In general, however, the computation of
Eq. (3) is a difficult task. Analytical solutions are available
only if the global Hamiltonian is noninteracting, while a
direct numerical approximation with finite baths may
require prohibitively large values of N in order to avoid
Poincaré recurrences within the timescale of relaxation. On
the other hand, perturbative schemes are limited to cases
where either the internal interactions within S or its
couplings to the reservoirs are weak. We thus take an
alternative approach, in which the macroscopic reservoirs
are replaced with mesoscopic leads comprising L sites,
which are continuously damped toward thermal equilib-
rium by dissipative processes. As a consequence, conver-
gence can be obtained with only moderate values of L,
bringing the nonequilibrium thermodynamics of complex
many-body quantum systems within reach.

III. FROM MACROSCOPIC RESERVOIRS
TO MESOSCOPIC LEADS

In this section, we detail our approach to studying the
problem described in Sec. II, where an infinite bath is
replaced by a finite collection of damped modes. Here, we
outline the idea, leaving the mathematical details to the
Appendix A.
The system S is assumed to be a lattice of D sites, with

arbitrary geometry and interactions, while the baths are
modeled by infinite collections of noninteracting spinless
fermionic modes. To illustrate the approach, we consider
first the case of a single bath B, as shown in Fig. 2,
described by the Hamiltonian

ĤB ¼
X∞
m¼1

ωmb̂
†
mb̂m; ð7Þ

FIG. 1. A simple thermal machine scenario in which the system
S is coupled to two reservoirs L and R at temperatures TL > TR
and possessing a chemical-potential difference μR − μL > 0. A
particle JP and energy JE current is thus sustained through S.
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where b̂†m creates a fermion with energy ωm. Each site j of
the system is described by a fermionic operator ĉj. A
particular site p of the system exchanges particles and
energy with the bath via a tunneling interaction

ĤSB ¼
X∞
m¼1

ðλmĉ†pb̂m þ λ�mb̂
†
mĉpÞ; ð8Þ

where λm is its coupling to bath mode m.
The Heisenberg equation for the system operators

reads as

d
dt

ĉjðtÞ ¼ i½ĤS; ĉjðtÞ� þ δjp

�
ξ̂ðtÞ −

Z
t

0

dt0χðt − t0Þĉpðt0Þ
�
:

ð9Þ

Here, we define the noise operator

ξ̂ðtÞ ¼ −i
X
m

λme−iωmtb̂m ð10Þ

and the memory kernel χðt − t0Þ ¼ hfξ̂ðtÞ; ξ̂†ðt0Þgi. The
Gaussian statistics of the noise operator with respect to the
initial product state Eq. (2) are defined by hξ̂ðtÞi ¼ 0 and

hfξ̂ðtÞ; ξ̂†ðt0Þgi ¼
Z

dω
2π

J ðωÞe−iωðt−t0Þ; ð11Þ

hξ̂†ðtÞξ̂ðt0Þi ¼
Z

dω
2π

J ðωÞfðωÞeiωðt−t0Þ; ð12Þ

where we define the spectral density as

J ðωÞ ¼ 2π
X∞
m¼1

jλmj2δðω − ωmÞ ð13Þ

and introduce the Fermi-Dirac distribution fðωÞ ¼
ðeβðω−μÞ þ 1Þ−1. The average system-bath coupling strength
is typically quantified as

Γ ¼ 1

2W

Z
∞

−∞
dωJ ðωÞ; ð14Þ

where 2W denotes the reservoir bandwidth, namely, the
size of the energy range over which J ðωÞ has support [see
Eq. (37), for example]. The state of S is completely
determined by fðωÞ and J ðωÞ via the noise statistics, since
for an overall closed system the solution of Eq. (9) is
sufficient to reconstruct all n-point correlation functions.
Our approach is based on a key insight, namely, that the

open-system dynamics in Eq. (9), induced by an infinite
bath with spectral function J ðωÞ, can be accurately
approximated by instead coupling the system to a finite
collection of damped modes. Indeed, let us consider a lead
of size L coupled to site p of the system, described by the
Hamiltonian

ĤL ¼
XL
k¼1

εkâ
†
kâk; ð15Þ

ĤSL ¼
XL
k¼1

ðκkpĉ†pâk þ κ�kpâ
†
kĉpÞ; ð16Þ

where â†k creates a fermion in the lead with energy εk and
κkp is the coupling strength. Each energy eigenmode k of
the lead is coupled to an independent thermal bath modeled
by an infinite noninteracting fermion reservoir Bk, as
illustrated in Fig. 3 (see Appendix A for details). These
baths have identical temperatures and chemical potentials,
but crucially they are characterized by a structureless
frequency-independent spectral density J kðωÞ ¼ γk, where
γk is a characteristic damping rate whose value may be
different for each bath.
To analyze the steady-state physics, it is sufficient to

focus on long times, such that t ≫ γ−1k , τrel. Here, τrel
represents the characteristic relaxation timescale of S due to
its coupling with the bath [61]. In this limit, we find that the
Heisenberg equations for the system variables in this
configuration are identical to Eq. (9), but the statistics of
the noise operator are now determined by an effective
spectral density

J effðωÞ ¼
XL
k¼1

jκkpj2γk
ðω − εkÞ2 þ ðγk=2Þ2

: ð17Þ

It follows that this damped mesoscopic-lead configuration
reproduces the correct steady state of S, so long as the true
spectral density J ðωÞ can be well approximated by a sum
of Lorentzians as above. This result is depicted in Fig. 3. In
particular, consider a given set of lead energies εk that
sample the spectral density and are arranged in ascending

FIG. 2. The dynamics of a system coupled to a single thermal
bath is determined by the bath’s spectral density J ðωÞ, with a
bandwidthW, and the Fermi-Dirac distribution fðωÞ correspond-
ing to its chemical potential μ and temperature T.
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order, with energy spacing ek ¼ εkþ1 − εk. By taking κkp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J ðεkÞek=2π

p
and γk ¼ ek, we have γk ∼ L−1 so that

Eq. (17) reduces to Eq. (13) in the limit L → ∞. We
therefore obtain a controlled approximation of the bath
spectral function as the lead size L increases.
In order to obtain a tractable description of the aug-

mented system-lead configuration, we use the fact that both
the damping rates γk and the coupling constants κkp are
small in the large-L limit. Tracing out the baths, we derive a
master equation describing the joint state of S and L, valid
for times t ≫ γ−1k , τrel and up to second order in both the
lead-bath and system-lead coupling (see Appendix A). We
emphasize that the assumption that individualmodes of the
lead couple weakly to the system does not imply that the
overall system-bath coupling Γ is weak. The quantum
master equation is

dρ̂
dt

¼ i½ρ̂; Ĥ� þ LLfρ̂g; ð18Þ

where Ĥ ¼ ĤS þ ĤL þ ĤSL denotes the Hamiltonian of
the system and lead, while thermalization of the lead is
described by the Lindblad dissipator

LLfρ̂g ¼
XL
k¼1

γkð1 − fkÞ
�
âkρ̂â

†
k −

1

2
fâ†kâk; ρ̂g

�

þ
XL
k¼1

γkfk

�
â†kρ̂âk −

1

2
fâkâ†k; ρ̂g

�
ð19Þ

with fk ¼ fðεkÞ denoting the sampling of the Fermi
distribution by the lead modes. This master equation
configuration is illustrated in Fig. 4.
The above representation does not simplify the problem

a priori, since it is strictly valid only in the large-L limit.
However, a simplification may arise if the expectation
values of operators converge with increasing L. We show
numerically in later sections that this convergence occurs
rapidly in several examples of interest for quantum thermo-
dynamics. In such cases, a tractable number of lead sites L
can be used to obtain a good approximation of an infinite
bath with a continuous spectral density. For this approxi-
mation, it is crucial that γk remains the smallest energy
scale in the physical configuration to both model the
spectral function correctly and accurately approximate
the baths via the Lindblad equation [48,55].
So far, we have considered a single bath coupled to a

particular site of the system. However, the above results are
easily generalized to describe the situation of several sites
connected to multiple baths at different temperatures and
chemical potentials. The steps of the above analysis are
carried out independently for each bath, leading to additive
contributions to the master equation.

FIG. 3. (a) A Lorentzian spectral density J LorðωÞ is equivalent
to coupling the system to a single auxiliary mode damped by a
structureless reservoir. (b) A mesoscopic reservoir comprising
many damped modes gives rise to an effective spectral density
J effðωÞ that is a sum of Lorentzians. By tuning the damping of
each mode and its coupling to the system, J effðωÞ can approxi-
mate J ðωÞ of the infinite bath depicted in Fig. 2.

FIG. 4. In the limit L ≫ 1 modes in the lead, each bath Bk is
sufficiently weakly coupled to its corresponding lead mode that it
can be accurately modeled by a Lindblad dissipator. The
dissipator on a lead mode then injects and ejects fermions at
rates which in isolation damp the mode into a thermal state.
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IV. SUPERFERMION REPRESENTATION
OF NONEQUILIBRIUM DYNAMICS

In order to solve the dissipative dynamics under a master
equation of the form in Eq. (18), we use the superfermion
formalism introduced in Ref. [37]. For a noninteracting
(quadratic) open system, this method provides numerically
tractable analytical expressions for steady-state quantities.
The superfermion representation is also central to our
approach to simulating interacting systems, as discussed
in Sec. VII. Here, we limit ourselves to a concise review of
the formalism; for more details, see Appendix B.
The superfermion approach is akin to a purification or

thermofield scheme for open systems. It doubles the system
size by introducing a new fermionic ancilla mode for each
of the modes present in the system and leads. To describe
the formalism succinctly, we stick for now to the single-
lead setup of Eq. (18). In order to distinguish clearly
between the ancillary modes and the physical modes of the
system and lead, we introduce a unified notation for the
latter. In this single-lead setup, the total number of system
and lead modes is M ¼ Dþ L, and so we define M
fermion mode operators

d̂k ≔
�
âk k ¼ 1;…; L;

ĉk k ¼ ðLþ 1Þ;…;M:
ð20Þ

The ancillary modes are described byM additional canoni-
cal creation and annihilation operators ŝ†k and ŝk. We use an
interleaved ordering for the physical and ancillary oper-
ators, so that the Fock basis of the combined Hilbert space
is defined by

jnjmi ¼ ðd̂†1Þn1ðŝ†1Þm1 � � � ðd̂†MÞnMðŝ†MÞmM jvaci: ð21Þ

Here, n are m are binary strings of length M that describe
occupation numbers for the physical and ancillary modes,
respectively. While the ordering used for the Fock basis is
entirely arbitrary, we shall see shortly that interleaving has
useful locality properties exploited later in Sec. VII. We
now define a new (unnormalized) ket vector called the left
vacuum as

jIi ≔
X
n

jnjni; ð22Þ

where the sum runs over all 2M binary strings n. Using this
ket, we can define a quantum state representing the system-
lead density operator as

ρ̂ðtÞjIi ¼ jρ̂ðtÞi ð23Þ

and the expectation values of any system or lead operator
Â as

hIjÂjρ̂ðtÞi ¼ hÂðtÞi: ð24Þ

A key aspect of this formalism are the conjugation
relations allowing physical creation (annihilation) operators
to be swapped for ancillary annihilation (creation) oper-
ators. For the interleaved Fock ordering, these conjugation
relations are given by

d̂†j jIi ¼ −ŝjjIi; hIjd̂j ¼ −hIjŝ†j ;
d̂jjIi ¼ ŝ†j jIi; hIjd̂†j ¼ hIjŝj: ð25Þ

Acting the master equation (18) on jIi and using the
conjugation relations yields a Schrödinger-type equation
for the state:

d
dt

jρ̂ðtÞi ¼ −iL̂jρ̂ðtÞi; ð26Þ

with the (non-Hermitian) generator of time evolution
given by

L̂ ¼ Ĥ − Ĥd⇔s − i
XL
k¼1

γkfk

−
i
2

XL
k¼1

γkð1 − 2fkÞðd̂†kd̂k þ ŝ†kŝkÞ

þ i
XL
k¼1

γkðfkd̂†kŝ†k − ð1 − fkÞd̂kŝkÞ; ð27Þ

where Ĥd⇔s is the same as the system-lead Hamiltonian Ĥ
but with all physical operators replaced by their ancillary
counterparts, d̂k → ŝk. Crucially, dissipative processes are
now described by non-Hermitian quadratic operators that,
according to the interleaved mode ordering of Eq. (21),
couple only nearest neighbors d̂k and ŝk. The formalism
generalizes straightforwardly to multiple leads by intro-
ducing an additional ancilla mode needed for each addi-
tional lead mode.
So far, the superfermion formalism is entirely general. In

the special case where the system Hamiltonian ĤS is
noninteracting, the formalism provides a compact expres-
sion for the exact solution of the NESS. In this case, the
system-lead Hamiltonian is quadratic with the form

Ĥ ¼
XM
i;j¼1

½H�ijd̂†i d̂j; ð28Þ

where H is a Hermitian M ×M matrix. Next, we define
M ×M diagonal matrices Γþ and Γ− containing the
injection and ejection rates of fermions for each site.
Specifically, for the single-lead setup, the first L follow
the thermal damping rates contained in the dissipator
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Eq. (19), while the last D entries corresponding to the
system modes are zero, giving

Γþ ¼ diagðγ1f1;…; γLfL; 0;…; 0Þ;
Γ− ¼ diag½γ1ð1 − f1Þ;…; γLð1 − fLÞ; 0;…; 0�:

Using these, we define two additional diagonal matrices
Λ ¼ ðΓ− þ ΓþÞ=2 and Ω ¼ ðΓ− − ΓþÞ=2. Consequently,
for the case of a noninteracting system, the generator L̂ is
quadratic with the form

L̂ ¼ f̂†
�
H − iΩ iΓþ
iΓ− Hþ iΩ

�
f̂ − TrðHþ iΛÞ

¼ f̂†Lf̂ − η; ð29Þ

where f̂ ¼ ðd̂1;…; d̂M; ŝ
†
1;…; ŝ†MÞT is the full 2M-

dimensional column vector of all physical and ancillary
operators [62].
To determine the NESS, we diagonalize L̂ by a similarity

transformation, L ¼ VϵV−1, to find the complex eigen-
values ϵ ¼ diagðϵ1;…; ϵ2MÞ and the matrix of right eigen-
vectors V of L. As shown in Appendix B, the many-body
NESS is a Fermi-sea-like state in which only modes with
ImðϵμÞ > 0 are occupied, furnishing us with a complete
solution of the problem. In particular, two-point correlation
functions of physical modes in the NESS are found to be

hd̂†i d̂ji ¼ ½VDV−1�ji; ð30Þ

where Dμν ¼ δμνΘðImfϵμgÞ, with ΘðxÞ the Heaviside step
function. This result gives an efficient prescription to find
steady-state observables such as currents for noninteracting
systems, while higher-order correlation functions follow
from Wick’s theorem.

