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We present an ab initio correlated approach to study molecules that interact strongly with quantum fields
in an optical cavity. Quantum electrodynamics coupled cluster theory provides a nonperturbative
description of cavity-induced effects in ground and excited states. Using this theory, we show how
quantum fields can be used to manipulate charge transfer and photochemical properties of molecules. We
propose a strategy to lift electronic degeneracies and induce modifications in the ground-state potential
energy surface close to a conical intersection.
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I. INTRODUCTION

Manipulation by strong electron-photon coupling [1]
and laser fields [2–4] is becoming a popular technique to
design and explore new states of matter. Recent advances in
experimental and theoretical research include new ways to
generate exciton-polariton condensates [5], induce phase
transitions [6–8], tune exciton energies in monolayers of
2D materials and interfaces [5,9,10], and even enhance the
electron-phonon coupling, with possible effects on super-
conductivity [11,12]. Nevertheless, general techniques for
manipulating molecules via strong coupling have not yet
reached maturity.
Chemistry is one field that has witnessed the most

progress in strong light-matter coupling applications. In
particular, Ebbesen and co-workers have found that strong
coupling to vibrational excited states in molecules can
inhibit [13–15], catalyze [16,17], and induce selective
change in the reactive path of a chemical reaction [18].
These experiments use an optical cavity, the simplest
device in which entanglement between matter and light
can be observed. In an optical cavity (see Fig. 1), the

quantized electromagnetic field interacts with the molecu-
lar system, producing new hybrid light-matter states called
polaritons [19]. These states exhibit new and interesting
properties, leading to unexpected phenomena. In the past
few years, improvement of optical cavities [20–23] has
resulted in devices that can reach the strong and ultrastrong
coupling limits, which has made polaritonic states acces-
sible at room temperature, also for a small number of
molecules [21,24].
Theoretical modeling is an essential tool to provide

fundamental understanding and outline new strategies for
applications in polaritonic chemistry. The challenge is to

FIG. 1. Illustration of an optical cavity interacting with a
molecule.
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develop an accurate theoretical description of entangled
light-matter systems. In the quantum optics community,
several groups have developed model Hamiltonians to
reproduce the main features of polaritonic physics
[15,25–29]. The objective of the currentwork is to formulate
and implement a quantitative ab initio method for polari-
tonic chemistry.
Presently, the only available ab initio theory is quantum

electrodynamical density functional theory (QEDFT)
[1,30–32], which can describe interacting electrons and
photons on an equal footing. This method is a natural
extension of density functional theory (DFT) [33] to
quantum electrodynamics (QED). In QEDFT, the Kohn-
Sham formalism treats electrons and photons as indepen-
dent particles interacting through an exchange correlation
potential. The QEDFT method is computationally cheap
and reproduces the main polaritonic features for large
systems, even at the mean-field level. However, its accuracy
is limited due to the unknown form of the exchange
correlation functional for the electron-photon interaction.
In particular, in a mean-field treatment, no explicit electron-
photon correlation is accounted for in the ground state. The
problem can be overcome with a properly designed
exchange-correlation functional, but current functionals
are still not sufficiently accurate. Recently, Rubio and
co-workers [34,35] proposed an extension of optimized
effective potentials (OEPs). However, the accuracy of this
functional still needs to be assessed.
Coupled cluster theory is one of the most successful

methods for treating electron correlation in both ground and
excited states of molecular systems [36,37]. Nowadays, it is
routinely applied to compelling chemical problems due to
major advances in computational resources and several
decades of algorithmic developments. Coupled cluster
methods are available in several programs; we use the
electronic structure program eT [38] for our developments.
In this paper, we extend coupled cluster theory to treat
strongly interacting electron-photon systems in a non-
relativistic QED framework. We refer to the resulting
method as quantum electrodynamics coupled cluster
(QED-CC) theory. To the best of our knowledge, this
theory is the first coupled cluster formalism that incorpo-
rates many-body electron-photon operators for an ab initio
Hamiltonian. Recently, a different coupled cluster formal-
ism was proposed by Mordovina et al. [39]. Their study
was limited to model Hamiltonians, and they used state-
transfer operators instead of many-body operators to
describe the photonic part of the wave function. We should
also mention that studies using other electronic structure
methods and model or semiempirical Hamiltonians have
been presented by other authors [40–42].
In addition to presenting the complete formulation and

