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An ultimate goal of quantum computing is to perform calculations beyond the reach of any classical
computer. It is therefore imperative that useful quantum computers be very difficult to simulate classically,
otherwise classical computers could be used for the applications envisioned for the quantum ones. Perfect
quantum computers are unarguably exponentially difficult to simulate: the classical resources required
grow exponentially with the number of qubits N or the depth D of the circuit. This difficulty has triggered
recent experiments on deep, random circuits that aim to demonstrate that quantum devices may already
perform tasks beyond the reach of classical computing. These real quantum computing devices, however,
suffer from many sources of decoherence and imprecision which limit the degree of entanglement that can
actually be reached to a fraction of its theoretical maximum. They are characterized by an exponentially
decaying fidelity F ∼ ð1 − ϵÞND with an error rate ϵ per operation as small as ≈1% for current devices with
several dozen qubits or even smaller for smaller devices. In this work, we provide new insight on the
computing capabilities of real quantum computers by demonstrating that they can be simulated at a tiny
fraction of the cost that would be needed for a perfect quantum computer. Our algorithms compress the
representations of quantum wave functions using matrix product states, which are able to capture states
with low to moderate entanglement very accurately. This compression introduces a finite error rate ϵ so that
the algorithms closely mimic the behavior of real quantum computing devices. The computing time of our
algorithm increases only linearly with N and D in sharp contrast with exact simulation algorithms. We
illustrate our algorithms with simulations of random circuits for qubits connected in both one- and two-
dimensional lattices. We find that ϵ can be decreased at a polynomial cost in computing power down to a
minimum error ϵ∞. Getting below ϵ∞ requires computing resources that increase exponentially with ϵ∞=ϵ.
For a two-dimensional array of N ¼ 54 qubits and a circuit with control-Z gates, error rates better than
state-of-the-art devices can be obtained on a laptop in a few hours. For more complex gates such as a SWAP

gate followed by a controlled rotation, the error rate increases by a factor 3 for similar computing time. Our
results suggest that, despite the high fidelity reached by quantum devices, only a tiny fraction ð∼10−8Þ of
the system Hilbert space is actually being exploited.
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I. INTRODUCTION

Operating a quantum computer is a race against the clock.
The same phenomenon enabling the potential computing
power of quantum computers—entanglement—is also
responsible for decoherence when it occurs with unmoni-
tored degrees of freedom. The main challenge of quantum
computing is to quickly build entanglement between the
qubits before imperfections or decoherence overly corrupt

the quantum state. This decoherence is an intrinsic character-
istic of any quantum computer and its origin and conse-
quences must be understood thoughtfully. But in all
hardware realizations, it means each operation incurs a loss
of fidelity relative to the ideal target quantum state.
As different experimental platforms for quantum

manipulation make rapid, impressive advances, there has
been a justifiable interest in the computational capability of
near-term quantum computers [1]. One of the key questions
is when and how to achieve the goal of “quantum
supremacy” [2], which is the crossover point where a
quantum system ceases to be within reach of simulation on
a classical computer. Precise circuits and fidelity metrics
have been designed to meet this goal [3]. Recently, an
experiment using N ¼ 53 qubits and a circuit of depth
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D ¼ 20 has reached a multiqubit fidelity F ¼ 0.002 [4].
According to the authors of Ref. [4], such an experiment
would take thousands of years to be simulated on the
largest existing supercomputers. This statement was then
challenged by another estimate which claims that only
2 days would be needed [5]. Such a disparity between
estimates raises the question of the difficulty of simulating
a quantum computer and consequently of the true comput-
ing power realized in a quantum computer.
The implicit assumption behind quantum supremacy as

well as the most appealing applications of quantum
computing is that a quantum computer is exponentially
hard to simulate. Indeed, in recent years many techniques
have been developed to simulate quantum computers, and
they all have an exponential cost in some parameter. A
brute force approach where one holds the full quantum state
in memory as a large vector of size 2N (N is the number of
qubits) requires a computing time and memory that scales
exponentially with N but linearly with the depth D of the
circuit. Other approaches require a computing time that
scales exponentially with the number of 2-qubit gates
[6–9], with the number of non-Clifford gates [10], and/or
with the number of gates that are nondiagonal in a chosen
basis [11,12]. All these techniques can simulate perfect
quantum computers. In all cases, the required computing
resources are exponential so that getting beyondN ¼ 50 and
a depthD ¼ 20 for an arbitrary circuit is extremely difficult.
In this article, we show that real quantum computers can

be simulated at a tiny fraction of the cost that would be
needed for a perfect quantum computer. To do so, we take
advantage of the fact that in real quantum computers,
decoherence limits the amount of entanglement that can be
built into the quantum state to a fraction of what the
exponentially large Hilbert space would suggest. Our
algorithms use a compressed wave function representation
that achieves very high accuracy for states with low to
moderate entanglement. This compression introduces a
finite error rate ϵ per 2-qubit gate. Hence, in this class
of algorithms the limiting factor is the fidelity with which
the calculation is performed while the computing time is
linear in both the number of qubits N and the depth D.
These algorithms “mimic” actual quantum computers both
in the sense of how they scale with N and D and in the
sense that the main difficulty lies in increasing the fidelity
of the calculation: a small finite error ϵ is made each time a
2-qubit gate is applied to the state. Therefore, they offer a
better reference point than exact simulation algorithms for
assessing the computing power harvested by actual quan-
tum chips.
Our algorithms are based on tensor networks and more

precisely on matrix product states (MPS) [13]. MPS were
recognized very early as an interesting parametrization of
many-qubit quantum states for quantum simulations [6]
and its generalizations are used in some of the most
advanced quantum simulation approaches [14]. However,

so far, the focus of classical simulations of quantum
hardware has been building essentially exact simulations
techniques and little attention has been devoted to approxi-
mate techniques. Interestingly these exact techniques can
require one to go well beyond double precision calculations
[15] which already hints at the link between error rate and
underlying computing difficulty.
The historical success of MPS has not been for

exact calculations but, in contrast, for the development
of controlled, approximate techniques to address quantum
many-body physics problems. This includes the celebrated
density matrix renormalization group (DMRG) algorithm
[16] which has provided precise solutions to a number of
one-dimensional and quasi-one-dimensional problems, as
well as time-dependent extensions [17] and generalizations
to higher dimensions through projected entangled pair
states (PEPS) [18] or multiscale entanglement renormali-
zation ansatz (MERA) [19] tensor networks. At the root of
these successes is the fact that MPS naturally organizes
states according to the amount of entanglement entropy
between different parts of the system. Hence, slightly
entangled systems can be easily represented with MPS.
As entanglement entropy grows, one eventually truncates
the basis. The associated error can be made arbitrarily small
by keeping a larger set of basis states.
In this article, we construct such an approximate tech-

nique in the context of quantum computing. Our chief
result is that, for fidelities comparable to those reached
experimentally, the computational requirement for simulat-
ing an imperfect quantum computer is only a tiny fraction
of the requirements for a perfect one.