V. NONEQUILIBRIUM THERMODYNAMICS
WITH MESOSCOPIC LEADS

The central focus of our work is autonomous thermal
machines in the two-lead configuration illustrated in Fig. 5,
with mesoscopic reservoirs labeled by α ¼ L, R. These two
leads of size L are described by Hamiltonians of the form of
Eqs. (15) and (16), where the left lead couples to the first
system site, p ¼ 1, and the right lead to the last system site,
p ¼ D. Each lead is also acted on by a dissipator of the
form given in Eq. (19). The master equation for this setup
thus reads as

dρ̂
dt

¼ i½ρ̂; Ĥ� þ LLfρ̂g þ LRfρ̂g; ð31Þ

where Ĥ ¼ ĤS þ ĤL þ ĤR þ ĤSL þ ĤSR.
To find expressions for the particle and energy currents,

we need to consider the continuity equations for the total

particle-number operator N̂ ¼ N̂S þ N̂L þ N̂R and total
energy operator Ĥ for the system and the leads. Since
½Ĥ; N̂� ¼ 0, we derive

dhN̂i
dt

¼ JPL þ JPR;
dhĤi
dt

¼ JEL þ JER; ð32Þ

where JPα and JEα are, respectively, the particle and energy
currents flowing into the entire configuration via lead α,
given by

JPα ¼ Tr½N̂Lαfρg� and JEα ¼ Tr½ĤLαfρg�: ð33Þ

In the NESS, the time derivatives in Eqs. (32) vanish.
Defining positive currents to flow across the system from
left to right, we thus take JP ¼ JPL ¼ −JPR and similarly
JE ¼ JEL ¼ −JER. Explicitly, we show in Appendix D that

JP ¼
XL
k¼1

γkhfL;k − â†kâki; ð34Þ

JE ¼
XL
k¼1

γkεkhfL;k − â†kâki

−
1

2

XL
k¼1

γkhκk1ĉ†1âk þ κ�k1â
†
kĉ1i; ð35Þ

where the sum runs over only the modes of the left lead,
with fLðεÞ ¼ ðeβLðε−μLÞ þ 1Þ−1 being its corresponding
equilibrium distribution and fL;k ¼ fLðεkÞ.
For sufficiently large systems with short-range inter-

actions [63], it is possible to define current operators ĴP;ES
supported only on S. In this case, we show in Appendix D
that the expected values of these operators agree with the
formulas given above, i.e., hĴP;ES i ¼ JP;E. However, in
some cases, e.g., if S comprises just a single lattice site,
no system operator for the currents can be defined.
Nevertheless, whether or not such a system operator exists,
we show in Appendix A that the average currents computed

FIG. 5. The Lindblad mesoscopic-lead approximation of the
simple thermal machine setup shown in Fig. 1, where some
generic system S is coupled to two reservoirs with differing
chemical potentials and temperatures.
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from Eqs. (34) and (35) converge to the infinite-reservoir
prediction when L → ∞.

VI. NONINTERACTING EXAMPLE: THE
RESONANT-LEVEL HEAT ENGINE

In this section, we apply our methods to analyze the
performance of an autonomous thermal machine with a
noninteracting working medium. Since exact results are
available here for the L → ∞ limit, this analysis serves as a
benchmark to evaluate the performance of the mesoscopic-
reservoir formalism which can also be solved numerically
exactly using the superfermion formalism. Using this
analysis, we estimate the number of lead modes needed
to accurately reproduce the continuum limit of infinite
baths. We take a single resonant level as our working
medium, described by the Hamiltonian

ĤS ¼ ϵĉ†ĉ; ð36Þ

where ĉ† and ĉ are the fermionic creation and annihilation
operators in the system, respectively, and ϵ is the energy of
the level. This Hamiltonian models a single quantum dot in
the spin-polarized regime running as a heat engine between
two baths [64]. We note that a quantum-dot heat engine was
recently realized experimentally [12].
In principle, our methods can handle structured spectral

densities that are different for each bath. For simplicity,
however, we take both reservoirs to be characterized by
identical, flat spectral densities within a finite energy band,
given by

J ðωÞ ¼
�Γ; ∀ ω ∈ ½−W;W�;
0; otherwise;

ð37Þ

where Γ is the coupling strength between the system and
the leads. In the continuum limit of macroscopic baths, the
particle and energy currents for a noninteracting system can
be computed from the Landauer-Büttiker (LB) formulas

JPLB ¼ 1

2π

Z
W

−W
dωτðωÞ½fLðωÞ − fRðωÞ�; ð38Þ

JELB ¼ 1

2π

Z
W

−W
dωωτðωÞ½fLðωÞ − fRðωÞ�; ð39Þ

where fαðωÞ denotes the Fermi-Dirac distribution for lead
α ¼ L, R and τðωÞ is the transmission function. The latter is
computed using the formalism described in Appendix C.
In the mesoscopic-reservoir approach, the spectral den-

sity is sampled by a finite number L of lead modes, as in
Eq. (17). Taking the distribution of lead mode energies
fεkg, widths fγkg, and couplings fκkpg to be identical for
each lead, there remains significant freedom to choose
these distributions in order to well approximate the

continuum limit using moderate values of L. In particular,
we use the logarithmic-linear discretization scheme pro-
posed in Refs. [57,65]. Here, Llin modes are placed in the
energy window ½−W�;W��, with equally spaced frequen-
cies, i.e., ek ¼ εkþ1 − εk ¼ 2W�=Llin. Energies outside of
this range are sampled by a smaller set of modes Llog, with
frequencies logarithmically spaced from W� (−W�) to W
(−W), with energy intervals ½εn−1; εn� ¼ ½�Λ−ðn−1Þ;�Λ−n�
for n ¼ 1;…; Llog and Λ−Llog ¼ W�. The dissipation rates
are taken equal to these spacings, γk ¼ ek, while the
coupling constants κkp (p ¼ 1, D) are determined by the
equation Γ ¼ 2πκ2kp=ek [37], in accordance with the con-
siderations of Sec. III. For a given number of modes
L ¼ Llog þ Llin, this discretization scheme gives better
resolution within a smaller energy window ½−W�;W�� that
includes the most relevant energy scales for the problem at
hand. We remark that this discretization scheme is chosen
due to the featureless nature of J ðωÞ in Eq. (37) to contain
more energy modes in a given transport window. If J ðωÞ is
structured, a different discretization scheme to resolve
its features could provide a better approximation of the
spectral function. With respect to smooth spectral func-
tions, however, we expect the chosen discretization scheme
to yield accurate results as the number of modes is
increased. In our calculations, we henceforth set W ¼ 8

and use this parameter as the overall energy scale, while
W� ¼ W=2. Moreover, we choose Llog=L ¼ 0.2.
Under these conditions, we show in Fig. 6 the behavior

of the particle current, where we set equal temperatures in
the leads TL ¼ TR ¼ W=8 but use different chemical
potentials μL ¼ −μR ¼ W=16. In Fig. 6(a), we show the
results for the particle current as a function of the system
energy ϵ for different numbers of modes L in the leads and
compare it with LB theory. From both Figs. 6(a) and 6(b), it
can be observed that a good agreement is obtained, the
biggest difference observed as ϵ → 0, when the current
reaches its maximum value. As expected, the agreement is
improved with increasing L, although even moderate
values of L ∼Oð10Þ approximately reproduce the con-
tinuum. In our calculations, we fix the bath parameters as
we vary the self-energy of the single-level ϵ; however, the
approximation could be improved by adapting the mode
distribution around the relevant transport window dictated
by ϵ. Furthermore, in Fig. 6(c), we fix the energy ϵ of the
level to study the behavior with increasing L as a function
of temperature TL ¼ TR ¼ T with system-lead coupling
strength Γ fixed, and, in Fig. 6(d), the behavior with Γ for
fixed T. For this particular choice of parameters, we find
that the particle currents are robust to a wide range of T and
Γ. Either low or high temperatures and weak or strong
coupling yield similar results in both continuum or meso-
scopic scenarios, even for a moderate number of modes in
the mesoscopic leads.
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In Fig. 7, we show the corresponding results for energy
current. From Fig. 7(a), it can be observed that a better
approximation is obtained when the number of modes in
each lead is increased for a fixed set of parameters, with the
absolute difference decreasing as a function of L, as can be
concluded from Fig. 7(b). In Fig. 7(c), a key difference
can be observed from the results obtained for the particle
current. The mesoscopic-lead configuration is a good
approximation as long as T is kept above a given threshold.
This threshold is dictated by the smallest energy spacing in
the leads ek and can be understood as follows. The effective
spectral function of the mesoscopic leads is a sum
of Lorentzian peaks, as in Eq. (17). When the temperature
is smaller than the minimum energy spacing ek in the

mesoscopic lead, these peaks are too far apart to properly
resolve the variation of the Fermi-Dirac distribution. In this
regime, the noise statistics given by Eq. (12) are signifi-
cantly modified and the approximation is not reliable. It can
be observed from Fig. 7(c) that the approximation at lower
temperatures is much better for larger leads [66].
In Fig. 7(d), we analyze the energy current as a

function of the system-lead coupling Γ. We observe that
the approximation for energy current in the mesoscopic-
lead configuration is quite robust to a wide range of
couplings. This result provides further evidence that the
accuracy of the approximation is primarily determined by
the size of γk and ek relative to the temperature and voltage
bias of the reservoirs [49].

(a) (b) (c) (d)

FIG. 6. Comparison between LB predictions and the mesoscopic configuration of the expectation value of the total particle current
flowing from the left lead through a single level, (a) as a function of the energy of the level, (b) for the absolute difference in the
predictions from both scenarios with an increasing number of modes in the leads L, (c) as a function of the temperature, and (d) as a
function of the system-lead coupling strength Γ. In these calculations, we use μL ¼ −μR ¼ W=16, TL ¼ TR, Llog=L ¼ 0.2, and
W� ¼ W=2.

(a) (b) (c) (d)

FIG. 7. Comparison between LB predictions and the mesoscopic configuration of the expectation value of the total energy current
flowing from the left lead through a single level, (a) as a function of the energy of the level, (b) for the absolute difference in the
predictions from both scenarios with an increasing number of modes in the leads L, (c) as a function of the temperature, and (d) as a
function of the system-lead coupling strength Γ. In these calculations, we use μL ¼ −μR ¼ W=16, TL ¼ TR, Llog=L ¼ 0.2, and
W� ¼ W=2.
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Next, we evaluate the power and efficiency given by
Eqs. (4) and (6). In Fig. 8(a), we show the power output as a
function of average chemical potential μ ¼ ðμL þ μRÞ=2
and the potential difference V ¼ μR − μL using the LB
prediction for continuum leads. In our calculations, we set
TL ¼ 1.1W=8 and TR ¼ W=8 and show the power output
results only for the values of μ − ϵ and V for which the
system acts as a power generator. It can be observed that
the power output reaches a maximum value depending on
the bias and average chemical potential. In Fig. 8(b), we
show the results for the same calculation, but instead we
substitute the continuum leads with our mesoscopic-lead
configuration. The results are in good agreement up to the
point where μ − ϵ reaches the boundary of linearly dis-
cretized and logarithmically discretized lead modes.
Beyond W� and −W�, the spectral function is not sampled
as finely, and the power output results get distorted. We
note that the window can be increased to resolve a bigger

set of the parameter space; however, this increase would
require more lead modes to resolve the maximum power
output with the same accuracy. Alternatively, the range of
linearly discretized modes could be adapted for each value
of ϵ to ensure that the relevant energy range for transport is
always included within this window. In Fig. 8(c), we show
the maximum power output Pmax as a function of the
system-lead coupling for both the LB and mesoscopic-lead
predictions, which, in turn, reveals the value of Γmax for
which Pmax reaches its maximum value. With our choice of
parameters, Γmax lies very close in both configurations, as
well as the overall behavior as a function of system-lead
coupling. The absolute value of the maximum power is
better approximated, following the expected behavior from
Fig. 6(a), as the number of lead modes is increased.
In Fig. 9(a), we show the efficiency obtained using

continuum leads, normalized by the Carnot efficiency. It
can be observed that the points of maximum efficiency lie

(a) (b)

(c)

FIG. 8. Power as a function of potential difference V and average chemical potential μ − ϵ for the single-level system using
(a) continuum leads and (b) mesoscopic reservoirs. In (c), we present the maximum power as a function of the system-lead coupling for
both configurations. In (b) and (c), we use Llog=L ¼ 0.2 and W� ¼ W=2.

(a) (b) (c)

FIG. 9. Efficiency (normalized by the Carnot efficiency ηC) as a function of potential difference V and average chemical potential
μ − ϵ for the single-level system using (a) continuum leads and (b) mesoscopic reservoirs. In (c), we present the efficiency at maximum
power as a function of the system-lead coupling for both configurations. In (b) and (c), we use Llog=L ¼ 0.2 and W� ¼ W=2.
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close to the boundary where the system stops operating as
an engine, i.e., where the potential difference becomes too
large for the temperature gradient to drive electrons in the
opposite direction of the bias. In Fig. 9(b), we present the
results for the mesoscopic-lead configuration. As before,
we find that both predictions are quantitatively similar up to
the point where the boundary ofW� is reached. In Fig. 9(c),
we show the efficiency at the point where the maximum
power is obtained from the configuration as a function of Γ,
where we observe that both the continuum and mesoscopic-
lead configurations predict very similar results, even with a
moderate number of lead modes. As expected, the approxi-
mation becomes more accurate as the lead size is increased.
Furthermore, not only is the strong system-lead coupling
behavior well captured, but so is the Curzon-Ahlborn
efficiency limit (approximately given by ηC=2) at weak
coupling [67].

VII. TENSOR-NETWORK APPROACH

Having established that relatively modest-sized meso-
scopic leads can capture the continuum behavior of a
noninteracting system, we now move on to consider the
highly nontrivial problem of interacting systems. We intro-
duce in this section a tensor-network-based numerical
method that can efficiently and accurately compute the
interacting NESS of the two-reservoir problem illustrated in
Fig. 5. To describe the method, we return briefly to the
single-lead configuration shown in Fig. 4, in which the first
sitep ¼ 1 of the system S is coupled to themesoscopic lead.
Since we exploit the superfermion formalism, we continue
to use the unified notation for modes d̂k given in Eq. (20).

A. Spin-1=2 representation

Our approach uses the matrix product state (MPS)
decomposition that is a tensor network with a one-dimen-
sional chainlike geometry [68], as shown in Fig. 10(a). To
apply this powerful ansatz to our setup, we first map the lead
and systemmodes into a one-dimensional chain. In doing so,
the coherent coupling between the lead modes and the
system become long ranged within this chain, since they
correspond to a so-called “star geometry.” Fundamentally,
this geometry arises becausewe use the energy eigenbasis of
the lead.
Additionally, since MPS structures apply to systems built

from a tensor product of local Hilbert spaces, to describe a
spinless fermionic system requires that we transform it into
a spin-1=2 representation. Our starting point is to introduce
Fock states constructed from the unified physical modes
with occupation-number vector n as

jni ¼ ðd̂†1Þn1 � � � ðd̂†MÞnM jvaci; ð40Þ

which in the single-lead case has M ¼ LþD and is
ordered with lead modes first, as shown in Fig. 10(b).