implementation of QED-CC, we consider some interesting
applications in photochemistry. In particular, we demon-
strate how light-induced charge transfer in small dye

molecules, commonly used as prototypes for photovoltaic
applications, can be modified by the quantized electro-
magnetic field. Furthermore, we show that the presence of
the cavity can break molecular symmetry and change
relaxation mechanisms. Suitably defined fields can induce
significant changes in both ground- and excited-state
properties. These results pave the way for novel strategies
to control photochemical reaction paths.

II. COUPLED CLUSTER THEORY FOR
ELECTRONS

In this section, we introduce the notation and important
concepts needed to develop the electron-photon interaction
model. For a complete outline of coupled cluster theory, we
refer to Ref. [37]. In standard coupled cluster theory for
singlet states, the many-body wave function is expressed
using the exponential parametrization,

jCCi ¼ expðTÞjHFi; ð1Þ

where jHFi is a reference wave function that is usually
chosen to be the closed-shell Hartree-Fock (HF) determi-
nant. The cluster operator T generates electronic excitations
when operating on the reference, and in this way, the
exponential produces a superposition of Slater determi-
nants. In the case of purely electronic many-body states, the
cluster operator is defined as

T ¼ T1 þ T2 þ � � � þ TNe
; ð2Þ

where Ne is the number of electrons. Each term corre-
sponds to excitations (single, double, triple, and so on), i.e.,

T1 ¼
X
ai

taiEai; ð3Þ

T2 ¼
1

2

X
aibj

taibjEaiEbj; ð4Þ

where Epq ¼ a†pαaqα þ a†pβaqβ [here, a and a† denote
fermionic operators, and (α, β) denote spin projections]
are singlet one-electron operators and the parameters tai
and taibj are called cluster amplitudes. Furthermore, we let
indices ði; j; k; lÞ and ða; b; c; dÞ label occupied and virtual
HF orbitals, respectively. General orbitals are labeled
ðp; q; r; sÞ. The cluster operator can be expressed as

T ¼
X
μ

tμτμ; ð5Þ

where the excitation operators τμ generate an orthonormal
set of excited configurations:

jμi ¼ τμjHFi: ð6Þ
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Together with jHFi, these configurations define a subspace
of the Hilbert space in which the Schrödinger equation is
solved. Inserting the coupled cluster wave function in
Eq. (1) into the time-independent Schrödinger equation,
we obtain

HejCCi ¼ jCCiECC; ð7Þ

whereHe is the electronic Born-Oppenheimer Hamiltonian

He ¼
X
pq

hpqEpq þ
1

2

X
pqrs

gpqrsepqrs þ hnuc: ð8Þ

The quantities hpq and gpqrs are one- and two-electron
integrals, respectively; for convenience, we have intro-
duced the operator

epqrs ¼ EpqErs − δqrEps ¼
X

σ;τ¼α;β

a†pσa
†
rτasτaqσ: ð9Þ

In coupled cluster theory, Eq. (7) is projected onto the set
fjHFi; jμig. Consequently, the coupled cluster energy is
given by

ECC ¼ hHFjH̄ejHFi; ð10Þ

and the cluster amplitudes are determined from the
equations

Ωμ ¼ hμjH̄ejHFi ¼ 0: ð11Þ

Here, we have introduced the similarity transformed
Hamiltonian,

H̄e ¼ expð−TÞHe expðTÞ: ð12Þ

Coupled cluster theory is equivalent to exact diagonal-
ization of the Hamiltonian in Eq. (8)—also called full
configuration interaction (FCI)—when the cluster operator
in Eq. (2) is untruncated and contains all possible excita-
tions. When the excitation space is truncated, we obtain
different levels of approximation and, needless to say,
reduced computational cost. For example, T ¼ T1 defines
the coupled cluster singles model (CCS) and T ¼ T1 þ T2