II. POSSIBLE STRATEGIES FOR APPROXIMATE
SIMULATIONS OF QUANTUM CIRCUITS

Let us start by discussing possible strategies for simu-
lating quantum circuits in an approximate manner. Suppose
that we have partitioned the qubits into two different sets A
and B with, respectively, NA and NB qubits (NA þ NB ¼
N). Let us consider the 2-qubit gates that connect A and B
and ignore gates internal to A or B. Performing a singular
value decomposition (SVD) of such a gate, it can be written
as a sum of terms that act separately on A and B. This sum
contains two terms for the case of usual gates (control-NOT
and control-Z) and at most four terms for an arbitrary
2-qubit gate. It follows that computing the state after n of
these gates amounts to keeping track of 2n (up to 4n)
different amplitudes. These amplitudes are the discrete
analog of Feynman paths and are referred to as such in the
literature. For the random circuits that will be considered in
this article, these 2n amplitudes have essentially random
phases. It follows that if one keeps track of just a single
path, one reaches an overall multiqubit fidelity F ¼ ð1=2Þn
[or F ¼ ð1=4Þn in the worst situation]. This very simple
strategy could be used to simulate an arbitrary large number
of qubits with low fidelity per gate in a computing time ∼n.
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However, if one wants to keep a fixed fidelity per gate f
defined as F ¼ fn, in analogy with real quantum com-
puters, the number of paths Npath that must be tracked
during the simulation is Npath ¼ ð2fÞn, and hence increases
exponentially with n. Such a strategy has been used in
Ref. [4] to validate the experimental results reported there.
We now seek algorithms where a constant fidelity f can

be obtained at a constant computing cost per gate, inde-
pendent of the total number of gates n. One starts by
writing a general state for the bipartite system as

jΨi ¼
X
a;b

ΨabjaiAjbiB; ð1Þ

where the states jai (jbi) form an orthonormal basis of A
(B). Performing a singular value decomposition,

Ψab ¼
X
μ

UaμSμVμb; ð2Þ

one can define an orthonormal basis,

jμiA ¼
X
a

UμajaiA ð3Þ

(with similar notation for the B subsystem), and arrive at
the usual Schmidt decomposition of jΨi:

jΨi ¼
X
μ

SμjμiAjμiB; ð4Þ

in terms of a finite number of singular values Sμ. States with
only one nonzero singular value S0 ¼ 1 are simple,
unentangled product states. A measure of the number of
significant singular values needed to describe the state to
high accuracy is given by the entanglement entropy,

S ¼ −TrρA log ρA ¼ −TrρB log ρB ¼ −
X
μ

S2μ logS2μ; ð5Þ

where ρA (ρB) is the reduced density matrix for the
subsystem A (B). The general strategy of DMRG-like
algorithms is to keep only a finite number χ of the singular
values. After a 2-qubit gate that connects A and B, one
performs a SVD decomposition of Ψab and truncates the
state by keeping only the χ largest singular values. When
χ ≫ eS, this procedure is essentially exact. As the entan-
glement increases, this procedure leads to a certain fidelity
per gate f < 1 that can be controlled by increasing the
parameter χ. Of interest to the present article is the typical
value of f that can be reached in a reasonable computing
time.

III. NOISY ALGORITHM IN ONE DIMENSION

Above we motivated the truncated SVD of a bipartite
wave function as an approximation strategy that works well
for wave functions with only a moderate amount of
entanglement. A natural generalization of this strategy to
the N-qubit case is to use matrix product states, which can
be viewed as a simultaneous Schmidt decomposition of the
wave function across N different partitions [6] or equiv-
alently a sequence of compatible SVD factorizations of the
wave function, grouping qubits 1; 2;…; j and jþ 1;…; N
and performing an approximate SVD of the resulting
matrix [13].

A. MPS representation of the state

We first consider a one-dimensional network of N qubits
where 2-qubit gates can only be applied directly between
nearest neighbors. (Within this connectivity, gates acting on
other non-neighboring qubits are still possible at the cost of
using ∼N SWAP operations to bring the qubits onto
neighboring sites.) We define our MPS state in terms of
N tensors MðnÞ as

jΨi ¼
X
x

Ψxjxi

¼
X
i1…iN

X
μ1…μN−1

Mð1Þi1μ1Mð2Þi2μ1μ2Mð3Þi3μ2μ3…

MðNÞiNμN−1 ji1i2i3…iNi; ð6Þ

where the “physical” indices in ∈ f0; 1g span the 2N-
dimensional Hilbert space while the bond (or virtual)
indices μn ∈ f1;…; χng control the maximum degree of
entanglement allowed by the MPS. jxi is a shorthand for
ji1i2…iNi. If the χn are allowed to grow exponentially large
as a function of N, then the MPS form of the wave function
becomes exact and can represent any wave function [13]. In
contrast, we will enforce χn ≤ χ in what follows so that the
resulting MPS represents an approximation of the true
wave function. The parameter χ controls the error rate made
by our algorithm as well as the computational and memory
costs required to run it. As we see below, applying a 2-qubit
gate takes ∼χ3 operations and the overall memory footprint
is Nχ2. A sketch of the MPS structure is shown in Fig. 1(b).
To be acceptable, our algorithm must provide the same

features that a real quantum computer would provide.
Applying a 1-qubit gate U on qubit n can be done exactly
and without increasing any of the χn: it simply amounts to
updating the corresponding tensor MðnÞ → M0ðnÞ:

M0ðnÞi0nμn−1μnðnÞ ¼
X
in

Ui0ninMðnÞinμn−1μn ; ð7Þ

as shown in Fig. 2(a). Calculating the overlap between
differentMPS states or calculating individual wave function
amplitudes hi1i2…iN−1iN jΨi can be done with contraction
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algorithms which, for MPS, can be done exactly in ∼Nχ3

operations (see, e.g., Ref. [13] for a detailed description of
standard MPS algorithms). It follows that one can also
sample from the distribution jhi1i2…iN−1iN jΨij2 within the
same complexity. Quantum measurements (sampling of a
given qubit followed by its projection) can also be done
efficiently in a straightforward manner [20].
To perform a 2-qubit gate U between qubit n and qubit

nþ 1, one first transforms the MPS into an “orthogonal
form” centered around the qubits of interest [13]. More
precisely, we perform a series ofQR factorizations from left
to right to bring the tensors on the left of tensor n into a

“left-orthogonal” form. We perform another series of LQ
factorizations (QR on the transpose) from right to left to
bring the tensors on the right of tensor nþ 1 into a “right-
orthogonal” form. Bringing the MPS into this form is
crucial for the accuracy of truncations of the MPS and we
have observed that without it the error per gate of the
algorithm would be about 2 times larger. The steps to apply
the gate are then shown in Fig. 2(b). One first forms the
2-qubit tensor:

Tininþ1
μn−1μnþ1

¼
X
μn

MðnÞinμn−1μnMðnþ 1Þinþ1
μnμnþ1

: ð8Þ

Then one applies the 2-qubit gate U and obtains

ðT 0Þi
0
ni0nþ1
μn−1μnþ1

¼
X
ininþ1

Ui0ni0nþ1
;ininþ1

Tininþ1
μn−1μnþ1

: ð9Þ

In a last stage, considering the tensor T 0 as a matrix with
indices spanned by ði0n; μn−1Þ and ði0nþ1; μnþ1Þ, one per-
forms a singular value decomposition and writes