A spin-1=2 representation is then obtain via the well-known
Jordan-Wigner (JW) transformation involving M spins
[69,70]:

d̂†j ¼
�Yj−1

q¼1

σ̂zq

�
σ̂−j ; ð41Þ

where σ̂zq is the Pauli spin matrix in the z direction and σ̂�q
are the spin raising or lowering operators for the qth spin.
Correspondingly, the Fock states of Eq. (40) are equivalent
to the spin states

jni ¼ ðσ̂−1 Þn1 � � � ðσ̂−MÞnM j↑ � � �↑i; ð42Þ

since each JW string vanishes on polarized spins it is
applied to. Transforming the total Hamiltonian Ĥ ¼ ĤS þ
ĤL þ ĤSL [from Eqs. (15) and (16)] to this representation
gives

Ĥ ¼ ĤS þ
XL
k¼1

�
κk1σ̂

þ
k

� YL
q¼kþ1

σ̂zq

�
σ̂−Lþ1

þκ�k1σ̂
−
k

� YL
q¼kþ1

σ̂zq

�
σ̂þLþ1

�
þ
XL
k¼1

εkσ̂
−
k σ̂

þ
k : ð43Þ

The star geometry, shown in Fig. 10(c), thus introduces JW
strings to the lead-system coupling terms, making them

FIG. 10. (a) A MPS tensor network in which every site (except
the boundaries) has an order-3 tensor associated to it. The vertical
dangling legs are the physical indices of the system of dimension
2 in our case, and the horizontal contracted legs are the internal
bonds of the MPS of dimension χ. (b) The lead and system modes
are ordered into a one-dimensional geometry to match the MPS.
(c) With this ordering, the star geometry system-lead coupling
ĤSL is long ranged, and the local fermionic dissipators LL on the
lead also become long ranged due to JW strings.
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long-ranged multibody spin operators. Similarly, the
Lindblad dissipator of Eq. (19) becomes

LLfρ̂g ¼
XL
k¼1

γkð1 − fkÞ
�
−
1

2
fσ̂−k σ̂þk ; ρ̂g

þ σ̂þk

�Yk−1
q¼1

σ̂zq

�
ρ̂

�Yk−1
q¼1

σ̂zq

�
σ̂−k

�

þ
XL
k¼1

γkfk

�
−
1

2
fσ̂þk σ̂−k ; ρ̂g

þ σ̂−k

�Yk−1
q¼1

σ̂zq

�
ρ̂

�Yk−1
q¼1

σ̂zq

�
σ̂þk

�
; ð44Þ

showing that the jump operators are now also nonlocal due
to the JW strings.

B. Superfermion representation

By using the energy eigenbasis of the lead, we arrive at
a master equation with a highly nonlocal multibody
Hamiltonian and dissipator. The JW strings therefore
appear to severely frustrate the use of MPS algorithms
in this setup. Typically, those arising from the star geometry
of the Hamiltonian in Eq. (43) are dealt with by tridiagon-
alizing the lead Hamiltonian, transforming it into a chain
geometry, and localizing its coupling to the system.
However, it is clear that this procedure profoundly com-
plicates the dissipator in Eq. (44). The thermal damping of
the lead induced by the dissipator is most naturally
described in the lead’s energy eigenbasis.
In the lead energy eigenbasis, the JW strings of the

dissipators can be eliminated by exploiting the super-
fermion representation of the open system introduced in
Sec. IV. There, an interleaved physical and ancillary mode
ordering is used, resulting in the dissipative processes
becoming nearest-neighbor non-Hermitian Hamiltonian
terms, as shown in Eq. (27). In this form, when moving
to a spin-1=2 representation, the JW string of each system
or lead site cancels with that of the corresponding ancillary
mode, rendering the dissipator terms local.
To observe this result explicitly, first note that the Fock

basis of the combined Hilbert space of the physical and
ancilla sites, namely, Eq. (21), can be written in the spin-
1=2 basis as

jnjmi ¼ ðσ̂−1 Þn1ðσ̂−2 Þm1 � � � ðσ̂−2MÞnMðσ̂−2MÞmM j↑↑ � � �↑↑i:
ð45Þ

The non-Hermitian generator of the superfermion time
evolution thus becomes

L̂ ¼ Ĥ − Ĥd⇔s þ i
XL
k¼1

γkð1 − fkÞσ̂þ2k−1σ̂þ2k

þ i
XL
k¼1

γkfkσ̂−2k−1σ̂
−
2k − i

XL
k¼1

γkfk

−
i
2

XL
k¼1

½γkð1 − 2fkÞðσ̂−2k−1σ̂þ2k−1 þ σ̂−2kσ̂
þ
2kÞ�; ð46Þ

showing that the dissipator contribution consists of on-site
and nearest-neighbor terms.

C. Time-evolving block decimation with swaps

To efficiently simulate the time evolution of the corre-
lated system described by Eq. (46), we use one of the most
well-known algorithms within the tensor-network family,
namely, the time-evolving block decimation (TEBD)
[71,72]. Given some system governed by a Hamiltonian
Ĥloc ¼

P
i ĥi;iþ1, comprising a sum of two-site terms ĥi;iþ1

along a chain of length M, the standard formulation of
TEBD computes the MPS approximation of the propaga-
tion jψðtÞi ¼ expð−iĤloctÞjψð0Þi. This computation is
done by first breaking up the evolution into many small
time steps δt and then performing a second-order Trotter
expansion as

e−iĤlocδt ≈
�YM−1

i¼1

Ûi;iþ1

�� Y1
i¼M−1

Ûi;iþ1

�
; ð47Þ

where Ûi;iþ1 ¼ exp½−ði=2Þĥi;iþ1δt�. In this way, a time step
of propagation is implemented by a staircase circuit of two-
site gates sweeping right to left and then left to right. Each
two-site gate can be applied to the MPS, and, via a singular
value decomposition, the result can be refactorized and
truncated back into MPS form.
Here, we use a simple modification of TEBD that allows

us to compute the time evolution under fermionic star-
geometry Hamiltonians Ĥstar ¼

P
i ĥi;M, where all sites

i < M interact with the last site M. The key ingredient is
the fermionic SWAP gate Ŝf, which is a conventional SWAP

gate between spins j and jþ 1 that exchanges their spin
configurations but also incorporates the application of the
local σ̂zj operator from the JW string of Eq. (43). For two
sites, the gate is given by

Ŝf ¼

0
BBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

1
CCCA; ð48Þ

where the negative sign accounts for the anticommutation
relation between two fermionic creation operators when
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both sites j and jþ 1 are occupied. By interspersing
fermionic SWAP gates within the Trotter expansion, as
shown in Fig. 11, distant sites are temporarily made
adjacent, allowing the standard nearest-neighbor two-gate
update to be applied.
Time evolution under a long-ranged Hamiltonian is

generally considered impractical for tensor-network calcu-
lations, due to very fast growth of entanglement across the
system. This conjecture has been challenged in recent
studies of fermionic impurity models, where efficient
tensor-network calculations are performed using a star-
geometry setup [73,74]. The proliferation of correlations in
these models is curtailed by Pauli exclusion within the
majority of the modes of the lead, limiting them to the range
of modes around the Fermi energy. This favorable situation
persists in the mesoscopic thermal lead setup considered
here. Furthermore, it has been recently shown that using a
suitable order of the lead modes can significantly enhance
the efficiency of tensor-network simulations [75].

D. Nonequilibrium steady-state solver

The TEBD algorithm works equally well for non-
Hermitian Hamiltonians generating nonunitary propaga-
tion. Indeed, it is widely used to study the NESS of
incoherently driven chains where the coupling to the reser-
voirs is localized to one [76–85] or two sites [86–89] at the
boundaries. We have now introduced all the elements
required to extend the capabilities of TEBD to simulate
the open system governed by the Hamiltonian Eq. (43) and
the dissipator Eq. (44).
First, we move to the superfermion representation where

the generator L̂ is given by Eq. (46). We define dimer sites

composed of a physical (system or lead) site and its
corresponding ancilla, as shown in Fig. 12(a). This pro-
cedure squares the dimension of the local basis. The left
vacuum state jIi in this representation is a product state of
dimers, with each dimer local to a given site being an equal
superposition of j↑↑i and j↓↓i.
Next, we identify all the terms in L̂ that correlate the

dimers located at lead site k and system site p ¼ 1.
Assuming these sites are adjacent to each other through
SWAP operations, we express

L̂dim;k ¼ εkðσ̂−1 σ̂þ1 − σ̂−2 σ̂
þ
2 Þ þ

ϵ

L
ðσ̂−3 σ̂þ3 − σ̂−4 σ̂

þ
4 Þ

þ κkLσ̂
−
1 σ̂

z
2σ̂

þ
3 þ κ�kLσ̂

þ
1 σ̂

z
2σ̂

−
3

− κkLσ̂
þ
2 σ̂

z
3σ̂

−
4 − κ�kLσ̂

−
2 σ̂

z
3σ̂

þ
4

−
i
2
γkð1 − 2fkÞðσ̂−1 σ̂þ1 þ σ̂−2 σ̂

þ
2 Þ − iγkfk

þ iγkð1 − fkÞσ̂þ1 σ̂þ2 þ iγkfkσ̂−1 σ̂
−
2 : ð49Þ

We identify spin 1 as the kth lead eigenmode with spin 2
being its corresponding ancilla mode. On the other hand,

FIG. 11. The sweeping sequence of two-site gates Ûk;1 between
the kth lead mode and the first system site along with the
fermionic SWAPs Ŝf needed to implement a Trotter step for the
star geometry couplings shown in Fig. 10(c).

FIG. 12. (a) Ancilla modes are interleaved with the system and
lead modes they are associated to. Computationally, the system or
lead site and its ancilla are bundled together as a dimer site. (b) A
two-dimer site gate Ûdim;k is applied between the kth lead mode
dimer and the first system site dimer, followed by four fermionic
SWAPs Ŝf to shuffle the system site and its ancilla through the lead
and its ancilla making the next lead mode adjacent. This
procedure is repeated all the way along the chain and back to
complete one time step.

TENSOR-NETWORK METHOD TO SIMULATE STRONGLY … PHYS. REV. X 10, 031040 (2020)

031040-13



spin 3 is the system site coupled to the lead with spin 4 its
corresponding ancilla mode. A JW string appears between
interacting spins that are not adjacent; however, they
remain local to the dimer pair. The exponential of this
operator, Ûdim;k ¼ expð−iL̂dim;kδt=2Þ, defines a nonunitary
gate for a half time step δt. This operator accounts for all
the coherent interactions and the non-Hermitian terms,
describing the dissipation between the lead mode and the
system site. We assume a Hamiltonian of the form Eq. (36)
in Eq. (49).
Finally, the nonunitary gates Ûdim;k are then applied

along with fermionic SWAP gates that shuffle the system
dimer along the chain, as shown in Fig. 12(b). The latter
can be defined from the two-site SWAP gates of Eq. (48) in
the following way: Naming Â ¼ I2 ⊗ Sf ⊗ I2, with I2 the
2 × 2 identity matrix, and B̂ ¼ Sf ⊗ Sf, the two-dimer
SWAP gate depicted in Fig. 12(b) is given by ABA.
Altogether, this sequence of gates computes the action
of the propagator expð−iL̂δtÞ and formally solves Eq. (26)
for a single time step. We take the initial state to be jρð0Þi ¼
jIi and find the steady state jρð∞Þi by evolving toward the
long-time limit. Expectation values and the trace of the
density operator follow from the inner product with jIi as
given in Eq. (24).
The same simulation scheme can be readily extended to

the two-lead configuration, as shown in Fig. 13(a), with the
long-time limit now giving rise to a NESS. The approach to
the stationary state is assessed by evaluating the conver-
gence of observables such as the particle and energy
currents. In practice, we use a dynamically increasing
truncation parameter χ for different time-step parameters
δt. In the standard MPS language [71,72], χ refers to the
maximum MPS bond dimension in between each pair of
neighboring nodes in the network, where each node
represents a dimer. To perform the simulation, we choose
an initial value of χ and δt and evolve the system up to an
intermediate time. The resulting state is then further
evolved in time with a larger χ and an appropriately
reduced δt. This procedure is repeated until the currents

obtained converged up to a small tolerance of 1%–2%.
The largest bond dimension used in our calculations
is χmax ¼ 220, showing that a moderate computational
effort is required to access the NESS (see Appendix F for
further details). All MPS calculations in this work are
performed using the open-source Tensor Network Theory
library [90,91].

VIII. INTERACTING EXAMPLES

In this section, we employ the tensor-network algorithm
from Sec. VII to study an autonomous thermal machine
with an interacting working medium, as depicted in
Fig. 13(b). Ourmethods enable us to consider the challenging
problem of simultaneously strong interactions and system-
bath coupling, far beyond the linear-response regime.

A. Interacting three-site engine

Our first example is an autonomous quantum heat engine
with a three-site interacting working medium, which is
described by the Hamiltonian

ĤS ¼
XD
j¼1

ϵjn̂j −
XD−1

j¼1

tSðĉ†jþ1ĉj þ H:c:Þ þ
XD
j¼1

Un̂jn̂jþ1;

ð50Þ

where n̂j ¼ ĉ†j ĉj is the density operator for site j and U is
the interaction strength. The last term in the equation above
corresponds to a density-density interaction of neighboring
particles. A small central system composed of D ¼ 3
interacting fermionic sites can be interpreted as a three-
site version of the interacting resonant level model [92].
We set the system hopping tS ¼ W=8 and focus on the

regime in which the temperature gradient and the difference
in chemical potential between the mesoscopic reservoirs
are strong. We set TL ¼ 10tS, TR ¼ tS, μL ¼ −tS=2,
μR ¼ tS=2, and ϵj ¼ ϵ ¼ tS. With these parameters, the
system operates as a heat engine; i.e., particle current flows
from the left reservoir to the right reservoir, driven by the
temperature gradient against a chemical potential gradient.
As in Sec. VI, both leads are assumed to have identical, flat
spectral densities given by Eq. (37), and we use the
logarithmic-linear discretization scheme with W� ¼ W=2
and Llog=L ¼ 0.2. We remark that the chosen Hamiltonian
parameters are far apart from the energy scale dictated by
W, such that the effect of the finite bandwidth is expected to
be negligible. This choice of parameters is thus a useful
representative example for exposing the efficacy of the
proposed methodology.
We first focus on the dependence of the currents on

the system-lead coupling Γ, as shown in Fig. 14. In
Fig. 14(a), the energy current for a particular value of
the interaction strength U ¼ 1.2tS is shown as a function of
Γ. Remarkably, a density-density interaction yields a larger

FIG. 13. (a) The lead and system mode ordering for a two-lead
setup. (b) The configuration used for the interacting system
examples. Here, the system S is a fermionic chain with hopping
amplitude tS and nearest-neighbor interaction U.
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energy current flowing through the system compared
to the noninteracting case in the chosen regime. The same
observation holds for the particle current in Fig. 14(b),
since for our choice of parameters the particle current and
the power output are equivalent [see Eq. (4)]. The effi-
ciency shown in Fig. 14(c) remains approximately constant
as a function of the system-lead coupling strength just like
the noninteracting case. Future work will investigate a
larger range of parameters to identify a maximum power
output for a given interaction strength.
The insets in Figs. 14(a) and 14(b) show the error

associated to employing a finite number of modes in each
reservoir for a specific value of Γ ¼ 3tS, where the currents
in the interacting case reach the maximum value. The error
is computed from an extrapolated value of the currents to
the L → ∞ limit, based on the currents for finite L, for each
respective case. We define error% ≔ jKðL → ∞Þ − KðLÞj·
100=KðL → ∞Þ, where K ¼ JE, P for energy current and
power, respectively. The value KðL → ∞Þ is taken from an
extrapolation following the trend of KðLÞ. A linear
extrapolation is made for the power as shown in the inset
in Fig. 14(b), while no extrapolation is required for the
energy current in Fig. 14(a), as the current converges
for L smaller than the final value of L ¼ 100. It can be
observed that, for the specific choice of parameters, a good
approximation can be obtained to a few percent accuracy
using L ¼ 50, compared to larger reservoirs. The energy
current converges faster than the particle current (power)
in this case. This behavior is expected; as observed in
Figs. 18 and 19 for the noninteracting case in Appendix E,
the largest deviation for the particle current occurs
where the maximum value is obtained, while the largest
deviation for the energy current is observed near the edges
of the band.