the coupled cluster singles and doubles model (CCSD).
Coupled cluster theory is manifestly size extensive (also in
its truncated forms), a property that ensures that the total
energy of noninteracting subsystems is the sum of the
subsystem energies. This is unlike similar truncation in
configuration interaction theory, where extensivity errors
can become arbitrarily large for an increasing number of
subsystems.
Another important feature of coupled cluster theory is

the size intensivity of excitation energies: for noninteract-
ing subsystems, excitation energies in each subsystem do

not change with the total system size [43]. The excitation
energies are the eigenvalues of the Jacobian matrix

Aμν ¼
∂Ωμ

∂tν ¼ hμj½H̄e; τν�jHFi: ð13Þ

Since this matrix is non-Hermitian, special attention is
required at electronic degeneracies; at such points, thematrix
can become defective or nondiagonalizable. Therefore,
defects are expected close to conical intersections, as dis-
cussed in more detail in Sec. III C.
In coupled cluster theory, there are two prevailing

approaches to electronic excited states. One is coupled
cluster response theory (CCRT), which is based on a time-
dependent formalism [43]. This theory provides both size-
extensive and size-intensive molecular properties, such as
excitation energies and transition moments. The other is
based on a time-independent formalism and is referred to as
equation-of-motion coupled cluster (EOM-CC) theory
[44]. In EOM-CC theory, the excitation energies are the
same as in CCRT. However, some molecular properties
are not guaranteed to scale correctly with system size. For
instance, transition moments are not necessarily size
intensive [45]. For the purpose of the present developments,
which mainly relates to ground- and excited-state energies,
the EOM-CC formalism is sufficient. In EOM-CC, the
similarity transformed Hamiltonian is expressed in the
basis fjHFi; jμig,

H̄ ¼
� hHFjH̄ejHFi hHFjH̄ejνi

hμjH̄ejHFi hμjH̄ejνi

�

¼
�
ECC ην

0 Aμν þ δμνECC

�
: ð14Þ

The left and right eigenvectors of H̄ define the excited-state
vectors, hLkj and jRki, and the eigenvalues of H̄ are the
energies of the states. We have used Eqs. (10), (11), and
(13) in the last equality. To extend coupled cluster theory to
electron-photon systems, we need to introduce a new
parametrization of the cluster operator.

III. COUPLED CLUSTER THEORY FOR
ELECTRON-PHOTON SYSTEMS

To describe the interaction of the electromagnetic field
with atoms, molecules, and condensed matter systems, the
low-energy limit of QED is usually sufficient [46,47]. In
particular, the nonrelativistic Pauli-Fierz Hamiltonian in the
dipole approximation [1,46,48,49],

HPF ¼ He þ
X
α

�
ωαb

†
αbα þ

1

2
ðλα · dÞ2

−
ffiffiffiffiffiffi
ωα

2

r
ðλα · dÞðb†α þ bαÞ

!
; ð15Þ
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is usually an accurate starting point for describing elec-
tronic systems in optical cavities. The Hamiltonian in
Eq. (15) is expressed in Coulomb and length gauge
[46–48]. We use the Born-Oppenheimer approximation
and keep the nuclear positions fixed. The second term in the
Hamiltonian is the purely photonic part, represented by a
sum of harmonic oscillators, one for each frequency. We
have neglected the zero-point energies. The operators b†α
and bα are bosonic creation and annihilation operators,
respectively. The third term is the dipole self-energy term,
which ensures that the Hamiltonian is bounded from below
[49] and independent of origin. The last term, the bilinear
coupling, couples the electronic and photonic degrees of
freedom. In the length gauge, the light-matter coupling is
via the dipole operator

d ¼
X
pq

dpqEpq; dpq ¼
�
pjde þ

dnuc
Ne

jq
�
; ð16Þ

which consists of an electronic and a constant nuclear
contribution, de and dnuc. The elements dpq denotes one-
electron dipole integrals. The coupling is described through
the transversal polarization vector e multiplied by the
coupling strength λα:

λα ¼ λαe; λα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ε0εrVα

s
: ð17Þ

Here, ε0 and εr are the permittivities of the vacuum and the
dielectric materials separating the cavity mirrors, respec-
tively [9]. The α-mode quantization volume is denoted Vα.
The dipole approximation is usually valid when the

wavelength of the electromagnetic field is significantly
larger than the size of the electronic system. However, there
are cases where the dipole approximation is not sufficiently
accurate—for instance, when the size of the system is
comparable to the cavity wavelength or when matter
interacts with a circularly or elliptically polarized field.
These aspects will be discussed in a forthcoming paper.

A. QED-HF method

In order to formulate QED-CC, we need to define a
suitable reference wave function. We formulate an exten-
sion of the Hartree-Fock method to QED, hereafter referred
to as QED-HF. The noncorrelated electrons and photons in
QED-HF are described by

jRi ¼ jHFi ⊗ jPi; ð18Þ

jPi ¼
X
n

Y
α

ðb†αÞnα j0icn; ð19Þ

where j0i is the photon vacuum and cn are expansion
coefficients for the photon number states. The coefficient

cn, where n ¼ ðn1; n2;…Þ, corresponds to the state with nα
photons in mode α. Starting from Eq. (18), and assuming
that jRi is normalized, the energy

EQED−HF ¼ hRjHjRi ð20Þ

is minimized with respect to Hartree-Fock orbitals and
photon coefficients cn. Note that QED-HF can be consid-
ered a special case of QEDFTwith an appropriately chosen
exchange-correlation functional.
For a given Hartree-Fock state, the energy can be

minimized with respect to the photon coefficients. This
can be achieved by diagonalizing the photonic
Hamiltonian,

hHPFi ¼ EHF þ
X
α

�
ωαb

†
αbα þ

1

2
hðλα · dÞ2i

−
ffiffiffiffiffiffi
ωα

2

r
ðλα · hdiÞðb†α þ bαÞ

�
; ð21Þ

where the mean value is with respect to jHFi. This
Hamiltonian can be diagonalized by the unitary coher-
ent-state transformation [50]

UðzÞ ¼
Y
α

expðzαb†α − z�αbαÞ ð22Þ

with a suitable choice of z. In the transformed basis, the
photonic Hamiltonian is

hHPFiz ¼EHFþ
X
α

�
ωαðb†αþ z�αÞðbαþ zαÞþ

1

2
hðλα ·dÞ2i

−
ffiffiffiffiffiffi
ωα

2

r
ðλα · hdiÞðb†αþbαþ zαþ z�αÞ

�
: ð23Þ

If we choose

ðz0Þα ¼ −
λα · hdiffiffiffiffiffiffiffiffi

2ωα

p ; ð24Þ

the Hamiltonian reduces to

hHPFiz0 ¼ EHF þ
1

2

X
α

hðλα · ðd − hdiÞÞ2i þ
X
α

ωαb
†
αbα:

ð25Þ

The eigenvectors of this operator are the photon number
states, and the lowest eigenvalue corresponds to the
vacuum state. In the untransformed basis—that is, for
the Hamiltonian in Eq. (21)—the eigenstates are the
generalized coherent states

jzα; nαi ¼ expðzαb†α − z�αbαÞjnαi; ð26Þ
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where zα is given in Eq. (24) and

jnαi ¼
ðb†αÞnαffiffiffiffiffiffiffi

nα!
p j0i ð27Þ

are the normalized photon number states for mode α.
Applying the unitary transformation to the original

Pauli-Fierz Hamiltonian, Eq. (15), gives us the final
expression for the Hamiltonian in the coherent-state basis:

H ¼ He þ
X
α

�
ωαb

†
αbα þ

1

2
ðλα · ðd − hdiÞÞ2

−
ffiffiffiffiffiffi
ωα

2

r
ðλα · ðd − hdiÞÞðb†α þ bαÞ

�
: ð28Þ

This Hamiltonian will be used in QED-CC. Note that
the operator is manifestly origin invariant, which is
different from Eq. (15), where the invariance is obtained
through a gauge transformation. This is also true for
charged systems, where the dipole moment operator
depends on the choice of origin. In the coherent-state
basis, the bilinear coupling and self-energy terms depend
on fluctuations of the dipole moment away from the mean
value. We point out that the nuclear dipole gives no
contributions to the Hamiltonian. However, note that
the dependence on the nuclear dipole now resides in
the wave function through the coherent-state transforma-
tion [see Eq. (24)].
As we have shown, the QED-HF reference state is now

given by

jRi ¼ jHFi ⊗ j0i: ð29Þ

The Hartree-Fock equations are solved using standard
techniques [37,51]. In every iteration, the Hartree-
Fock orbitals are updated and used to evaluate z0 [see
Eq. (24)]. The Fock matrix used in the optimization is
given by

Fpq ¼ Fe
pq þ

1

2

X
α

�X
a

ðλα · dpaÞðλα · daqÞ

−
X
i

ðλα · dpiÞðλα · diqÞ
�
; ð30Þ

where Fe is the standard closed-shell electronic Fock
matrix [37] and the stationary condition is equivalent to
Fia ¼ 0. The QED-HF ground-state energy can now be
written as

EQED−HF ¼ EHF þ
1

2

X
α

hðλα · ðd − hdiÞÞ2i

¼ EHF þ
X
α;ai

ðλα · daiÞ2; ð31Þ

where the correction to the electronic energy can be
understood as the variance in the dipole interacting with
the photon field. For an infinite number of modes, we
expect, as is standard in QED [52], to encounter diver-
gencies due to the second term of Eq. (31).
We should point out that the eigenvalues of F, normally

interpreted as orbital energies, are origin dependent for
charged systems. As a consequence, applying concepts that
depend on the orbital energies, like Koopmans’ theorem
[53], will require a different choice of the occupied-
occupied and virtual-virtual blocks of F. For the same
reason, F cannot be used as a zeroth-order Hamiltonian in
perturbation theories such as CC2 [54] and CC3 [55,56].
An origin-independent F can be obtained by performing an
appropriate unitary transformation [57] that mixes the
electronic and photonic degrees of freedom. In this way,
the dressed electrons also have well-defined orbital ener-
gies for charged systems. This case will be considered in a
future publication. However, note that the origin depend-
ence of the eigenvalues of F does not imply a loss of origin
invariance in QED-HF (see the Appendix A).

B. QED-CC method

Extending the exponential parametrization in Eq. (1) to
QED requires that the cluster operator generates excitations
both in the purely photonic and in the electron-photon
coupling spaces [39]. The cluster operator can therefore be
partitioned as

T ¼ Te þ Tp þ T int; ð32Þ

where Te is the standard cluster operator for the electrons,
and Tp and T int consist of photon and electron-photon
operators, respectively.
The purely photonic operator is defined as

Tp ¼
X
n

Γn ¼
X
n

γn
Y
α

ðb†αÞnα : ð33Þ

In this equation, γn are photon amplitudes. The form of the
photonic operator was chosen to expand the photonic part
of the Hilbert space and to give commuting cluster
operators (as in the electronic case). Since expðTpÞ does
not terminate, the parametrization is able to incorporate
many-body effects within the limitation imposed by the
projection space. In contrast, Mordovina et al. [39] used a
nilpotent photonic operator that only enters linearly in the
expansion of the coupled cluster state.
The excitations in the electron-photon interaction oper-

ator T int are defined as direct products of electronic and
photonic excitations. Thus, the operator can be expressed as

T int ¼
X
n

Sn1 þ Sn2 þ � � � þ SnNe
; ð34Þ
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where, for instance,