ðT 0Þi
0
ni0nþ1
μn−1μnþ1

¼
X
μn

Xi0n
μn−1μnSμnY

i0nþ1
μnμnþ1

; ð10Þ

where the tensors X and Y are formed of orthogonal vectors
while the vector Sμ contains the singular values of T 0. Here
Sμ has up to 2χ components (irrespective of the nature of
the 2-qubit gate) so that exact algorithms imply a doubling
of χ after each application of a 2-qubit gate. In the spirit of
DMRG-like algorithms, we truncate Sμ and keep only its χ
largest components to obtain S0μ. The new MPS tensors are
then simply given by

M0ðnÞinμn−1μn ¼ Xin
μn−1μnS

0
μn ; ð11Þ

M0ðnþ 1Þinþ1
μnμnþ1

¼ Yinþ1
μnμnþ1

; ð12Þ

which completes the algorithm. Overall, the cost of
applying a 2-qubit gate is dominated by the SVD step
which scales as χ3. We emphasize that such an algorithm
can do anything that a quantum computer does, but the
reverse statement is not true: in the MPS approach, one
holds the full wave function in memory, which pro-
vides much more information than can be obtained from
samples of the wave function. For instance, one can
compute bipartite entanglement entropy of a MPS, and it
is straightforward to calculate quantities such as observ-
ables or correlation functions without any statistical errors.
The MPS format also satisfies the sample and query access
criteria needed for quantum inspired dequantizing algo-
rithms [21].

(a) (b) (c)

FIG. 1. (a) Sketch of the quantum circuit with N qubits. The
colored squares indicate arbitrary 1-qubit gates while the dots
connected to a cross indicate a 2-qubit gate such as control-NOTor
control-Z. The depth D counts the number of 2-qubit gates
performed in the sequence. (b) Structure of the matrix product
states (MPS) for 1D circuits. Red lines indicate bond (or virtual)
indices while thin black lines correspond to physical indices.
(c) MPS structure for quasi-one-dimensional structures.

(a)

(b)

FIG. 2. (a) Applying a single qubit gate to a MPS can be done
without approximation by multiplying the gate by a single MPS
tensor. (b) To apply a 2-qubit gate to qubits n and nþ 1, one
contracts the corresponding tensors together, then applies the
gate. To restore the MPS form, the resulting tensor is decomposed
with a SVD truncated to keep the largest χ singular values, and
the matrix of singular values is multiplied into one of the unitary
factors X or Y.
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B. Random quantum circuit

Figure 1(a) shows the quantum circuit used in our
numerical experiments. It consists of alternating layers
of 1-qubit and 2-qubit gates. This circuit has been designed
following the proposal of Ref. [3] in order to create strongly
entangled states in as few operations as possible. It is
believed to be one of the most difficult circuits to simulate
on a classical computer since its many-qubit quantum state
is extremely sensitive to modification of any of the gates.
The 1-qubit gates Un represented as colored squares in
Fig. 1(a) are chosen randomly such as to remove any
structure or symmetry from the many-qubit state. A gateUn
is a rotationUn ¼ expð−iθnσ⃗:m⃗nÞ of angle θn around a unit
vector m⃗n ¼ ðsin αn cosϕn; sin αn sinϕn; cos αnÞ (σ⃗ is the
vector of Pauli matrices). We take the angles θn, αn, and ϕn
to be uniformly distributed. Note that the resulting matrix
Un is not distributed according to the Haar distribution of
Uð2Þ. We have, however, also experimented with other
choices of distribution of the 1-qubit gates (including the
Haar measure) and found that it did not affect our results
except for small variations of the obtained fidelity. While
the Un are random, the actual sequence used is carefully
recorded for comparison with, e.g., exact calculations. We
call the number of 2-qubit gate layers applied the depth D
of the circuit, focusing on the number of 2-qubit gate layers
because those are the only source of imperfection in our
calculations. In real quantum computers, 2-qubit gates also
dominate the errors over 1-qubit gates in terms of fidelity.
However, real quantum computers also have other sources
of error (decoherence, unknown couplings between qubits,
leakage to noncomputational states, etc.) not present in
the algorithm. After a depth D ∼ N, the state obtained with
the circuit of Fig. 1(a) is totally scrambled and well
described by a Porter-Thomas distribution. This is illus-
trated in Fig. 3, where the cumulative distribution of px ¼
jhxjΨij2 is compared to the Porter-Thomas form for various
maximum MPS bond dimensions (main panel) and for
various depths using exact calculations (inset). One indeed
observes that the distribution quickly approaches the
chaotic Porter-Thomas distribution as one increases the
bond dimension χ.

C. Effective 2-qubit gate fidelity

Let us introduce the main quantity of interest for this
study, the effective 2-qubit fidelity fn. The effective 2-qubit
fidelity fn is the computational analog to the fidelity
reported experimentally for 2-qubit gates. fn ¼ 1 for a
perfect calculation, but the truncation of the MPS will
induce 0 < fn < 1.
Let us call jΨTðnÞi the MPS state after a sequence

of n individual 2-qubit gates [n ≈ ðN − 1ÞD=2 for the
circuit of Fig. 1(a)]. Up to irrelevant 1-qubit gates,
jΨTðnÞi is obtained by applying one control-Z gate CZ
onto jΨTðn−1Þi followed by the truncation operation

which introduces a finite error. We define the effective
fidelity fn as

fn ¼ jhΨTðnÞjCZjΨTðn − 1Þij2; ð13Þ

and the corresponding error rate ϵn as

ϵn ¼ 1 − fn: ð14Þ

fn can be calculated using the contraction algorithm in Nχ3

operations. However, when the MPS is in canonical form,
fn is simply obtained without any additional calculations as

fn ¼
�Xχ

μ¼1

S2μ

�.�X2χ
μ¼1

S2μ

�
; ð15Þ

where we recall that 2χ is the maximum possible number of
nonzero singular values of the tensor T 0 in Eq. (10). The
denominator above is always equal to one for a state which
is normalized before it is acted on by a 2-qubit gate. We
have explicitly checked the equivalence between the two
algorithms.
A typical simulation is shown in Fig. 4 for the circuit

with the control-Z gate. At small depth D < 2 log2 χ, the
simulation is exact and fn ¼ 1. Above this threshold, one
starts to truncate the MPS after each 2-qubit gate. We
observe a transient regime where fn decreases after which
fn quickly saturates at a constant value, here around 0.988.
The first thing to note in Fig. 4 is that these simulations are
many orders of magnitude easier than an equivalent perfect
calculation: simulating the exact state for N ¼ 60 and