B. High-temperature transport

The transport properties of spin chains have been studied
extensively using standard open-system MPS approaches
based on a boundary driving Lindblad master equation.
This approach has been successful in accurately describing
the high-temperature spin and particle transport behavior
of the integrable anisotropic XXZ Heisenberg model
[77–79,93] as well as nonintegrable versions of the model
when integrability-breaking perturbations are introduced,
such as magnetic impurities [85] or disorder [83,84,88,89].
However, driving on the boundary spins is formally
equivalent to infinite-temperature baths. Modeling energy
currents therefore requires more elaborate multisite boun-
dary driving to mimic finite temperature differences. While
this approach has proven successful for the very high
temperature limit, its reliability as the temperature is
lowered is questionable. The mesoscopic-lead construction
introduced here overcomes this deficiency.
The system Hamiltonian introduced in Eq. (50) is the

spinless fermion equivalent of the anisotropic XXZ
Heisenberg model. This model exhibits a range of distinct
linear-response particle and energy transport behavior as a
function of the anisotropy U. Specifically, these include
ballistic transport, which is characterized by a constant
value of the current as a function of system size D, as well
as diffusive transport, where JP ∝ 1=Dν with ν ¼ 1 [85].
Anomalous diffusion is signaled by 0 < ν < 1 and ν > 1,
corresponding to superdiffusion and subdiffusion, respec-
tively. A sharp transition in the system’s transport proper-
ties is known to occur at the isotropic point U=tS ¼ 2, with
the system displaying ballistic transport for U=tS < 2,
while for U=tS > 2 transport becomes diffusive. Further-
more, precisely at the isotropic point U=tS ¼ 2, boundary

(a) (b) (c)

FIG. 14. (a) Energy current, (b) power, and (c) efficiency of the interacting three-site system as a function of the system-lead coupling
strength Γ. The insets in (a) and (b) show the error associated to the finite number of modes in the leads L (up to L ¼ 100), estimated
from extrapolated values of the currents at the point in which the maximum is observed (Γ ≈ 3tS). In these calculations, we use
Llog=L ¼ 0.2, W� ¼ W=2, and W ¼ 8tS.
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driving calculations show that transport is superdiffusive
with ν ¼ 1=2 [79]. These results are expected to hold only
in the linear-response regime at high temperatures, where
the structure of the thermal baths becomes irrelevant. We
now corroborate these results using our mesoscopic reser-
voir formalism.
As before, we choose the same discretization scheme and

bath structure parameters. We focus on the isotropic point
U=tS ¼ 2 and set ϵj=tS ¼ ϵ=tS ¼ 1. We set the temperature
on each reservoir to a high value of TL ¼ TR ¼ 1000tS and
choose a small chemical potential gradient μL ¼ −μR ¼
0.025tS, where we expect the system to be in the linear-
response regime. In Fig. 15, we show both the particle and
energy currents as a function of system size D. We use
L ¼ 20 modes for both left and right reservoirs. As can be
observed, the currents fit a power-law scaling with an
exponent very close to ν ¼ 1=2 in clear indication of
superdiffusive behavior. We remark that, at a high temper-
ature, fewer reservoir modes can be used to obtain the
correct transport exponent, as observed from boundary
driving calculations [79].

C. Finite-temperature transport and CP symmetry

We now test the capabilities of our method to extract
transport properties outside of the high-temperature limit.
As a benchmark, we focus on the anisotropic Heisenberg
Hamiltonian given by Eq. (50) with U ¼ tS and homo-
geneous on-site energies ϵj ¼ ϵ.
In this regime, the Hamiltonian is integrable and the total

energy current is conserved, implying ballistic energy

transport at all temperatures under linear-response con-
ditions [94,95]. Ballistic particle conduction is also
expected for U < 2tS, as indicated by extensive numerical
calculations [95] and arguments based on quasilocal con-
servation laws [96,97]. We confirm the ballistic nature of
transport at a finite temperature by a scaling analysis with
the system size D of the particle and energy currents, as
shown in Fig. 16. We drive the system out of equilibrium
either by applying a chemical-potential bias at a fixed
temperature or by a temperature gradient applied at a fixed
chemical potential. In each case, we find that the particle
and energy currents are essentially independent of the
system size, as expected. We note that our method can be
applied far outside linear response, for example, with a
large temperature bias TL − TR ≫ TR, as shown by the
black triangles in Fig. 16.
The magnitudes of the currents strongly depend on the

bulk Hamiltonian and the thermodynamic potentials of the
baths. Configurations that are invariant under a charge
conjugation parity (CP) transformation, i.e., a combined
reflection and particle-hole symmetry, are found to exhibit
vanishing energy current. More precisely, CP symmetry
requires equal bath temperatures, TL ¼ TR, opposite
chemical potentials, μL ¼ −μR, and bulk Hamiltonian
parameters ϵ ¼ −U. As shown by the blue triangles
in Fig. 16(b), the energy current is zero in this case, in
agreement with exact analytical calculations detailed in
Appendix G. A finite energy current emerges whenever the

FIG. 15. Particle and energy currents as a function of system
size D for the isotropic Heisenberg model U=tS ¼ 2 [see
Eq. (50)]. The results shown correspond to a very high temper-
ature TL ¼ TR ¼ 1000tS and a small chemical potential bias
μL ¼ −μR ¼ 0.025tS, where the system is expected to be in the
linear-response regime. In these calculations, we use Llog=L ¼
0.2, W� ¼ W=2, W ¼ 8tS, and Γ ¼ ϵ ¼ tS.

(a)

(b)

FIG. 16. Finite-size scaling of (a) particle current and (b) energy
current for the anisotropic Heisenberg model in Eq. (50) with
U ¼ tS. Size-independent currents imply ballistic particle and
energy transport under chemical-potential or temperature bias.
Data shown by the black triangles are rescaled by a factor of 10−1

to be visible on the same scale. In these calculations, we use
L ¼ 20, Llog=L ¼ 0.2, W� ¼ W=2, W ¼ 8tS, and Γ ¼ U ¼ tS.
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on-site energies of ĤS are moved away from the CP-
symmetric point, even when the forcing from the baths
remainsCP symmetric (red circles in Fig. 16). This result is
in stark contrast with the predictions of single-site boun-
dary driving transport calculations on the Heisenberg
model, where symmetric driving leads to vanishing energy
current independent of the bulk Hamiltonian parameters
[98]. This result ultimately stems from the fact that
boundary driving simulates white noise and, thus, does
not capture the energy dependence of true thermal
fluctuations.
We further explore the effect of temperature by examin-

ing the nonequilibrium density profile of the system in
Fig. 17. We consider equal reservoir temperatures,
TL ¼ TR ¼ T, fixed system (D ¼ 48) and lead (L ¼ 40)
sizes, and a symmetric chemical potential bias, μL ¼ −μR.
We also take ϵ ≠ −U to break CP symmetry. Away from
the boundaries, we find the flat profile characteristic of
ballistic transport, with a density that depends on the
temperature. Lower temperatures correspond to lower
densities and larger currents. As the temperature is
increased, the bulk density tends to the CP-symmetric
value hn̂ji → 0.5. This result shows that the CP symmetry
enforced by the single-site boundary driving configuration
is indeed recovered in the high-temperature limit.

IX. CONCLUSIONS AND OUTLOOK

In this work, we introduced a novel methodology to
simulate the heat and particle currents in thermal machines
which comprise a complex working medium coupled to
fermionic leads at fixed temperatures and chemical

potentials. The method is based on the concept of meso-
scopic reservoirs whose energy modes are damped in order
the replicate the continuum. The method allows for
calculations in highly nonequilibrium scenarios such as
strong system-lead coupling and large biases. In order to
cope with nonquadratic interactions in the working
medium, we implemented a novel tensor-network algo-
rithm directly in the star geometry using auxiliary modes.
For the purpose of expounding the method, in this paper,

we considered only autonomous thermal machines where
the working medium is time independent. In order to
benchmark our technique, we first focused on replicating
the steady-state thermodynamics of the resonant-level heat
engine. The simplicity of this quadratic model allows for
direct comparison with the Landauer-Büttiker theory for
quantum transport. We observed excellent agreement
across a wide parameter regime. We then explored effi-
ciency and power in a strongly interacting three-qubit
machine in a parameter regime where other methods are
known to struggle. In doing so, we observed that, remark-
ably, the efficiency is enhanced as a function of the system-
lead coupling in the presence of nonquadratic interactions.
Furthermore, we demonstrated that our technique is
capable of highly nontrivial heat and particle transport
calculations in strongly correlated many-body systems by
performing a scaling analysis at the isotropic point of the
paradigmatic Heisenberg model. Finally, we analyzed
the current scaling and nonequilibrium density profile in
the integrable regime of the anisotropic Heisenberg model,
confirming the ballistic nature of transport at finite temper-
atures and well beyond linear response.
Because of the flexibility of our technique, we expect

that the method is extendable further in the direction of
steady-state thermodynamics of complex interacting quan-
tum systems. Beyond strong coupling and far-from-
equilibrium scenarios, our technique may also find useful
applications in the study of time-dependent working media,
bulk noise effects, and nontrivial spectral densities, thus
taking quantum thermodynamics to unexplored horizons.
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Note added.—Recently, several articles have appeared that
propose different yet related tensor-network algorithms to
study transport with mesoscopic reservoirs [75,99,100].

APPENDIX A: CONNECTION BETWEEN
MESOSCOPIC AND MACROSCOPIC

RESERVOIRS

In this Appendix, we give further mathematical details of
the connection between mesoscopic and infinite reservoirs
described in Sec. III.

1. Infinite-bath configuration

We begin by discussing the equations of motion assum-
ing that the system is in contact with an infinite thermal
reservoir. The total Hamiltonian is thus Ĥ ¼ ĤS þ ĤBþ
ĤSB, where ĤB and ĤSB are, respectively, given by

ĤB ¼
X∞
m¼1

ωmb̂
†
mb̂m; ðA1Þ

ĤSB ¼
X∞
m¼1

ðλmĉ†pb̂m þ λ�mb̂
†
mĉpÞ; ðA2Þ

while ĤS is arbitrary. In the Heisenberg picture, the
equations of motion read as

d
dt

b̂mðtÞ ¼ −iωmb̂mðtÞ − iλ�mĉpðtÞ; ðA3Þ

d
dt

ĉjðtÞ ¼ i½ĤS; ĉjðtÞ� − iδjp
X
m

λmb̂mðtÞ; ðA4Þ

where p denotes the system site connected to the bath. The
formal solution of Eq. (A3) reads as

b̂mðtÞ ¼ e−iωmtb̂mð0Þ − iλ�m

Z
t

0

dt0e−iωmðt−t0Þĉpðt0Þ: ðA5Þ

Substituting this result back into Eq. (A4) yields the
quantum Langevin equation

d
dt

ĉjðtÞ ¼ i½ĤS; ĉjðtÞ� þ δjp

�
ξ̂ðtÞ −

Z
t

0

dt0χðt − t0Þĉpðt0Þ
�
:

ðA6Þ

Here, the noise operator is ξ̂ðtÞ ¼ −i
P

m e−iωmtλmb̂mð0Þ,
and the memory kernel is χðt − t0Þ ¼ hfξ̂ðtÞ; ξ̂†ðt0Þgi.
The solution of Eq. (A6) at time t depends, in principle,

on the entire past history of the noise operator ξ̂ðsÞ for
s < t. Once found, the solution for ĉjðtÞ is sufficient to
reconstruct all n-point correlation functions of S, which
together uniquely specify the quantum state (among other
information). Since the initial bath state is Gaussian, these
correlation functions depend on the noise only via its two-
time correlations

hfξ̂ðtÞ; ξ̂†ðt0Þgi ¼
Z

dω
2π

J ðωÞe−iωðt−t0Þ; ðA7Þ

hξ̂†ðtÞξ̂ðt0Þi ¼
Z

dω
2π

J ðωÞfðωÞeiωðt−t0Þ: ðA8Þ

In some cases, like for a single-site system, the particle
and energy currents from the bath also become important.
The particle and energy currents from the bath are given,
respectively, by

JP ¼ i

	X∞
m¼1

ðλmĉ†pb̂m − λ�mb̂
†
mĉpÞ



; ðA9Þ

JE ¼ i

	X∞
m¼1

ωmðλmĉ†pb̂m − λ�mb̂
†
mĉpÞ



: ðA10Þ

This result requires evaluation of the operators
hP∞

m¼1 λmĉ
†
pb̂mi and hP∞

m¼1 ωmλmĉ
†
pb̂mi. The evolution

of these operators can be written down from Eq. (A5) and
are given by

	X∞
m¼1

λmĉ
†
pðtÞb̂mðtÞ




¼ ihĉ†pðtÞξ̂ðtÞi − i
Z

t

0

dt0χðt − t0Þhĉ†pðtÞĉpðt0Þi; ðA11Þ

	X∞
m¼1

ωmλmĉ
†
pðtÞb̂mðtÞ




¼ ihĉ†pðtÞ ˆ̃ξðtÞi − i
Z

t

0

dt0χ̃ðt − t0Þhĉ†pðtÞĉpðt0Þi; ðA12Þ

where we additionally define

ˆ̃ξðtÞ ¼ −i
X
m

e−iωmtωmλmb̂mð0Þ; ðA13Þ

χ̃ðt − t0Þ ¼
Z

dω
2π

ωJ ðωÞe−iωðt−t0Þ: ðA14Þ

The operator ˆ̃ξðtÞ satisfies
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h ˆ̃ξ†ðtÞ ˆ̃ξðt0Þi ¼
Z

dω
2π

ω2J ðωÞfðωÞeiωðt−t0Þ; ðA15Þ

h ˆ̃ξ†ðtÞξ̂ðt0Þi ¼
Z

dω
2π

ωJ ðωÞfðωÞeiωðt−t0Þ: ðA16Þ

Eqs. (A6), (A8), (A11), (A12), (A14), (A15), and (A16)
completely define time evolution of any operator of the
system, as well as that of the energy and particle currents
from the baths. In the following, we show that the same
equations can be recovered in the mesoscopic-lead con-
figuration, thereby showing their equivalence.

2. Mesoscopic-lead configuration

We now turn to the mesoscopic-reservoir configuration,
with total Hamiltonian Ĥ¼ĤSþĤSLþĤLþĤLBþĤB.
Here, ĤL and ĤSL describe the lead and its coupling to
the system, respectively, and are given explicitly by

ĤL ¼
XL
k¼1

εkâ
†
kâk; ðA17Þ

ĤSL ¼
XL
k¼1

ðκkpĉ†pâk þ κ�kpâ
†
kĉpÞ: ðA18Þ

Each mode of the lead is further coupled to an infinite
reservoir according to

ĤB ¼
XL
k¼1

X∞
q¼1

Ωkqb̂
†
kqb̂kq; ðA19Þ

ĤLB ¼
XL
k¼1

X∞
q¼1

ðζkqâ†kb̂kq þ ζ�kqb̂
†
kqâkÞ; ðA20Þ

where âk describes mode k of the lead while the ladder
operators b̂kq describe the bath connected to mode k. Each
bath is described by the flat spectral density

J kðωÞ ¼ 2π
X
q

jζkqj2δðω −ΩkqÞ ¼ γk: ðA21Þ

We are interested in the evolution of the joint system-lead
state ρðtÞ starting from the initial product state Eq. (2),
where all baths are initialized at the same temperature and
chemical potential.
As in Eq. (A5), we formally solve the Heisenberg

equation of motion for the bath variables to find

b̂kqðtÞ ¼ e−iΩkqtb̂kqð0Þ − iζ�kq

Z
t

0

dt0e−iΩkqðt−t0Þâkðt0Þ:

ðA22Þ

Substituting this result into the equation of motion for
âkðtÞ, we obtain

d
dt

âkðtÞ ¼ −iεkâkðtÞ − iκ�kpĉpðtÞ

þ ξ̂kðtÞ −
Z

t

0

dt0χkðt − t0Þâkðt0Þ: ðA23Þ

Here, we define the noise operators

ξ̂kðtÞ ¼ −i
X
q

ζkqe−iΩkqtb̂kqð0Þ ðA24Þ

and the memory kernels χkðt − t0Þ ¼ hfξ̂kðtÞ; ξ̂†kðt0Þgi. For
the flat spectral density in Eq. (A21), the noise correlations
are given by

hfξ̂kðtÞ; ξ̂†k0 ðt0Þgi ¼ δkk0γkδðt − t0Þ; ðA25Þ

hξ̂†kðtÞξ̂k0 ðt0Þi ¼ δkk0γk

Z
dω
2π

fðωÞeiωðt−t0Þ: ðA26Þ

Next, we formally solve Eq. (A23) to find

âkðtÞ¼e−iεkt−γkt=2âkð0Þ

þ
Z

t

0

dt0eð−iεk−γk=2Þðt−t0Þ½ξ̂kðt0Þ− iκ�kpĉpðt0Þ�: ðA27Þ

Considering long times, such that γkt ≫ 1, the first term
above is negligible and is ignored in the following.
Substituting this solution into the equations of motion
for the system variables, we finally obtain an effective
quantum Langevin equation:

d
dt
ĉjðtÞ¼ i½ĤS;ĉjðtÞ�

þδjp

�
ξ̂effðtÞ−

Z
t

0

dt0χeffðt− t0Þĉpðt0Þ
�
: ðA28Þ

This result is of the same form as Eq. (A6), but with the
noise operator

ξ̂effðtÞ ¼ −i
XL
k¼1

κkp

Z
t

0

dt0eð−iεk−γk=2Þðt−t0Þξ̂kðt0Þ ðA29Þ

and the memory kernel

χeffðt − t0Þ ¼
XL
k¼1

jκkpj2eð−iεk−γk=2Þðt−t0Þ

¼
Z

dω
2π

J effðωÞe−iωðt−t0Þ; ðA30Þ

where the effective spectral density J effðωÞ is the sum of
Lorentzian functions:
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J effðωÞ ¼
XL
k¼1

jκkpj2γk
ðω − εkÞ2 þ ðγk=2Þ2

: ðA31Þ

The second equality above follows via an identity which
can be proved by contour integration:

e−iεkt−γkt=2 ¼
Z

dω
2π

γke−iωt

ðω − εkÞ2 þ ðγk=2Þ2
: ðA32Þ

It remains to check the effective noise correlations. We
have, using Eqs. (A25), (A26), and (A32),

hfξ̂effðsÞ; ξ̂†effðs0Þgi ≈
Z

dω
2π

J effðωÞe−iωðs−s0Þ; ðA33Þ

hξ̂†effðsÞξ̂effðs0Þi ≈
Z

dω
2π

J effðωÞfðωÞeiωðs−s0Þ; ðA34Þ

where we neglect all terms proportional to e−γks or e−γks
0
.

This approximation is valid at long times, so long as the
solution of Eq. (A28) depends only on the past history of
ξ̂effðsÞ within a time window that is essentially finite. This
result will generically be the case for any system that
relaxes to a steady state when coupled to a bath, since any
memory of environmental fluctuations in the far past is
eventually lost. In particular, if τrel is the (slowest) char-
acteristic timescale of relaxation of S, then we need
consider only arguments of ξ̂effðsÞ in the range t − τrel≲
s < t. Hence, the approximations leading to Eqs. (A33) and
(A34) are valid for all times such that

t ≫ γ−1k ; τrel: ðA35Þ

If this relation holds, we have shown that the effective noise
generated by the mesoscopic lead is equivalent to an
infinite bath with a spectral density given by Eq. (A31),
giving rise to an identical equation of motion for the
system, Eq. (A28).
Under this condition, the currents from the mesoscopic

leads also become the same as the currents obtained in
the infinite-bath case. To see this equivalence, we write
down the expressions for particle and energy currents from
the lead:

JP ¼ i

	XL
k¼1

ðκkpĉ†pâk − κ�kpâ
†
kĉpÞ



; ðA36Þ

JE ¼ i

	XL
k¼1

εkðκkpĉ†pâk − κ�kpâ
†
kĉpÞ



: ðA37Þ

This result requires evaluation of the operators
hPL

k¼1 κkpĉ
†
pâki and hPL

k¼1 εkκkpĉ
†
pâki. From Eq. (A27),

and considering the time regime in Eq. (A35), we have the
following equations for evolution of these operators:

	XL
k¼1

κkpĉ
†
pâk




¼ ihĉ†pðtÞξ̂effðtÞi − i
Z

t

0

dt0χeffðt − t0Þhĉ†pðtÞĉpðt0Þi;

ðA38Þ
	XL

k¼1

εkκkpĉ
†
pâk




¼ ihĉ†pðtÞ ˆ̃ξeffðtÞi − i
Z

t

0

dt0χ̃effðt − t0Þhĉ†pðtÞĉpðt0Þi;

ðA39Þ

where

ˆ̃ξeffðtÞ ¼ −i
XL
k¼1

εkκkp

Z
t

0

dt0eð−iεk−γk=2Þðt−t0Þξ̂kðt0Þ; ðA40Þ

χ̃effðt − t0Þ ¼
Z

dω
2π

ωJ effðωÞe−iωðt−t0Þ: ðA41Þ

The operator ˆ̃ξðtÞ satisfies

h ˆ̃ξ†effðtÞ ˆ̃ξeffðt0Þi ¼
Z

dω
2π

ω2J effðωÞfðωÞeiωðt−t0Þ; ðA42Þ

h ˆ̃ξ†effðtÞξ̂effðt0Þi ¼
Z

dω
2π

ωJ effðωÞfðωÞeiωðt−t0Þ: ðA43Þ

Here, we neglect terms proportional to e−γkt and e−γkt
0
,

following the same arguments that lead to Eqs. (A33)
and (A34). In addition, we make the approximationP

k ε
n
k jκkpj2γk=½ðω − εkÞ2 þ ðγk=2Þ2� ≈ ωnJ effðωÞ, which

holds so long as γk is sufficiently small that the replacement
εk → ω in the numerator is valid. In this limit, J effðωÞ
reproduces J ðωÞ faithfully, and, therefore, the above
equations become equivalent to Eqs. (A11)–(A16).
We note that in Eq. (A37) we consider only the

contribution to the current associated with the change in
the lead energy, i.e., JE ¼ −hdĤL=dti. However, due to the
Lindblad damping, there is an additional term associated
with the change in ĤSL, i.e., the second term in Eq. (35).
This term is of the order of OðγkκkpÞ and, therefore,
becomes negligible in comparison to the first term in the
limit L → ∞. Thus, currents from the baths in the infinite-
bath configuration also become the same as currents from
the mesoscopic lead in this regime.

3. Quantum master equation

Finally, we briefly discuss the derivation of the quantum
master equation. In the limit of large lead size L → ∞, the
energy spacing ek ¼ εkþ1 − εk → 0. So both the lead-bath
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couplings κkp ∝ ffiffiffiffiffi
ek

p
and the system-lead coupling γk ¼ ek

must tend to zero in order to recover the continuum spectral
density J ðωÞ [see the discussion below Eq. (17)]. In this
limit, we derive a quantum master equation using pertur-
bation theory correct to OðekÞ. Following the standard
procedure [15] and working in an interaction picture
with respect to the free Hamiltonian Ĥ0 ¼ ĤS þ ĤSLþ
ĤL þ ĤB, we obtain

d
dt

ρ̂ðtÞ ¼ −
Z

∞

0

dt0TrB½ĤLBðtÞ; ½ĤLBðt − t0Þ; ρ̂ðtÞρ̂B��:

ðA44Þ

Here, the upper limit of the t0 integration is taken to
infinity, because we consider the long-time limit; i.e., only
the Born approximation and not the Markov approximation
is invoked in Eq. (A44). In the interaction picture, the free
evolution of the lead operators is given by

âkðtÞ ¼ eiĤ0tâke−iĤ0t ¼ e−iεktâk þOðκkpÞ: ðA45Þ

Since Eq. (A44) is already of the order of OðγkÞ, we keep
only the leading-order term in Eq. (A45). Straightforward
manipulations then lead to the master equation given by
Eq. (18). Note that the usual Lamb-shift Hamiltonian does
not appear here due to the flat spectral densities in
Eq. (A21).
The quantum master derived up to OðekÞ is of the form

d
dt

ρ̂ðtÞ ¼ Lð0Þρ̂þ Lð1Þρ̂; ðA46Þ

where Lð0Þ is the Oð1Þ term of the Liouvillian and Lð1Þ is
the OðekÞ term of the Liouvillian. The solution of this
equation is

ρ̂ðtÞ ¼ eðLð0ÞþLð1ÞÞtρ̂ð0Þ; ðA47Þ

which has all orders of OðekÞ. Clearly, all orders of OðekÞ
are not accurate. Following Ref. [101], it can be shown that
the diagonal elements of ρ̂ðtÞ in the eigenbasis of the
system Hamiltonian ĤS are correct to Oð1Þ and the error
occurs at OðekÞ, whereas the off-diagonal elements are
correct to OðekÞ and the error occurs at Oðe3=2k Þ. Thus, by
reducing ek, i.e., by increasing the number of lead modes, it
is possible to make results from the quantum master
equation arbitrarily close to those obtained from the
infinite-bath configuration.

APPENDIX B: SUPERFERMION FORMALISM
FOR NONEQUILIBRIUM STEADY STATES

In this Appendix, we give further details of the super-
fermion [37] steady-state solution of the master equation in

Eq. (18) for a noninteracting system of size D coupled a
single mesoscopic lead of size L.
This open system has a quadratic generator L̂ ¼ f̂†Lf̂ −

η defined by the 2M × 2M non-Hermitian matrix L, where
M ¼ Dþ L. To compute its NESS, we proceed to diag-
onalize this matrix asL ¼ VεV−1 to give a diagonal matrix
ε of complex eigenvalues εμ. These eigenvalues come in
conjugate pairs, and we denote the half with Imfϵμg > 0 as
set Ξþ and the other half with Imfϵμg < 0 as Ξ−.
We identify the corresponding normal mode operators as

ξ̂† ¼ f̂†V and χ̂ ¼ V−1f̂. Although χ̂μ and ξ̂μ mix physical
d̂k and ancillary modes ŝk via a similarity transformation,
and so are not Hermitian conjugates of one another,
they still obey canonical anticommutation relations
[102], e.g.,

fχ̂μ; ξ̂†νg ¼ δμν1: ðB1Þ

The equations of motion for the normal mode operators
follow from the commutator with L̂ giving

½L̂; χ̂μ� ¼ −ϵμχ̂μ and ½L̂; ξ̂†μ� ¼ ϵμξ̂
†
μ; ðB2Þ

so in vector form the time-evolved mode operators are

ξ̂†ðtÞ ¼ ξ̂†eiϵt and χ̂ ðtÞ ¼ e−iϵtχ̂ : ðB3Þ

A defining property of the NESS is L̂jρð∞Þi ¼ 0. Using
this property, we compute the time evolution of the NESS
when acted upon by a normal mode operator to obtain

e−iL̂tξ̂†μjρð∞Þi ¼ e−iϵμtξ̂†μjρð∞Þi; ðB4Þ

and also

e−iL̂tχ̂νjρð∞Þi ¼ eiϵνtχ̂νjρð∞Þi: ðB5Þ

For these time-evolved states not to diverge in time, we
require that ξ̂†μjρð∞Þi ¼ 0 when μ ∈ Ξþ and χ̂νjρð∞Þi ¼ 0

when ν ∈ Ξ−. This pair of constraints is analogous to those
of a Fermi sea state jFSi, where ĉ†j jFSi ¼ 0when mode j is
occupied and ĉjjFSi ¼ 0 when it is empty. Similarly, for
the left vacuum state jIi we get

hIjξ̂†μe−iL̂t ¼ eiεμthIjξ̂†μ and hIjχ̂νe−iL̂t ¼ e−iεμthIjχ̂ν;

implying the complementary constraints hIjξ̂†μ ¼ 0 when
μ ∈ Ξ− and hIjχ̂ν ¼ 0 when ν ∈ Ξþ. Together, these
relations fully define the 2M × 2M matrix D of normal
mode two-point correlations of the NESS with elements