FIG. 3. Cumulative distribution Pðpx < ρÞ, where px¼jhxjΨij2
for N ¼ 15. The dashed line corresponds to the Porter-Thomas
distribution, PPTðρÞ ¼ 1 − ð1 − ρÞ2N−1. Main panel: MPS simu-
lations with truncation,D ¼ 24, and various MPS truncation levels
χ ¼ 2 (blue line), 8 (orange line), and 32 (green line). Inset: exact
results (i.e., simulations without truncations) forD ¼ 4 (blue line),
16 (orange line), and 24 (green line). A single realization of the
circuit has been used for each distribution.
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D ¼ 200 would be out of reach even with thousands of
years of computing time on the largest existing supercom-
puter. Yet here, these simulations of a noisy quantum
computer have been performed on a laptop. The averaged
fidelity for a modest χ ¼ 64 is better than 99%, which
already corresponds to qubits of very good quality. This is
rather remarkable since the percentage of the Hilbert space
spanned by the MPS ansatz is only a very tiny fraction
∼10−13% of the whole Hilbert space. After the transient
regime, fn is, up to some fluctuations, independent of both
D and N. The second statement is true up to small 1=N
corrections. These corrections arise from the fact that the
fidelity associated with gates applied on the edge of the
system [i.e., associated to matrices MðiÞ with i < 2 log2 χ
or N − i < 2 log2 χ] is always equal to unity since the
entanglement entropy associated to the subsystem of qubits
i < a is bounded by S ≤ a log 2.
Our main goal is to understand how the residual error

ϵn ¼ 1 − fn decreases as one increases the bond dimension
χ. As χ approaches χ ¼ 2N=2, one must have ϵn → 0. This
is because reshaping the wave function as a 2N=2 × 2N=2

matrix implies a maximum rank of 2N=2 for any factori-
zation of the wave function; thus a MPS with χ ¼ 2N=2

remains exact. However, here we are interested in the
regime χ ≪ 2N=2 which remains accessible to simulations.
Figure 5 shows how the residual error ϵn ¼ 1 − fn
decreases with increasing the bond dimension. The main
finding of Fig. 5 is that the residual error per gate at large
depth D and number of particle N eventually saturates at a
finite value, in this case around ϵ∞ ≈ 10−2. In other words,

this algorithm can simulate any 1D quantum computer that
has a 2-qubit gate fidelity smaller than f∞ ¼ 99% at a
linear cost in both N and D. As the depth or number of
qubits is reduced, the average fidelity increases. The black
cross in Fig. 5 corresponds to a calculation where only the
last part of the circuit has been taken into account in the
calculation of the average fidelity; i.e., the average is
performed for D > 100 where the system has already
entered its stationary regime. Note that in that regime,
there remains a small logarithmic decrease of the error: as χ
increases, a number ∝ log2 χ of gates close to the edges of
the system become exact, as discussed above. The black
line in Fig. 5 corresponds to calculations made in a larger
system of N ¼ 240 qubits where we have restricted the
calculation of the fidelity to the gates for qubits in the center
of the system (i.e., away from the edges where the fidelity is
perfect) as well as removed the small depth regime (only
gates for 100 ≤ D ≤ 200 are taken into account). For this
case, we observe a clear saturation of the error rate to a
finite value ϵ∞. As we shall see, decreasing the error rate
beyond ϵ∞ requires an exponential effort.
Figure 6 shows the dependence of the fidelity on the

position n where the gate is applied. The gates applied on
the edges, i.e., between qubit n and nþ 1 such that
2minðn;N−nÞ < χ, are always exact (f ¼ 1). As χ increases,
more and more gates on the edge become exact until
eventually all gates become exact when χ becomes expo-
nentially large (χ ¼ 2N=2). Away from the edges, we
observe a clear plateau at f∞ in the large N and χ limit.
Numerically, we cannot exclude that this plateau has a very

FIG. 4. Effective 2-qubit gate fidelity fn as a function of the
depth D of the circuit for χ ¼ 64 and the control-Z gate for
N ¼ 40 (red) andN ¼ 60 (magenta). The thin lines correspond to
the geometric average of fn over one full sequence, i.e., all the
2-qubit gates performed between depth D − 2 and depth D
(N − 1 2-qubit gates). The thick dashed lines correspond to
fav, the geometric average of fn over all 2-qubit gates since the
beginning of the circuit up to depth D. A single realization of the
circuit has been used for each curve.

FIG. 5. Geometric average of the residual error per gate ϵav ¼
1 − fav as a function of the bond dimension χ. The average is
performed over the entire circuit except for the black curves
(D ¼ ∞) where the average is restricted to the regime where the
fidelity has reached its asymptotic value (100 ≤ D ≤ 200); see
Fig. 4. For the largest systemN ¼ 240, we have also excluded the
gates on the edges of the system in our calculation as they have by
construction perfect fidelity. The fluctuations of the average
fidelity with different circuits are smaller than the size of the
symbols.
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slow 1=χa with a < 0.2 or logarithmic decrease. However,
further evidence for the existence of a true plateau are given
by the distribution of singular values discussed in Sec. V.

IV. LINKS BETWEEN 2-QUBIT
AND MULTIQUBIT FIDELITY

Before investigating the origin of ϵ∞, we make a short
detour to discuss how the effective 2-qubit fidelity fn is
related to the actual N-qubit fidelity F of the state and is
related to practical estimates of the fidelity that can be
measured experimentally.

A. Multiqubit fidelity

Let us call jΨPðnÞi the exact perfect state after n 2-qubit
gates—meaning it is never truncated or otherwise approxi-
mated at any stage of its evolution by the circuit—while
jΨTðnÞi is the truncated MPS state (P stands for perfect and
T for truncated). The N-qubit fidelity F is defined as

F ðnÞ ¼ jhΨPðnÞjΨTðnÞij2: ð16Þ

The fidelity F is a direct measure of how reliable our
truncated state is. As the errors accumulate, it is natural to
expect that the fidelities fn are multiplicative:

F ðnÞ ≈
Yn
i¼1

fi: ð17Þ

Equation (17) is indeed a very accurate approximation. An
analytical argument is given below. The validity of Eq. (17)
can also be shown by numerical simulations. Figure 7

shows the fidelity versusD forN ¼ 20 particles obtained in
two independent ways. The symbols correspond to a direct
calculation of F while the lines correspond to the right-
hand side of Eq. (17). We find an almost perfect match in all
the regimes that we have studied. Equation (17) is a very
useful result: it relates a property of the perfect state (left-
hand side) to a property solely defined in terms of the MPS
(right-hand side). It allows us to easily estimate the fidelity
in regimes where we do not have access to the exact state
anymore. When fn has reached its stationary value f∞,
Eq. (17) simplifies into

F ðnÞ ≈ ðf∞Þn ∼ ðf∞ÞND=2: ð18Þ

In an actual experiment, one cannot measure the fn, but
rather one has access to an estimate ofF ðnÞ (see the section
below). To compare the accuracy of the simulations with
the capabilities of actual quantum chips, we therefore
define the average 2-qubit fidelity fav after n 2-qubit gates,

fav ¼
�Yn

i¼1

fi

�
1=n

≈ F ðDÞ2=ND; ð19Þ

where the second equality is specific to the quantum circuit
studied here.
Derivation of Eq. (17).—Let us define a full basis of

orthogonal states jαi such that state j1i ≡ jΨTðn − 1Þi is
our truncated state and we complement state j1i with an
arbitrary basis. Writing jΨPðn − 1Þi in that basis as
jΨPðn − 1Þi ¼ P

2N

α¼1 pαjαi, we have p1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðn − 1Þp

.
Similarly, we write jΨTðnÞi ¼

P
2N

i¼1 tαCZjαi, with t1 ¼ffiffiffiffiffi
fn

p
. From these definitions, the fact that CZ is unitary and

that jΨPðnÞi ¼ CZjΨPðn − 1Þi, we have

FIG. 6. Geometric average of the fidelity per gate fav as a
function of the gate position n. Only an enlargement close to one
edge of the MPS is shown. The average is restricted to the
regime where the fidelity has reached its asymptotic value
(100 ≤ D ≤ 200); see Fig. 4. A single realization of the circuit
has been used, hence the fluctuations. These fluctuations become
very small upon further averaging on n as done in Fig. 5.

FIG. 7. Fidelity F versus depth D for N ¼ 20 and various
values of χ ¼ 10, 20, 50. The symbols correspond to a direct
calculation of F obtained by comparing with an exact calculation
(i.e., without truncation). The lines correspond to the right-hand
side of Eq. (17).
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F ðnÞ ¼
�X2N
α¼1

pαtα

�2
¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðn − 1Þfn

p
þ
X2N
α¼2

pαtα

�2
:

ð20Þ

As the fidelity goes down, the pα and tα become increas-
ingly decorrelated, in particular in sign. Assuming random
signs between the pα and the tα and using that
pα ∼ 1=

ffiffiffiffiffiffi
2N

p
, we find that the second term in the above

equation is at most of order 1=
ffiffiffiffiffiffi
2N

p
and is therefore

negligible. Equation (17) follows directly.
We end this section by proving a weaker but exact bound

for shallow circuits without the above assumption.
The Schwartz inequality implies that

�X2N
α¼2

pαtα

�2

≤
X2N
α¼2

p2
α

X2N
α¼2

t2α ≤ ϵn; ð21Þ

from which we obtain

j
ffiffiffiffiffiffiffiffiffiffiffi
F ðnÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fnF ðn − 1Þ

p
j ≤ ffiffiffiffiffi

ϵn
p

: ð22Þ
The Eq. (22) bound is exact, but saturating this bound in
practice implies that all the terms pαtα interfere construc-
tively, which is not realized in actual circuits. Equation (22)
implies that

F ðnÞ ≥
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fnF ðn − 1Þ
p

−
ffiffiffiffiffi
ϵn

p i
2

≥ F ðn − 1Þ − 2
ffiffiffiffiffi
ϵn

p
; ð23Þ

from which one can prove that

F ðnÞ ≥ 1 − 2
Xn
i¼1

ffiffiffiffi
ϵi

p
: ð24Þ

The exact statement Eq. (24) can be useful for small depth
circuits where the actual decrease of the fidelity F ðnÞ is
indeed linear with n, before one enters into the true
exponential regime.

B. Other fidelity metrics

So far we have used the overlap F between the exact
state jΨPi and our approximate state jΨTi as our metric for
the fidelity of the calculation. It is a natural metric as it
measures the probability for the approximate state to be in
the exact state. It is bounded 0 ≤ F ≤ 1 and is nicely
related to the probabilities per gate fn through the formulas
of the preceding section.
However,F cannot be directly measured experimentally,

so that other fidelity metrics must be designed. Indeed, in
an actual quantum computer, the only existing output are
samples of bit strings x ¼ i1i2…iN distributed according to
jhxjΨTij2. A natural metric is the logarithmic cross entropy
defined as

C ¼ −
X
x

jhxjΨTij2 log jhxjΨPij2: ð25Þ

Logarithmic cross entropy is a standard tool of machine
learning and has several interesting properties. First, it is
measurable through sampling as

C ¼ − lim
M→∞

1

M

XM
m¼1

log jhxmjΨPij2; ð26Þ

where the xm are the output of the quantum computer when
the experiment is repeated M times. Second, the logarith-
mic cross entropy between two distributions jhxjΨTij2 and
jhxjΨPij2 is maximum when the two distributions are
identical. Hence it is a genuine measure of the likelihood
of the two distributions. Logarithmic cross entropy was
proposed in Ref. [3] as a fidelity metric. Note, however, that
the logarithmic cross entropy is not a symmetric function of
the two distributions. In particular, it is strongly affected by
particular configurations x, where jhxjΨPij2 is very low but
jhxjΨTij2 is not.
Logarithmic cross entropy was eventually abandoned by

the Google team and replaced [4] by the linear cross
entropy benchmarking (XEB) defined as

B ¼ −1þ 2N
X
x

jhxjΨTij2jhxjΨPij2: ð27Þ

XEB is also sampleable and is symmetric with respect to
the two distributions. When the approximate state is the
uniform distribution, the XEB metric vanishes, B ¼ 0,
indicating a total lack of fidelity. However, when the
approximate state is actually exact, the value of the XEB
metric can be arbitrary. When the approximate state is exact
and distributed according to the Porter-Thomas distribution
(which happens in our circuits after a few cycles), then the
XEB metric gets a well-defined B ¼ 1 value. The XEB
metric is not in general a good measure of the likelihood
between two distributions: for a given perfect state; it is
maximum when the approximate state is sharply peaked
around the values of x where the perfect state is maximum.
In our circuit the initial value of XEB is exponentially high
B ¼ 2N − 1 and quickly decreases as the distribution
approaches the Porter-Thomas one. Calling D� the depth
after which XEB has reached unity (ideally D� would the
depth after which jhxjΨPij2 corresponds to Porter-Thomas
distribution), we find empirically that

F n ≈ F ðD�ÞBn: ð28Þ

Equation (28) could be used to estimate the actual fidelity
F from XEB measurements.
Figure 8 shows an example of calculations contrasting

the fidelity F with the XEB metric (see also Ref. [22]).
Here we have used no truncation but added some noise on
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the 2-qubit gate so as to induce a finite fidelity per gate f.
We find that both F and XEB decay exponentially with
consistent decay rates. However, the large difference of
the initial values at D ¼ 0 leads to a shift of the fidelity,
which is significantly lower than the XEB curve. This shift
increases as the fidelity is lowered. For a typical exper-
imental value f ¼ 99%, we find that XEB overestimates
the fidelity F by about a factor 10 in our simulations.