Dμν ¼ hIjξ̂†μχ̂νjρð∞Þi: ðB6Þ
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We immediately see that Dμν ¼ 0 whenever μ ∈ Ξ− and/or
ν ∈ Ξ−. The case μ; ν ∈ Ξþ is then determined using
Eq. (B1) to find that Dμν ¼ δμν. Hence, in general, we have

Dμν ¼ δμνΘðImfϵμg > 0Þ; ðB7Þ

indicating that the set Ξþ of normal modes are the unit-
filled Fermi sea of the NESS.
Using this result, we can evaluate physical quantities

such as the single-particle Green function Gijðt; t0Þ ¼
hĉ†i ðtÞĉjðt0Þi ¼ hIjĉ†i ðtÞĉjðt0Þjρð∞Þi for the system S.
Transforming back from the normal modes, we have

f̂†ðtÞ ¼ ξ̂†eiϵtV−1 and f̂ðtÞ ¼ Ve−iϵtχ̂ ; ðB8Þ

and, thus, the Green function follows as

Gijðt; t0Þ ¼ hIj½f̂†ðtÞ�i½f̂ðt0Þ�jjρð∞Þi
¼

X
μ;ν

½eiϵtV−1�μi½Ve−iϵt0 �jνhIjξ̂†μχ̂νjρð∞Þi

¼
X
μ;ν

½Ve−iϵt0 �jνDμν½eiϵtV−1�μi

¼ ½Ve−iϵt0DeiϵtV−1�ji; ðB9Þ

where we use that D is diagonal and the indices i; j ¼
ðLþ 1Þ;…;M give the physical system S modes. This
result reduces to the NESS expectation value in Eq. (30)
once t ¼ t0 ¼ 0. The Fermi sea structure of the NESS
allowsWick’s theorem to be applied to breakup expectation
values for high-order correlations into two-point ones, for
example,

hIjξ̂†μχ̂νξ̂†τ χ̂σjρð∞Þi ¼ hIjξ̂†μχ̂νjρð∞ÞihIjξ̂†τ χ̂σjρð∞Þi
þ hIjξ̂†μχ̂σjρð∞ÞihIjχ̂νξ̂†τ jρð∞Þi
− hIjξ̂†μξ̂†τ jρð∞ÞihIjχ̂νχ̂σjρð∞Þi;

leaving products of terms that can be readily evaluated
using the NESS normal mode constraints determined
above.

APPENDIX C: TRANSMISSION FUNCTIONS
IN LANDAUER-BÜTTIKER THEORY

In this Appendix, we briefly introduce the methodology
to compute the transmission functions τðωÞ from Eqs. (38)
and (39). As remarked before, these functions are required
to compute the currents in Landauer-Büttiker theory which
correspond to our point of comparison for noninteracting
systems (Sec. VI and Appendix E).
The transmission function can be obtained in terms of the

nonequilibrium Green’s function [103,104]

GðωÞ ¼ M−1ðωÞ: ðC1Þ

For the specific case of a system composed of D fermionic
sites connected to leads on sites j ¼ 1 and j ¼ D,MðεÞ can
be expressed as

MðωÞ ¼ ω1 −HS − Σð1ÞðωÞ − ΣðDÞðωÞ; ðC2Þ

where HS is the Hamiltonian matrix of the system and
ΣðωÞ corresponds to self-energy matrices of the leads. The
only nonzero elements of the latter are given by

½ΣðjÞ�jjðωÞ ¼
1

2π
PV

Z
dω0 J ðω0Þ

ðω0 − ωÞ −
i
2
J ðωÞ

∀ j ¼ 1; D; ðC3Þ

where PV denotes principal value and J ðωÞ is the spectral
function of the leads. In our configuration, both leads are of
equivalent form. For the sake of comparison between LB
theory and mesoscopic reservoirs, we employ the wide-
band approximation in which

J ðωÞ ¼
�Γ; ∀ ω ∈ ½−W;W�;
0; otherwise;

ðC4Þ

where Γ is the coupling strength between the system and
the leads. Under these considerations, the transmission
function for a system composed of D fermionic sites with
ĤS from Eq. (E1) is given by

τðεÞ ¼ J 2ðεÞj½GðεÞ�1Dj2 ¼
J 2ðεÞ

j det½M�j2
YD−1

i¼1

t2S;i: ðC5Þ

When the central system is a single level with ĤS from
Eq. (36), the transmission function can be proven to be of
Lorentzian form and equivalent to

τSLðεÞ ¼
J 2ðεÞ

j det½M�j2 ; ðC6Þ

while a central system composed of D fermionic sites with
ĤS from Eq. (E1) has a transmission function which
corresponds to a convolution of Lorentzian functions
whose form depends on the site energies ϵj and hopping
amplitudes tS, as observed from Eq. (C5). With the
previous expressions for τðεÞ, Eqs. (38) and (39) can then
be evaluated numerically to obtain particle and energy
currents for a given system.

APPENDIX D: DEFINITIONS OF CURRENTS

We discuss here the energy and particle currents in more
detail. In the mesoscopic-lead configuration, the currents
are found from the continuity equation and given by
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Eq. (33). The currents are straightforward to evaluate using
the adjoint dissipator L†

α, for α ¼ L, R, which satisfies
Tr½ÂLαfB̂g� ¼ Tr½L†

αfB̂gÂ� for an arbitrary operator Â. For
the Lindblad dissipator in Eq. (18), we have

L†
Lf•g ¼

XL
k¼1

γk½1 − fðεkÞ�
�
â†k • âk −

1

2
fâ†kâk; •g

�

þ
XL
k¼1

γkfðεkÞ
�
âk • â

†
k −

1

2
fâkâ†k; •g

�
: ðD1Þ

Since this superoperator acts only on the lead degrees of
freedom, we find the explicit expressions quoted in
Eqs. (34) and (35) with straightforward algebra.
In sufficiently large central systems, an alternative

definition of the currents can be derived from the continuity
equations within the system itself. Let us focus on 1D
systems with two-body interactions coupled to two baths at
the first and final sites j ¼ 1, D, as considered in the
examples of Secs. VI and VIII. In this case, the fermion
number and Hamiltonian can be written, respectively, as

N̂S ¼
XD
j¼1

n̂j; ĤS ¼
XD−1

j¼1

ĥj;jþ1; ðD2Þ

where n̂j ¼ ĉ†j ĉj is the local fermion density on site j and

ĥj;jþ1 denotes a local energy density operator. Since ĥj;jþ1

has support only on sites j and jþ 1, we derive the
continuity equation for number density from the
Heisenberg equation for n̂j:

d
dt

n̂j ¼ ĴPj−1→j − ĴPj→jþ1; ðD3Þ

where we define the particle current operator

ĴPj−1→j ¼ i½ĥj−1;j; n̂j�; ðD4Þ

which clearly depends only on system variables. In the
steady state, the time derivatives of all expectation values
vanish, and we find that the current is homogeneous,
i.e., hĴPj−1→ji ¼ hĴPj→jþ1i.
Equation (D3) holds only for j ≠ 1; D. For j ¼ 1, for

example, we have instead that

d
dt

n̂1 ¼ i½ĤSL; n̂1� − ĴP1→2: ðD5Þ

Meanwhile, the mean number of particles in the left
reservoir obeys the equation

d
dt

hN̂Li ¼ JPL þ hi½ĤSL; n̂1�i: ðD6Þ

Here, we use the fact that ½ĤSL; N̂L þ n̂1� ¼ 0, which
merely reflects the overall conservation of the fermion
number and the fact that L couples only to site j ¼ 1.
Combining Eqs. (D5) and (D6) and assuming steady-state
conditions, we deduce that

JPL ¼ hĴP1→2i: ðD7Þ

Therefore, so long as the system comprisesD ≥ 2 sites, the
current computed via Eq. (34) coincides with the expect-
ation value of a system operator.
For the energy current, one similarly finds in the bulk of

the system

d
dt

ĥj;jþ1 ¼ ĴEj−1→jþ1 − ĴEj→jþ2; ðD8Þ

where

ĴEj−1→jþ1 ¼ i½ĥj−1;j; ĥj;jþ1�: ðD9Þ

Considering the leftmost site, on the other hand,

d
dt

ĥ1;2 ¼ i½ĤSL; ĥ1;2� − ĴE1→3: ðD10Þ

Now, considering the Heisenberg equations for both ĤSL

and ĤL and assuming steady-state conditions, we conclude
that

JEL ¼ hĴE1→3i: ðD11Þ

Therefore, the energy current computed from Eq. (35) also
coincides with the expected value of a system operator, so
long as D ≥ 3.
The above arguments, although developed for the

specific case of two-body interactions in one dimension,
are based only on conservation laws and the locality of
interactions, which are general principles. Similar argu-
ments can thus be developed for more general n-body
interacting systems in higher-dimensional geometries, so
long as a sufficiently large region of the central system is
not directly connected to the baths.

APPENDIX E: MANY FERMIONIC SITES

Another configuration of interest is a system composed
of many fermionic sites, one for which we can express the
Hamiltonian as
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ĤS ¼
XD
j¼1

ϵjĉ
†
j ĉj −

XD−1

j¼1

tSðĉ†jþ1ĉj þ H:c:Þ; ðE1Þ

where ĉ†j and ĉj are fermionic creation and destruction
operators, respectively, and D is the number of sites in the
system. We couple the leftmost and rightmost sites of this
system to mesoscopic reservoirs, as shown in Fig. 5.
Given that our expressions for particle and energy

currents in Eqs. (34) and (35) are defined in terms of
canonical operators in the leads, the corresponding expres-
sions for the case of a many-fermionic central system are
equivalent to those of a single-level system. For a suffi-
ciently large number of sites in the central system, these
operators can be defined in terms of just system operators.
Here, however, we use the expressions in Eqs. (34) and
(35), which are general for any number of sites D.
We now evaluate whether the mesoscopic-lead configu-

ration can provide a good approximation of the continuum
even if the central system is composed of many fermionic
sites. In a similar fashion as for the single-level system, in
Fig. 18(a), we present the particle current flowing from the
left lead and into the system as a function of the on-site
energy ϵ ¼ ϵj for every site j. In our calculations, we use
the same macroscopic parameters as before, given by TL ¼
TR ¼ W=8 and μL ¼ −μR ¼ W=16. We fix the number of
energy modes in each lead to L ¼ 50 and the number of
sites in the central system to D ¼ 100. The Landauer-
Büttiker calculations are done by evaluating Eq. (38) using
the transmission function obtained as described in
Appendix C. It can be observed that, for a fixed number
of modes in the leads L and a fixed number of sites in the
central systemD, the approximation to the continuum limit
using mesoscopic reservoirs is robust to a wide range of

on-site energies. The small oscillations that can be observed
near the band edges at jϵj⪆jW�j are due to the logarithmic
spacing of modes. Furthermore, from Fig. 18(b), the same
can be said when ϵ is fixed and tS is changed to different
values. Given that the energies in the central system are
bounded by −2tS and 2tS, the oscillations due to loga-
rithmic discretization are observed close to tS ≈W=2. The
same observations hold for energy current in Figs. 19(a)
and 19(b).
As a function of the temperature, a similar behavior as for

the single-level system can be observed. In particular, for
particle current and energy current in Figs. 18(c) and 19(c),
respectively, the continuum is properly approximated with
the exception of the values of the temperature that are lower
than the minimum energy spacing of the modes in the leads.
For these small temperatures, the Fermi-Dirac distributions
of the leads resemble a Heaviside step function, and the
discontinuity can no longer be well captured by discrete and
broadened energy modes. Following from our previous
discussion for the single-level system, to obtain a better
approximation at lower temperatures, one can either
increase the number of total energy modes or decrease
the width of the window ½−W�;W��. The former choice
comes with the cost of a larger computational complexity,
while with the latter one can then provide only a good
approximation of the continuum for a smaller range in the
parameter space of ϵ, tS, μL, and μR. If these values are
fixed, a good choice of ½−W�;W�� can be used to obtain
better approximations at lower temperatures with its limit,
as discussed for the single-level system, related to the
minimum value of ek in the linearly discretized region.
As a function of the system-lead coupling, the results are

very robust to a wide range of values as observed from
Figs. 18(d) and 19(d). Because of the ballistic (coherent)

(a) (b) (c) (d)

FIG. 18. Particle current from LB and mesoscopic reservoir predictions flowing from the left lead and into the system (a) as a function
of the on-site energy (same parameter for every site) for a central system with D ¼ 100 sites and a fixed number of modes in the leads
L ¼ 50, and (b) as a function of the hopping amplitude tS (same parameter for every site). In (c) and (d), we fix every parameter and
study the particle current as a function of the temperature and system-lead coupling, respectively. In these calculations, we use
μL ¼ −μR ¼ W=16, TL ¼ TR, Llog=L ¼ 0.2, and W� ¼ W=2.
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nature of transport in the central system, currents become
independent of D in the asymptotic regime.

APPENDIX F: CONVERGENCE AND
COMPUTATION TIME

The bond dimension χ, discussed in Sec. VII D, is a
relevant parameter that is inherently associated to the
fidelity with which a tensor network mathematically
represents a quantum object. The complexity of finding
the long-time solution to Eq. (26) grows exponentially with
the system size using a full representation of the quantum
state jρ̂ðtÞi. However, such a state can be described by a
tensor network, with its maximum bond dimension directly
connected to how accurately the state is represented [85].
The purpose of this Appendix is to exemplify how the
NESS can be accurately represented with a bond dimension
χ that keeps calculations tractable.
Starting from our nonequilibrium configuration depicted

in Fig. 1, we set L ¼ 20 lead modes for both left and
right reservoirs, D ¼ 40 system sites, TL ¼ TR ¼ 10tS,
μL ¼ −μR ¼ 0.1tS, and ϵj=tS ¼ ϵ=tS ¼ 0, for the aniso-
tropic Heisenberg model with U ¼ tS; this configuration is
thus away from CP symmetry. We proceed to evaluate both
the particle and energy currents in the NESS by employing
the algorithm described in Sec. VII as a function of the
maximum bond dimension χ. The results are shown in
Fig. 20. It can be observed that, as the bond dimension is
increased, both currents converge to a given value within a
few percent of accuracy.
To illustrate the computational complexity of the algo-

rithm, we calculate the overall simulation wall time as a
function of χ. The results are shown in Fig. 21 and exhibit
the commonly found polynomial complexity of time
evolution in the class of tensor-network algorithms.

Furthermore, even though the bond dimension is homo-
geneous in the bulk of the system, we observe a lower
scaling compared to the naively expected χ3 power law for
an algorithm dominated by singular value decomposition
processes [68]. We associate this faster behavior to the use
of a divide-and-conquer decomposition algorithm [91],
which rapidly converges deep within the time evolution.