V. RANDOM TENSOR THEORY OF ϵ∞

We now turn back to the discussion of the asymptotic
value f∞ reached by the 2-qubit gate fidelity in our
calculations. The first remark of importance is that f∞ is
a property associated with a single tensor of the full MPS
state: if we apply a gate between qubit i and qubit iþ 1,
only the associated T 0 tensor defined in Eq. (10) comes into
play. Since the whole goal of our quantum circuit is to
scramble the wave function as efficiently as possible, a
natural hypothesis is that the tensors MðiÞ and Mðiþ 1Þ
become eventually well described by totally random
tensors. In this section we explore this possibility and
calculate the properties of the associated tensor T 0 as well
as the corresponding 2-qubit gate fidelity fGTE. We find that
the distribution of singular values of T 0 obtained from the
random ensemble closely matches what we observe in the
MPS state.
In the spirit of random matrix theory [23,24], we

introduce the Gaussian tensor ensemble (GTE) where a
tensor Mi

μν is supposed to be totally random. The GTE can
be thought of as a “worst-case scenario”where the quantum

circuit is so chaotic that the tensors are left with no
structure. In the GTE, the tensors M are distributed
according to

P½Mi
μν� ∝ exp

�
−
1

2

X
μνi

jMi
μνj2

�
; ð29Þ

where the sum over ν spans 1…χ, the sum over i spans 0,1,
and the sum over μ spans 1…βχ. In the remainder of this
section, we restrict ourselves to β ¼ 1, which corresponds
to the tensors of Eq. (6). We shall have an example of β ¼ 2
for the grouped-qubit algorithm we discuss in Sec. VI.
From two such tensors, we apply a 2-qubit gate following
Eqs. (8)–(12) constructing the associated tensor T and T 0
and the SVD of T 0. From the 2βχ singular values Sμ of T 0,
we can obtain the associated fidelity fGTE through Eq. (15).
Figure 9 studies the distribution of the singular values Sμ

for tensor T 0 obtained from the GTE. The singular values
are sorted in order of decreasing magnitude and plotted as a
function of the index μ ¼ 1;…; 2χ. Plotting χS2μ as a
function of μ=χ, we observe that all the different values
of χ collapse onto a single curve. In other words, we find
that there is some function gðxÞ such that

S2μ ¼
1

χ
g

�
μ

χ

�
: ð30Þ

This scaling is already valid for rather small values of χ.
This observation can probably be put on firm mathe-
matical grounds—it is consistent with the usual scaling
of the semicircular law of the so-called Gaussian unitary

FIG. 8. Comparison between the fidelity F (lines) and the XEB
metric B (markers) as a function of depthD. Different colors label
different levels of noise on the 2-qubit gates, respectively,
f ¼ 99.5% (red), f ¼ 99% (green), and f ¼ 98% (blue). The
calculations were performed for the 1D random circuit with
N ¼ 20 qubits.

FIG. 9. Squared singular values S2μ of the matrix T 0 obtained
from the GTE ensemble. We find a perfect scaling of the form
S2μ ¼ gðμ=χÞ=χ, where μ is the index of the μth singular value.
The two bundles of curves correspond respectively to the CX ,CZ
gates (two nonzero eigenvalues) and the iSπ=6=iS gates (four
nonzero eigenvalues). Within one bundle, the different curves are
indistinguishable.
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ensemble—but for the moment it is merely an empirical
statement made from numerical evidence. It follows from
this scaling that fGTE very quickly converges to

fGTE ¼
R
1
0 dxgðxÞR 2β
0 dxgðxÞ : ð31Þ

In other words, one finds a finite value of the fidelity that is
independent of χ. The resulting fGTE depends, on the other
hand, on the 2-qubit gate used. Control-Z (CZ) and control-
NOT (CX) are equivalent (they are related to each other
through a change of basis of the second qubit) and
correspond to fGTE ¼ 96.2%. Gates like the iSWAP gate
(iS) or iSWAP followed by a π=6 rotation over the z axis
(iSπ=6, close to what is used in Ref. [4]) have four different
singular values, which roughly doubles the error with
respect to CZ (fGTE ¼ 93.2%).
Figure 10 shows how the distribution of the singular

values in the GTE compares to the one obtained in the MPS
simulation. We find a close agreement between GTE and
the MPS simulations when looking at the T 0 tensor for a
gate in the center of the system and at large depth. The
agreement is not perfect, however, and we observe that the
asymptotic fidelity of MPS simulations is always better
than the one found in GTE:

f∞ ≥ fGTE: ð32Þ

Equation (32) is a numerical observation that reflects the
fact that a random structureless MPS is a worst-case
scenario for our truncation algorithm. To try to understand
why the inequality in Eq. (32) is not fully saturated, we plot
in Fig. 10 the distribution of the singular value of the initial

tensor M (dotted line). After truncation, the distribution of
the singular values of M0 are given by the dashed line
restricted to 0 ≤ μ=χ ≤ 1 (up to a small shift due to the
normalization of the state). These two distributions differ
very significantly. In order to saturate the bound of Eq. (32)
we would need extra steps to scramble the distribution of
M0 back to the distribution of M (i.e., go from the dashed
line to the dotted line). However, since in our protocol only
a single 1-qubit gate separates one truncation from the next
one, we find that it is not sufficiently chaotic and therefore
we never reach the “worst-case scenario” of the GTE.
To summarize, fGTE can be thought of as a lower bound

for the fidelity found in the simulations for large enough χ
(typically χ ≥ 300 in practice) and large enough depth.
Getting beyond the asymptotic value requires algorithms
that have an exponential cost. In the following section we
describe possible strategies.

VI. ALGORITHMS FOR GETTING BEYOND ϵ∞

The algorithm discussed above can also be used for 2D
arrays, since any 2-qubit gates between distant qubits can
always be written as a combination of gates on neighboring
qubits using SWAP gates. However, this is inefficient and
leads to a decrease of the effective f as the transverse
dimension of the 2D array increases. Another limitation of
the above algorithm is that one cannot efficiently simulate
systems that have a fidelity above f∞.
There are multiple strategies that could be used to go

beyond the above algorithm. In particular, recent progress
in the algorithms for contracting tensor networks, such as
Ref. [9], could be interesting candidates in 2D. Below, we
follow a very simple strategy where we keep using MPS
states, but group the qubits so that each tensor now
represents several qubits. The idea is to perform several
2-qubit gates per truncation, thereby lowering the error per
gate. We show that this strategy works in practice up to
unexpectedly large fidelities at moderate computational
cost. We surmise that it may be pursued to arbitrary small
error rate at an exponential computational cost, but this
point remains to be further investigated. The grouped MPS
algorithms used below are actually quasi-one-dimensional
algorithms: the computational cost scales linearly with the
numbers of columns but exponentially with the number of
qubits per column.

A. Grouped MPS state and extraction algorithm

We now consider the MPS structure sketched in
Fig. 1(c), where each tensor addresses several qubits.
We now have P ≤ N tensors MðnÞ each addressing Nn

qubits with
P

P
n¼1Nn ¼ N. The tensors Mð1Þ and MðPÞ

possess Nn þ 1 indices while the others possess Nn þ 2
indices:

MðnÞi1i2…iNn
μν : ð33Þ

FIG. 10. Squared singular values S2μ of the matrix T 0 obtained
from the MPS simulations of N ¼ 30 qubits and a depth of
D ¼ 60 for various values of χ. The singular values correspond to
a gate CX performed in the middle of the system. Dotted line:
squared singular values of theM matrix in the GTE. Dashed line:
squared singular values of T 0 in the GTE.
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The number of elements of these tensors is χ22Nn so that
the computing time now increases exponentially with the
number of qubits per tensor. On the other hand, the
2-qubit gates that are performed inside a given tensor
MðnÞ are now handled exactly, so that the average fidelity
of a circuit increases.
To perform a 2-qubit gate between neighboring tensors