(a)

(b)

(c) (d)

FIG. 19. Energy current from LB and mesoscopic reservoir predictions flowing from the left lead and into the system (a) as a function
of the on-site energy (same parameter for every site) for a central system with D ¼ 100 sites and a fixed number of modes in the leads
L ¼ 50, and (b) as a function of the hopping amplitude tS (same parameter for every site). In (c) and (d), we fix every parameter and
study the energy current as a function of the temperature and system-lead coupling, respectively. In these calculations, we use
μL ¼ −μR ¼ W=16, TL ¼ TR, Llog=L ¼ 0.2, and W� ¼ W=2.

(a)

(b)

FIG. 20. Convergence of (a) particle current and (b) energy
current as a function of the maximal bond dimension χ across the
system, for a particular driving configuration of the anisotropic
Heisenberg model in Eq. (50). The symbols correspond to the
converged currents for a fixed χ. From χ ≈ 150, both currents
remain essentially unchanged. In these calculations, we use
D ¼ 40, L ¼ 20, Llog=L ¼ 0.2, W� ¼ W=2, W ¼ 8tS, and
Γ ¼ U ¼ tS.
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Thus, in spite of the polynomial growth of computational
time as a function of the bond dimension, accurate
approximations can be obtained within tractable compu-
tation times.

APPENDIX G: CP SYMMETRY

Here, we prove that the energy current vanishes in the
Heisenberg model described by Eq. (50) under conditions
of combined charge conjugation parity (CP) symmetry.
The symmetry corresponds to a unitary transformation Ĉ P̂,
with the particle-hole transformation Ĉ and the parity
transformation P̂.
In the bulk of the system, the parity and particle-hole

transformations are, respectively, defined by

P̂ĉjP̂
† ¼ ĉD−jþ1: ðG1Þ

ĈĉjĈ
† ¼ ð−1Þjþ1ĉ†j : ðG2Þ

The phase factor in Ĉ is defined so that particle excitations
are mapped to hole excitations with the same kinetic
energy. The bulk Hamiltonian in Eq. (50) is invariant
under P̂, i.e., P̂ĤSP̂ ¼ ĤS, and also invariant under Ĉ so
long as ϵ ¼ −U.
The particle-hole transformation for the lead operators

that is consistent with the action of Ĉ in the bulk is of
the form

Ĉâk;LĈ
† ¼ −â†L−k;L; ðG3Þ

Ĉâk;RĈ
† ¼ ð−1ÞDâ†L−k;R; ðG4Þ

while spatial reflection simply consists of the swap L ↔ R.
With these conventions, the total Hamiltonian is invariant
under P̂ if the left and right leads have identical spectra εk
and system-bath couplings κkp. The Hamiltonian is also

invariant under Ĉ if the lead spectra and couplings are
symmetric around the center of the band, i.e., εk ¼ −εL−k
and κk;p ¼ κL−k;p. Finally, the nonequilibrium forcing is
CP symmetric if the bath temperatures are equal, TL ¼ TR,
and the chemical potentials are opposite, μL ¼ −μR, while
the dissipation rates are invariant under spatial reflection
and inversion about the center of the band, i.e., γk;L ¼
γL−k;L ¼ γk;R.
Under the above assumptions, the generator of the

master equation is invariant under a combined CP trans-
formation, and, therefore, so is the steady state, i.e.,
Ĉ P̂ ρ̂ð∞ÞðĈ P̂Þ† ¼ ρ̂ð∞Þ. At the particle-hole symmetric
point of the Hamiltonian, with ϵ ¼ −U, the bulk energy
current operator (defined in Sec. D) is odd under a CP
transformation, in the sense that Ĉ P̂ ĴEj−1→jþ1ðĈ P̂Þ† ¼
−ĴED−j→D−jþ2. It follows that

hĴEj−1;jþ1i¼ hĈ P̂ ĴEj−1;jþ1ðĈ P̂Þ†i¼−hĴED−j;D−jþ2i; ðG5Þ

and, therefore, hĴEj−1;jþ1i ¼ −hĴEj−1;jþ1i ¼ 0, because the
mean current is homogeneous in the steady state. Note that
the particle current operator is even and, therefore, is not
constrained by CP symmetry. However, the particle density
transforms as Ĉ P̂ n̂jðĈ P̂Þ† ¼ 1 − n̂D−jþ1, so that in a CP-
symmetric steady state we have hn̂ji þ hn̂D−jþ1i ¼ 1. In a
ballistic regime with hn̂ji ¼ const, we must therefore have
hn̂ji ¼ 0.5, consistent with the trend in Fig. 17 at high
temperature.
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logical Position and Energy Resolving Lindblad Appro-
ach to Quantum Kinetics, Phys. Rev. B 97, 035432
(2018).

[19] M. T. Mitchison and M. B. Plenio, Non-additive Dissipa-
tion in Open Quantum Networks out of Equilibrium, New
J. Phys. 20, 033005 (2018).

[20] T. Prosen, Matrix Product Solutions of Boundary Driven
Quantum Chains, J. Phys. A 48, 373001 (2015).

[21] A. Levy and R. Kosloff, The Local Approach to Quantum
Transport May Violate the Second Law of Thermodynam-
ics, Europhys. Lett. 107, 20004 (2014).

[22] J. T. Stockburger and T. Motz, Thermodynamic Deficien-
cies of Some Simple Lindblad Operators, Fortschr. Phys.
65, 1600067 (2016).

[23] J. O. González, L. A. Correa, G. Nocerino, J. P. Palao, D.
Alonso, and G. Adesso, Testing the Validity of the ‘Local’
and ‘Global’ GKLS Master Equations on an Exactly
Solvable Model, Open Syst. Inf. Dyn. 24, 1740010 (2017).

[24] P. P. Hofer, M. Perarnau-Llobet, L. D. M. Miranda, G.
Haack, R. Silva, J. B. Brask, and N. Brunner, Markovian
Master Equations for Quantum Thermal Machines: Local
versus Global Approach, New J. Phys. 19, 123037 (2017).

[25] D. Karevski and T. Platini, Quantum Nonequilibrium
Steady States Induced by Repeated Interactions, Phys.
Rev. Lett. 102, 207207 (2009).

[26] S. R. Clark, J. Prior, M. J. Hartmann, D. Jaksch, and M. B.
Plenio, Exact Matrix Product Solutions in the Heisenberg
Picture of an Open Quantum Spin Chain, New J. Phys. 12,
025005 (2010).

[27] F. Barra, The Thermodynamic Cost of Driving Quantum
Systems by Their Boundaries, Sci. Rep. 5, 14873 (2015).

[28] P. Strasberg, G. Schaller, T. Brandes, and M. Esposito,
Quantum and Information Thermodynamics: A Unifying
Framework Based on Repeated Interactions, Phys. Rev. X
7, 021003 (2017).

[29] G. De Chiara, G. Landi, A. Hewgill, B. Reid, A. Ferraro,
A. J. Roncaglia, and M. Antezza, Reconciliation of Quan-
tum Local Master Equations with Thermodynamics, New
J. Phys. 20, 113024 (2018).

[30] G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-
Body Theory of Quantum Systems (Cambridge University
Press, Cambridge, England, 2009).

[31] J.-S. Wang, B. K. Agarwalla, H. Li, and J. Thingna,
Nonequilibrium Green’s Function Method for Quantum
Thermal Transport, Front. Phys. 9, 673 (2013).

[32] N. W. Talarico, S. Maniscalco, and N. L. Gullo, Micro-
scopic Effects in the Energy Currents of Interacting
Systems, arXiv:1906.10000.

[33] R. Bulla, T. A. Costi, and T. Pruschke, Numerical
Renormalization Group Method for Quantum Impurity
Systems, Rev. Mod. Phys. 80, 395 (2008).

[34] J. Prior, A. W. Chin, S. F. Huelga, and M. B. Plenio,
Efficient Simulation of Strong System-Environment Inter-
actions, Phys. Rev. Lett. 105, 050404 (2010).

[35] A. Nüßeler, I. Dhand, S. F. Huelga, and M. B. Plenio,
Efficient Simulation of Open Quantum Systems Coupled to
a Fermionic Bath, Phys. Rev. B 101, 155134 (2020).

[36] D. Tamascelli, A. Smirne, J. Lim, S. F. Huelga, and M. B.
Plenio, Efficient Simulation of Finite-Temperature Open
Quantum Systems, Phys. Rev. Lett. 123, 090402 (2019).

[37] A. A. Dzhioev and D. S. Kosov, Super-fermion Represen-
tation of Quantum Kinetic Equations for the Electron
Transport Problem, J. Chem. Phys. 134, 044121 (2011).

[38] A. Imamoglu, Stochastic Wave-Function Approach to
Non-Markovian Systems, Phys. Rev. A 50, 3650 (1994).

[39] B. M. Garraway, Nonperturbative Decay of an Atomic
System in a Cavity, Phys. Rev. A 55, 2290 (1997).

[40] B. M. Garraway, Decay of an Atom Coupled Strongly to a
Reservoir, Phys. Rev. A 55, 4636 (1997).

[41] D. Tamascelli, A. Smirne, S. F. Huelga, and M. B. Plenio,
Nonperturbative Treatment of Non-Markovian Dynamics

TENSOR-NETWORK METHOD TO SIMULATE STRONGLY … PHYS. REV. X 10, 031040 (2020)

031040-27

https://doi.org/10.1126/science.aad6320
https://doi.org/10.1038/s41467-018-08090-0
https://doi.org/10.1038/s41467-018-08090-0
https://doi.org/10.1038/s41534-020-0264-6
https://doi.org/10.1038/s41534-020-0264-6
https://doi.org/10.1103/PhysRevLett.123.080602
https://doi.org/10.1103/PhysRevLett.123.080602
https://doi.org/10.1103/PhysRevX.7.031044
https://doi.org/10.1103/PhysRevX.7.031044
https://doi.org/10.1103/PhysRevLett.122.110601
https://doi.org/10.1038/s41565-018-0200-5
https://doi.org/10.1038/s41565-018-0200-5
https://doi.org/10.1038/s41567-018-0199-4
https://doi.org/10.1038/s41567-018-0199-4
https://doi.org/10.1021/acs.nanolett.9b02089
https://doi.org/10.1021/acs.nanolett.9b02089
https://doi.org/10.1103/PhysRevE.76.031115
https://doi.org/10.1103/PhysRevA.93.062114
https://doi.org/10.1103/PhysRevB.97.035432
https://doi.org/10.1103/PhysRevB.97.035432
https://doi.org/10.1088/1367-2630/aa9f70
https://doi.org/10.1088/1367-2630/aa9f70
https://doi.org/10.1088/1751-8113/48/37/373001
https://doi.org/10.1209/0295-5075/107/20004
https://doi.org/10.1002/prop.201600067
https://doi.org/10.1002/prop.201600067
https://doi.org/10.1142/S1230161217400108
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1103/PhysRevLett.102.207207
https://doi.org/10.1103/PhysRevLett.102.207207
https://doi.org/10.1088/1367-2630/12/2/025005
https://doi.org/10.1088/1367-2630/12/2/025005
https://doi.org/10.1038/srep14873
https://doi.org/10.1103/PhysRevX.7.021003
https://doi.org/10.1103/PhysRevX.7.021003
https://doi.org/10.1088/1367-2630/aaecee
https://doi.org/10.1088/1367-2630/aaecee
https://doi.org/10.1007/s11467-013-0340-x
https://arXiv.org/abs/1906.10000
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/PhysRevLett.105.050404
https://doi.org/10.1103/PhysRevB.101.155134
https://doi.org/10.1103/PhysRevLett.123.090402
https://doi.org/10.1063/1.3548065
https://doi.org/10.1103/PhysRevA.50.3650
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1103/PhysRevA.55.4636


of Open Quantum Systems, Phys. Rev. Lett. 120, 030402
(2018).

[42] F. Mascherpa, A. Smirne, A. D. Somoza, P. Fernandez-
Acebal, S. Donadi, D. Tamascelli, S. F. Huelga, and M. B.
Plenio, Optimized Auxiliary Oscillators for the Simulation
of General Open Quantum Systems, Phys. Rev. A 101,
052108 (2020).

[43] A. D. Somoza, O. Marty, J. Lim, S. F. Huelga, and M. B.
Plenio, Dissipation-Assisted Matrix Product Factoriza-
tion, Phys. Rev. Lett. 123, 100502 (2019).

[44] P. Strasberg, G. Schaller, N. Lambert, and T. Brandes,
Nonequilibrium Thermodynamics in the Strong Coupling
and Non-Markovian Regime Based on a Reaction Coor-
dinate Mapping, New J. Phys. 18, 073007 (2016).

[45] D. Newman, F. Mintert, and A. Nazir, Performance of a
Quantum Heat Engine at Strong Reservoir Coupling,
Phys. Rev. E 95, 032139 (2017).

[46] J. Iles-Smith, N. Lambert, and A. Nazir, Environmental
Dynamics, Correlations, and the Emergence of Nonca-
nonical Equilibrium States in Open Quantum Systems,
Phys. Rev. A 90, 032114 (2014).

[47] R. Uzdin, S. Gasparinetti, R. Ozeri, and R. Kosloff,
Markovian Heat Sources with the Smallest Heat Capacity,
New J. Phys. 20, 063030 (2018).

[48] I. Reichental, A. Klempner, Y. Kafri, and D. Podolsky,
Thermalization in Open Quantum Systems, Phys. Rev. B
97, 134301 (2018).

[49] D. Gruss, K. A. Velizhanin, and M. Zwolak, Landauer’s
Formula with Finite-Time Relaxation: Kramers’ Cross-
over in Electronic Transport, Sci. Rep. 6, 24514 (2016).

[50] J. E. Elenewski, D. Gruss, and M. Zwolak, Communica-
tion: Master Equations for Electron Transport: The Limits
of the Markovian Limit, J. Chem. Phys. 147, 151101
(2017).

[51] F. Chen, E. Arrigoni, and M. Galperin, Markovian Treat-
ment of Non-Markovian Dynamics of Open Fermionic
Systems, New J. Phys. 21, 123035 (2019).

[52] S. Ajisaka, F. Barra, C. Mejía-Monasterio, and T. Prosen,
Nonequilibrium Particle and Energy Currents in Quantum
Chains Connected to Mesoscopic Fermi Reservoirs, Phys.
Rev. B 86, 125111 (2012).

[53] S. Ajisaka and F. Barra, Nonequilibrium Mesoscopic
Fermi-Reservoir Distribution and Particle Current
through a Coherent Quantum System, Phys. Rev. B 87,
195114 (2013).

[54] T. Zelovich, L. Kronik, and O. Hod, State Representation
Approach for Atomistic Time-Dependent Transport Cal-
culations in Molecular Junctions, J. Chem. Theory Com-
put. 10, 2927 (2014).

[55] P. H. Guimarães, G. T. Landi, and M. J. de Oliveira, Non-
equilibrium Quantum Chains under Multisite Lindblad
Baths, Phys. Rev. E 94, 032139 (2016).