MðnÞ and Mðnþ 1Þ, one proceeds in three steps. The first
two are shown diagrammatically in Fig. 11. In the first step,
one performs a QR decomposition of the two tensors to
“extract” smaller tensors corresponding to the involved
qubits. Assuming (without loss of generality) that the
2-qubit gate involves qubit Nn of tensor MðnÞ and qubit
1 of tensor Mðnþ 1Þ, one decomposes MðnÞ as

MðnÞi1i2…iNn
μν ¼

X2χ
σ¼1

QðnÞi1i2…iNn−1
μ;σ RðnÞiNn

σ;ν ; ð34Þ

where the “vectors” of QðnÞ indexed by σ are orthonormal.
The important point here is that the index σ takes only 2χ
values. Similarly, we write

Mðnþ 1Þi
0
1
i0
2
…i0Nnþ1

νρ ¼
X2χ
σ¼1

Rðnþ 1Þi01ν;σ0Qðnþ 1Þi
0
2
…i0Nnþ1

σ0;ρ :

ð35Þ

The second step follows Eqs. (8)–(12) of the algorithm
of Sec. III with the replacement MðnÞ → RðnÞ and
Mðnþ 1Þ → Rðnþ 1Þ, and is shown for the present case
in Fig. 11(b). In the last step, the new tensors M0ðnÞ and
M0ðnþ 1Þ are obtained by contractingQðnÞwith R0ðnÞ and
R0ðnþ 1Þ with Qðnþ 1Þ.
The main difference between the algorithm of Sec. III

and the grouped MPS algorithm is that the resulting tensor
T 0 of Eq. (10) now has 4χ singular values instead of 2χ. As
a result, upon truncation to keep only χ singular values, we
anticipate that the fidelity per gate will be smaller than in
the 1D case. However, as we shall see, this decrease will be
more than compensated by the gain of having perfect gates
within one tensor. In the terminology of random tensors, the
grouped MPS algorithm corresponds to β ¼ 2. For the CZ
gate, the GTE fidelity drops from fGTEðβ ¼ 1Þ ¼ 96.2%
down to fGTEðβ ¼ 2Þ ¼ 87.4%.

B. Application to a two-dimensional circuit

We now show the results of simulations performed on a
2D circuit. To put the results into the perspective of what
can be achieved experimentally, we choose a circuit very
close to the one used by the Google team in their
“supremacy” experiment [4]. We consider a 2D grid of
54 qubits as shown in Fig. 12(a). The circuit is shown in
Fig. 12(b) and alternates 1-qubit gates applied to each qubit
(same distribution as in the 1D case) with 2-qubit gates
(control-Z) applied on different pairs of qubits according to
the color shown. Except for the choices of 1- and 2-qubit
gates, and the number of qubits (53 versus 54), the setup is
identical to the “supremacy sequence” of the Google
experiment [4]. In Ref. [4] a XEB fidelity B ¼ 0.002
was reached after a depth D ¼ 20 corresponding to a total
of 430 2-qubit gates. Ignoring the difference between XEB
and the fidelityF, this translates into ϵav ¼ 1.4%, which we
shall use as our reference value to evaluate the performance
of the grouped MPS algorithm.
Figure 12(c) shows various strategies for grouping the

qubits. The ½112� grouping corresponds to 12 tensors that
contain one column of qubit each (i.e., alternatively 5 and 4
qubits). The [6, 6] grouping is the most expensive computa-
tionally with two tensors of 27 qubits each. Note that the
tensors on the edges are less computationally costly than
the middle ones, since they only have one bond index. The
results of the simulations are shown in Fig. 13 for a depth of
D ¼ 20. While the error rate is significantly larger than in
the 1D case, we find that it can be brought down to less than
1.4% (which corresponds to a global fidelity ofF ¼ 0.002)
on a single core computer. The computing times of the data
points of Fig. 13 range from a few seconds to less than
48 hours for the most expensive points on a nonparallel
code (single core calculation). We find that the grouping
strategy is effective, but not as efficient as the maximum
gain that one could expect: even though some of the gates
become perfect upon grouping, we observe a decrease of

ν

ν
σ

ν

i1i2 iNn

M(n)

=

i1i2 iNn

Q(n) R(n)

ν
σ

i1i2 iNn

M(n + 1)

=

i2i3i1

Q(n + 1)R(n + 1)

= ≈
SVD

(a)

(b)

R(n) R(n + 1) R (n) R (n + 1)

FIG. 11. Main steps for applying a gate which acts across two
grouped MPS tensors, as described in Eqs. (34) and (35). In
(a) the grouped MPS tensors MðnÞ and Mðnþ 1Þ are exactly
factorized using QR decompositions, such that the RðnÞ and
Rðnþ 1Þ tensors carry the qubit indices acted on by the gate and
the newly introduced indices σ and σ0 range over 2χ values.
In (b) the gate acts on the product of RðnÞ and Rðnþ 1Þ, and
the resulting tensor is factorized using a SVD truncated to χ
singular values. Finally, to update the MPS (not shown), one
computes the new tensors M0ðnÞ ¼ QðnÞR0ðnÞ and M0ðnþ 1Þ ¼
R0ðnþ 1ÞQðnþ 1Þ, which diagrammatically looks like step
(a) but in reverse.
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the fidelity for the noisy gates which reduces the overall
gain. For χ ¼ 320 and the ½4; 2; 2; 4� partition where the
final fidelity is slightly better than F ¼ 0.002 (see Fig. 13),
the memory footprint of the calculation is 4.5 GB of
memory, which represents only 1.5 × 10−6% of the size of
the total Hilbert space spanned by the 254 qubits.

C. Split-and-merge algorithm for more complex gates

We end this article with results in a configuration that
closely matches the one of Ref. [4]. The 1-qubit gates are
chosen at random between

ffiffiffiffi
X

p
,

ffiffiffiffi
Y

p
, and

ffiffiffiffiffi
W

p
while the

2-qubit gate iSθ is a combination of iSWAP followed by a
controlled rotation along the z axis:

iSθ ¼

0
BBB@

1 0 0 0

0 0 −i 0

0 −i 0 0

0 0 0 e−iθ

1
CCCA: ð36Þ

This gate has four different singular values and is therefore
expected to produce more entanglement than the CZ gate.
The link between number of singular values and the actual
growth of entanglement is not totally straightforward,
however. Indeed, the pure iSWAP gate has four different
singular values �1 and �i, yet as it preserves the structure
of product states, it is trivial to simulate with perfect
fidelity. In what follows, we use θ ¼ 1, which is nontrivial
to simulate.
The algorithm of the previous section behaves rather

poorly for the iSθ gate. For instance, for χ ¼ 128, and the
½4; 2; 2; 4� grouping, the 2-qubit gate fidelity drops from
f ≈ 98% (CZ) to f ≈ 92% (iSθ). However, a simple
modification of the algorithm allows one to recover a
much higher fidelity, f ≈ 95%.
To study iSθ, we therefore switch to a “split-and-merge”

strategy: instead of “extracting” qubits one by one to
perform 2-qubit gates as in Sec. VI A, we extract one full
column of qubits at a time. In the split-and-merge strategy,
we use two different groupings of the qubits, for instance,
switching between the ½4; 2; 2; 4� grouping and the ½5; 2; 5�
grouping (hereafter referred to as the ½4; 2; 2; 4� ↔ ½5; 2; 5�
grouping strategy). Switching from one grouping to another
induces truncation errors. However, once the switching has
been done, many 2-qubit gates can be performed exactly. A
schematic of the split-and-merge strategy is shown in
Fig. 14 for the ½4; 2; 2; 4� ↔ ½5; 2; 5� case.

(c)

(a)

(b)

FIG. 12. (a) Sketch of the quantum circuit with 54 qubits in a
2D grid. The qubits are represented by the black dots while the
2-qubit gates by the color links. (b) The circuit alternates 1-qubit
gates (black dots) with 2-qubit gates (here the control-Z gate).
The depth D counts the number of 2-qubit gates per qubit.
(c) Different grouping strategies for the group MPS algorithm.
½112� corresponds to a grouping in 12 blocks counting 1 column
each; ½4; 2; 2; 4� corresponds to a grouping in 4 blocks counting,
respectively, 4, 2, 2, and 4 columns.

FIG. 13. Residual error per gate ϵav ¼ 1 − fav as a function of
the bond dimension χ for the 2D circuit of Fig. 12 for a depth
D ¼ 20. The different curves correspond to different groupings.
The horizontal dashed line corresponds to the error rate asso-
ciated with a global fidelity F ¼ 0.002.
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Figure 15 shows our numerical results for ϵav versus χ.
The curves are very similar to those obtained for CZ at
similar computational cost, but with an error rate roughly 3
times larger than with CZ.
To conclude this section, we have shown that for the

control-Z gate a simple grouping strategy allows one
to reach the same fidelity as the Google experiment [4]
in a matter of hours on a single core computer (i.e.,
fav ≥ 98.6%). For the more challenging iSθ gate, this
fidelity drops down to 95% for similar computing time.
A natural question that arises is whether these algorithms

may be used to defeat the claim of quantum supremacy put
forward in Ref. [4], i.e., raise the fidelity from 95% to
> 98%. We have not be able to do so on a single core
implementation. However, the split-and-merge algorithm is
to a large extent trivially parallelizable since most tensor
operations contain “spectator” indices whose different
values can be fixed, and the resulting tensor “slices”
dispatched to different computing cores or nodes.

Extrapolations from our results suggest that such a parallel
implementation should be able to reach fidelities in the
98%–99% range with a few hundred cores and a few
terabytes of memory. However, such a calculation has
not be attempted at the moment. Let us note, in any case,
that not too much emphasis should be put on quantum
supremacy by itself. It is not because a task is difficult to
simulate that it provides a useful output. Also, there is no
question that quantum many-body problems are extremely
difficult to simulate. The insight that we get from the
present work is an estimate of the relation between the
accuracy reached in the quantum state and the underlying
amount of entanglement that could potentially be exploited.

VII. DISCUSSION

In this work, we have discussed a practical algorithm that
allows us to simulate a quantum computer in a time which
grows linearly with the number of qubitsN and the depthD
at the cost of having a finite fidelity f per 2-qubit operation.
Hence, although we do not aim at describing the actual
errors and decoherence mechanisms present in real quan-
tum computers, our algorithm provides quantum states
of the same quality provided that the effective fidelity f is
as high as the experimental one. The fidelity f can be
increased at a polynomial cost up to a finite value f∞;
increasing it further has an exponential cost in the fidelity.
Our main observation is that fidelities of the order of 99%,
which are typical fidelities found in state-of-the-art experi-
ments, can be reproduced at a moderate computational cost.
Is a fidelity of 99% large or small? From an experimental

physics perspective, it is certainly quite an achievement to
keep several dozen qubits at this level of fidelity. From a
quantum information and classical algorithms point of
view, a question is, what is the level of entanglement—
hence the actual fraction of the Hilbert space that can truly
been accessed—associated with this level of fidelity? Our
MPS ansatz can provide an estimate (or at least an upper
bound for one may come up with better algorithms) for this
fraction. Since the MPS ansatz only spans a very tiny
fraction of the overall Hilbert space, it follows that the
computational power associated with fidelities in the 99%
range is much more limited than the full size 2N of the
Hilbert space would suggest. We conclude that increasing
the computational power of a quantum computer will
primarily require increasing the fidelity with which the
different operations are performed [25]. Increasing the
number of qubits will remain ineffective until better
fidelities have been reached.
A second factor of primary importance is qubit con-

nectivity: Long-range connections mean that entanglement
over much larger distances can be built before decoherence
steps in. Architectures that try to improve the connectivity
with, e.g., quantum buses [26] could be a very effectiveway
to make the system harder to simulate, hence increase its
potential computing power. We have indeed observed that

FIG. 14. Schematic of the split-and-merge algorithm for the
½4; 2; 2; 4� ↔ ½5; 2; 5�. The 2-qubit gates shown in red and dark
green are performed in the ½4; 2; 2; 4� configuration and one
switches to the ½5; 2; 5� to perform the light green and
purple gates.

FIG. 15. Residual error per gate ϵav ¼ 1 − fav as a function
of the bond dimension χ for the iSθ gate for a 2D circuit with
N ¼ 54 qubits and a depth D ¼ 20. The different curves
correspond to different groupings. The horizontal dashed line
corresponds to the error rate associated with a global fidelity
F ¼ 0.002. The orange line is just a guide to the eye.
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2D systems are much more difficult to simulate than 1D
ones. Part of this difficulty is intrinsic to the increased
connectivity of 2D systems. Another part is due to our MPS
ansatz being not well adapted to 2D geometries.
Generalization of MPS to 2D, such as PEPS, would
probably be more efficient. As the PEPS representation
has recently been adapted to time evolution algorithms
[27], such a generalization should be rather direct.
As a side comment, our approach could also be used to

get lower bounds for quantum error correction (QEC)
schemes [28]. Suppose that for a certain connectivity,
one has an algorithm that can reach a fidelity f in
polynomial time in N and D. Then, it is reasonable to
expect that any QEC code has a threshold p > f. If it were
not the case, one could build a logical quantum computer
with a classical one at a polynomial cost by simply
simulating the QEC protocols on the classical computer.
In this respect, extending our approach to a truly 2D
algorithm (beyond the quasi-1D one discussed in this
article) would be particularly interesting. Indeed, 2D sur-
face codes have a particularly low threshold p ≈ 99%. How
close to f ¼ 99% one can get at a polynomial cost in 2D is
currently an open question. Note that the above reasoning
supposes that an algorithm that can simulate random
circuits can also simulate any other circuit with a similar
or a larger fidelity. While this assumption is commonly
made, it remains to be rigorously proven.
Finally, it would be interesting to perform a similar

study, but of how well MPS of practical sizes can
approximate circuits designed for specific and useful tasks
such as the Shor or Grover algorithms. It would be
interesting to see if random circuits are indeed harder to
simulate than more structured ones, as often implicitly
assumed. Goals could include estimating minimum fidel-
ities needed to perform these tasks with a high success
probability and understanding crossovers where useful qua-
ntum algorithms begin to offer advantages over classical
approaches.
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