[56] A. Oz, O. Hod, and A. Nitzan, A Numerical Approach
to Non-equilibrium Quantum Thermodynamics: Non-
perturbative Treatment of the Driven Resonant Level
Model Based on the Driven Liouville von-Neumann
Formalism, arXiv:1910.02436.

[57] F. Schwarz, M. Goldstein, A. Dorda, E. Arrigoni, A.
Weichselbaum, and J. von Delft, Lindblad-Driven Dis-
cretized Leads for Nonequilibrium Steady-State Transport

in Quantum Impurity Models: Recovering the Continuum
Limit, Phys. Rev. B 94, 155142 (2016).

[58] F. Schwarz, I. Weymann, J. von Delft, and A.
Weichselbaum, Nonequilibrium Steady-State Transport
in Quantum Impurity Models: A Thermofield and Quantum
Quench Approach Using Matrix Product States, Phys.
Rev. Lett. 121, 137702 (2018).

[59] A. Dorda, M. Ganahl, H. G. Evertz, W. von der Linden,
and E. Arrigoni, Auxiliary Master Equation Approach
within Matrix Product States: Spectral Properties of the
Nonequilibrium Anderson Impurity Model, Phys. Rev. B
92, 125145 (2015).

[60] I. Titvinidze, A. Dorda, W. von der Linden, and E.
Arrigoni, Transport through a Correlated Interface:
Auxiliary Master Equation Approach, Phys. Rev. B 92,
245125 (2015).

[61] Note that some systems, such as glassy systems, may never
relax when coupled to a bath. In such cases, our arguments
regarding the equivalence of mesoscopic and infinite
reservoirs do not hold. Indeed, one expects that for such
systems the effect of a bath must be highly dependent on
the microscopic details of the bath and its coupling to the
system.

[62] Note that the ordering of operators in this vector is
completely unrelated to that used to define the Fock basis.

[63] For nearest-neighbor interactions, D ≥ 3 is sufficient.
[64] N. Nakpathomkun, H. Q. Xu, and H. Linke, Thermoelec-

tric Efficiency at Maximum Power in Low-Dimensional
Systems, Phys. Rev. B 82, 235428 (2010).

[65] A. Weichselbaum, F. Verstraete, U. Schollwöck, J. I. Cirac,
and J. von Delft, Variational Matrix-Product-State Ap-
proach to Quantum Impurity Models, Phys. Rev. B 80,
165117 (2009).

[66] One method that can be used to obtain a better approxi-
mation at lower temperatures, that reduces the value of ek
in the leads and without increasing the number of modes, is
to change the width and position of the window ½−W�;W��
depending on the region of the parameter space that needs
to be resolved in greater detail.

[67] F. L. Curzon and B. Ahlborn, Efficiency of a Carnot
Engine at Maximum Power Output, Am. J. Phys. 43, 22
(1975).

[68] U. Schollwöck, The Density-Matrix Renormalization
Group in the Age of Matrix Product States, Ann. Phys.
(Amsterdam) 326, 96 (2011).

[69] P. Jordan and E. Wigner, Über das Paulische Äquivalenz-
verbot, Z. Phys. 47, 631 (1928).

[70] P. Coleman, Introduction to Many-Body Physics
(Cambridge University Press, Cambridge, England, 2015).

[71] M. Zwolak and G. Vidal, Mixed-State Dynamics in
One-Dimensional Quantum Lattice Systems: A Time-
Dependent Superoperator Renormalization Algorithm,
Phys. Rev. Lett. 93, 207205 (2004).

[72] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Matrix
Product Density Operators: Simulation of Finite-
Temperature and Dissipative Systems, Phys. Rev. Lett.
93, 207204 (2004).

[73] F. A. Wolf, I. P. McCulloch, and U. Schollwöck, Solving
Nonequilibrium Dynamical Mean-Field Theory Using
Matrix Product States, Phys. Rev. B 90, 235131 (2014).

MARLON BRENES et al. PHYS. REV. X 10, 031040 (2020)

031040-28

https://doi.org/10.1103/PhysRevLett.120.030402
https://doi.org/10.1103/PhysRevLett.120.030402
https://doi.org/10.1103/PhysRevA.101.052108
https://doi.org/10.1103/PhysRevA.101.052108
https://doi.org/10.1103/PhysRevLett.123.100502
https://doi.org/10.1088/1367-2630/18/7/073007
https://doi.org/10.1103/PhysRevE.95.032139
https://doi.org/10.1103/PhysRevA.90.032114
https://doi.org/10.1088/1367-2630/aac932
https://doi.org/10.1103/PhysRevB.97.134301
https://doi.org/10.1103/PhysRevB.97.134301
https://doi.org/10.1038/srep24514
https://doi.org/10.1063/1.5000747
https://doi.org/10.1063/1.5000747
https://doi.org/10.1088/1367-2630/ab5ec5
https://doi.org/10.1103/PhysRevB.86.125111
https://doi.org/10.1103/PhysRevB.86.125111
https://doi.org/10.1103/PhysRevB.87.195114
https://doi.org/10.1103/PhysRevB.87.195114
https://doi.org/10.1021/ct500135e
https://doi.org/10.1021/ct500135e
https://doi.org/10.1103/PhysRevE.94.032139
https://arXiv.org/abs/1910.02436
https://doi.org/10.1103/PhysRevB.94.155142
https://doi.org/10.1103/PhysRevLett.121.137702
https://doi.org/10.1103/PhysRevLett.121.137702
https://doi.org/10.1103/PhysRevB.92.125145
https://doi.org/10.1103/PhysRevB.92.125145
https://doi.org/10.1103/PhysRevB.92.245125
https://doi.org/10.1103/PhysRevB.92.245125
https://doi.org/10.1103/PhysRevB.82.235428
https://doi.org/10.1103/PhysRevB.80.165117
https://doi.org/10.1103/PhysRevB.80.165117
https://doi.org/10.1119/1.10023
https://doi.org/10.1119/1.10023
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1007/BF01331938
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevB.90.235131


[74] J. J. Mendoza-Arenas, F. J. Gómez-Ruiz, M. Eckstein, D.
Jaksch, and S. R. Clark, Ultra-fast Control of Magnetic
Relaxation in a Periodically Driven Hubbard Model, Ann.
Phys. (Berlin) 529, 1700024 (2017).

[75] M.M. Rams and M. Zwolak, Breaking the Entanglement
Barrier: Tensor Network Simulation of Quantum Trans-
port, Phys. Rev. Lett. 124, 137701 (2020).

[76] G. Benenti, G. Casati, T. Prosen, D. Rossini, and M.
Žnidarič, Charge and Spin Transport in Strongly Corre-
lated One-Dimensional Quantum Systems Driven far from
Equilibrium, Phys. Rev. B 80, 035110 (2009).

[77] M. Žnidarič, Dephasing-Induced Diffusive Transport in
Anisotropic Heisenberg Model, New J. Phys. 12, 043001
(2010).

[78] M. Žnidarič, Exact Solution for a Diffusive Nonequili-
brium Steady State of an Open Quantum Chain, J. Stat.
Mech. (2010) L05002.

[79] M. Žnidarič, Spin Transport in a One-Dimensional Aniso-
tropic Heisenberg Model, Phys. Rev. Lett. 106, 220601
(2011).

[80] J. J. Mendoza-Arenas, T. Grujic, D. Jaksch, and S. R.
Clark, Dephasing Enhanced Transport in Nonequilibrium
Strongly Correlated Quantum Systems, Phys. Rev. B 87,
235130 (2013).

[81] J. J. Mendoza-Arenas, S. Al-Assam, S. R. Clark, and D.
Jaksch, Heat Transport in an XXZ Spin Chain: From
Ballistic to Diffusive Regimes and Dephasing Enhance-
ment, J. Stat. Mech. (2013) P07007.

[82] J. J. Mendoza-Arenas, M. T. Mitchison, S. R. Clark, J.
Prior, D. Jaksch, and M. B. Plenio, Transport Enhance-
ment from Incoherent Coupling between One-Dimensional
Quantum Conductors, New J. Phys. 16, 053016 (2014).

[83] M. Žnidarič, A. Scardicchio, and V. K. Varma, Diffusive
and Subdiffusive Spin Transport in the Ergodic Phase of a
Many-Body Localizable System, Phys. Rev. Lett. 117,
040601 (2016).

[84] M. Žnidarič, J. J. Mendoza-Arenas, S. R. Clark, and J.
Goold, Dephasing Enhanced Spin Transport in the Ergo-
dic Phase of a Many-Body Localizable System, Ann. Phys.
(Berlin) 529, 1600298 (2017).

[85] M. Brenes, E. Mascarenhas, M. Rigol, and J. Goold, High-
Temperature Coherent Transport in the XXZ Chain in the
Presence of an Impurity, Phys. Rev. B 98, 235128 (2018).

[86] M. Žnidarič, Transport in a One-Dimensional Isotropic
Heisenberg Model at High Temperature, J. Stat. Mech.
(2011) P12008.

[87] J. J. Mendoza-Arenas, S. R. Clark, and D. Jaksch, Coex-
istence of Energy Diffusion and Local Thermalization in
Nonequilibrium XXZ Spin Chains with Integrability
Breaking, Phys. Rev. E 91, 042129 (2015).

[88] M. Schulz, S. R. Taylor, C. A. Hooley, and A. Scardicchio,
Energy Transport in a Disordered Spin Chain with Broken

U(1) Symmetry: Diffusion, Subdiffusion, and Many-Body
Localization, Phys. Rev. B 98, 180201(R) (2018).

[89] J. J. Mendoza-Arenas, M. Žnidarič, V. K. Varma, J. Goold,
S. R. Clark, and A. Scardicchio, Asymmetry in Energy
versus Spin Transport in Certain Interacting Disordered
Systems, Phys. Rev. B 99, 094435 (2019).

[90] S. Al-Assam, S. R. Clark, and D. Jaksch (TNT Develop-
ment Team), Tensor Network Theory Library, beta version
1.2.0, 2016.

[91] S. Al-Assam, S. R. Clark, and D. Jaksch, The Tensor
Network Theory Library, J. Stat. Mech. (2017) 093102.

[92] D. M. Kennes, S. G. Jakobs, C. Karrasch, and V. Meden,
Renormalization Group Approach to Time-Dependent
Transport through Correlated Quantum Dots, Phys.
Rev. B 85, 085113 (2012).

[93] T Prosen, Exact Nonequilibrium Steady State of a Strongly
Driven Open XXZ Chain, Phys. Rev. Lett. 107, 137201
(2011).

[94] X. Zotos, F. Naef, and P. Prelovsek, Transport and
Conservation Laws, Phys. Rev. B 55, 11029 (1997).

[95] B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen,
R. Steinigeweg, and M. Znidaric, Finite-Temperature
Transport in One-Dimensional Quantum Lattice Models,
arXiv:2003.03334.

[96] T. Prosen, Open XXZ Spin Chain: Nonequilibrium Steady
State and a Strict Bound on Ballistic Transport, Phys. Rev.
Lett. 106, 217206 (2011).

[97] T. Prosen and E. Ilievski, Families of Quasilocal Con-
servation Laws and Quantum Spin Transport, Phys. Rev.
Lett. 111, 057203 (2013).

[98] V. Popkov and R. Livi, Manipulating Energy and Spin
Currents in Non-equilibrium Systems of Interacting Qu-
bits, New J. Phys. 15, 023030 (2013).

[99] G. Wójtowicz, J. E. Elenewski, M,. M. Rams, and M.
Zwolak, Open-System Tensor Networks and Kramers’
Crossover for Quantum Transport, Phys. Rev. A 101,
050301(R) (2020).

[100] M. Lotem, A. Weichselbaum, J. von Delft, and M.
Goldstein, Renormalized Lindblad Driving: A Numeri-
cally-Exact Nonequilibrium Quantum Impurity Solver,
arXiv:2004.07637.

[101] C. H. Fleming and N. I. Cummings, Accuracy of
Perturbative Master Equations, Phys. Rev. E 83, 031117
(2011).

[102] A. Dorda, M. Nuss, W. von der Linden, and E. Arrigoni,
Auxiliary Master Equation Approach to Nonequilibrium
Correlated Impurities, Phys. Rev. B 89, 165105 (2014).

[103] D. A. Ryndyk, Theory of Quantum Transport at Nano-
scale (Springer, Berlin, 2016).

[104] A. Purkayastha, Classifying Transport Behavior via Cur-
rent Fluctuations in Open Quantum Systems, J. Stat. Mech.
(2019) 043101.

TENSOR-NETWORK METHOD TO SIMULATE STRONGLY … PHYS. REV. X 10, 031040 (2020)

031040-29

https://doi.org/10.1002/andp.201700024
https://doi.org/10.1002/andp.201700024
https://doi.org/10.1103/PhysRevLett.124.137701
https://doi.org/10.1103/PhysRevB.80.035110
https://doi.org/10.1088/1367-2630/12/4/043001
https://doi.org/10.1088/1367-2630/12/4/043001
https://doi.org/10.1088/1742-5468/2010/05/L05002
https://doi.org/10.1088/1742-5468/2010/05/L05002
https://doi.org/10.1103/PhysRevLett.106.220601
https://doi.org/10.1103/PhysRevLett.106.220601
https://doi.org/10.1103/PhysRevB.87.235130
https://doi.org/10.1103/PhysRevB.87.235130
https://doi.org/10.1088/1742-5468/2013/07/P07007
https://doi.org/10.1088/1367-2630/16/5/053016
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1002/andp.201600298
https://doi.org/10.1002/andp.201600298
https://doi.org/10.1103/PhysRevB.98.235128
https://doi.org/10.1088/1742-5468/2011/12/P12008
https://doi.org/10.1088/1742-5468/2011/12/P12008
https://doi.org/10.1103/PhysRevE.91.042129
https://doi.org/10.1103/PhysRevB.98.180201
https://doi.org/10.1103/PhysRevB.99.094435
https://doi.org/10.1088/1742-5468/aa7df3
https://doi.org/10.1103/PhysRevB.85.085113
https://doi.org/10.1103/PhysRevB.85.085113
https://doi.org/10.1103/PhysRevLett.107.137201
https://doi.org/10.1103/PhysRevLett.107.137201
https://doi.org/10.1103/PhysRevB.55.11029
https://arXiv.org/abs/2003.03334
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.111.057203
https://doi.org/10.1103/PhysRevLett.111.057203
https://doi.org/10.1088/1367-2630/15/2/023030
https://doi.org/10.1103/PhysRevA.101.050301
https://doi.org/10.1103/PhysRevA.101.050301
https://arXiv.org/abs/2004.07637
https://doi.org/10.1103/PhysRevE.83.031117
https://doi.org/10.1103/PhysRevE.83.031117
https://doi.org/10.1103/PhysRevB.89.165105
https://doi.org/10.1088/1742-5468/ab02f4
https://doi.org/10.1088/1742-5468/ab02f4