Sn1 ¼
X
ai

snaiEai

Y
α

ðb†αÞnα ; ð35Þ

Sn2 ¼
1

2

X
aibj

snaibjEaiEbj

Y
α

ðb†αÞnα : ð36Þ

The new cluster amplitudes, γn; snai, s
n
aibj, etc., are param-

eters that will be determined from a set of projection
equations.
Hierarchies of approximations are formulated by trun-

cating the cluster operator and the associated projection
space. Here, we implement CCSD with the special case of a
single photon mode, where we only include one photon in
the cluster operator. The coupled cluster wave function is
then given by

jCCi ¼ expðTÞjRi; ð37Þ

where jRi is the QED-HF reference given in Eq. (29), and
the cluster operator is

T ¼ T1 þ T2 þ Γ1 þ S11 þ S12: ð38Þ

Electronic excitations are described at the singles and
doubles level, and the photon mode is coupled to these
excitations through S11 and S12, respectively. The electronic
operators T1 and T2 are given in Eqs. (3) and (4). The
photon and electron-photon operators are defined as

Γ1 ¼ γb†; ð39Þ

S11 ¼
X
ai

saiEaib†; ð40Þ

S12 ¼
1

2

X
aibj

saibjEaiEbjb†: ð41Þ

This model is referred to as QED-CCSD-1, with one photon
mode, where “1” refers to the photonic excitation order.
More involved terminology will be required to describe the
full hierarchy. In the notation used byMordovina et al. [39],
this corresponds to a QED-CC-SD-S-DT model. However,
because of the difference in photonic excitation operators
and the coherent-state basis, the model described here is not
directly comparable to the one in Ref. [39]. Even if only one
photon creation operator is included, the exponential will
partially incorporate two photon contributions into thewave
function. Thus, we expect the convergence with respect to
photons to be faster than CI-like diagonalization in photon
number states. Furthermore, notice that the generalized
coherent-state basis incorporates higher photonic excita-
tions as well.

The projection space used in Eq. (11) is defined by
the excitations included in the cluster operator. With the
notation

jHF; ni ¼ jHFi ⊗ jni; ð42Þ

jμ; ni ¼ jμi ⊗ jni; ð43Þ

the projection basis is

fjHF; 0i; jμ; 0i; jμ; 1i; jHF; 1ig; ð44Þ

where jHF; 0i ¼ jRi and μ is restricted to single and double
excitations. The derivation of the amplitude equations
follows the same procedure as in the electronic case,
and the truncation of the equations is determined by the
projection space and the commutator expansion of the
similarity transformed Hamiltonian. Explicit formulas are
presented in Appendix B.
The formation of polaritons usually appears in the optical

spectrum as a Rabi splitting (proportional to the coupling
strength λ) of the electronic states due to the coupling to the
quantum field. Hence, we must also describe the excited
states of the coupled system. In coupled cluster theory,
electronic excitation energies may be determined using
EOM-CC theory, as described in Sec. II. The projection
space in QED-CCSD is extended, relative to the electronic
case, giving rise to additional blocks in the Jacobian matrix:

A ¼

0
BB@

Ae;e Ae;ep Ae;p

Aep;e Aep;ep Aep;p

Ap;e Ap;ep Ap;p

1
CCA: ð45Þ

In addition to the electronic Jacobian Ae;e, there are
coupling blocks between electronic (e), electronic-photonic
(ep), and photonic (p) configurations; see Eqs. (38) and
(44). Explicit formulas for the sub-blocks of the Jacobian,

Aμn;νm ¼ hμ; nj½H̄; τνðb†Þm�jRi; ð46Þ

are presented in Appendix C, along with the corresponding
sub-blocks of the η vector. The ground- and excited-state
QED-CCSD equations are solved using standard methods
[37,58,59].
To ensure a balanced description of the electron-photon

states, it is important to use all product operators between
the included electronic and photonic excitations in the
cluster operator, τμðb†Þn. For instance, suppose that the
coupling is zero, and consider the two states je; 1i and
je; 0i. As ωcav tends to zero, these states will only become
degenerate if Γ1 is coupled to both T1 and T2. Neglecting
S12 would lead to unphysical results.
Additional properties of the electron-photon system can

be calculated from the left and right eigenvectors of H̄.
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For instance, we can evaluate the ground- and excited-state
electronic EOM density matrices as

Dk
pq ¼ hLkj expð−TÞEpq expðTÞjRki: ð47Þ

For a description of other molecular properties, we refer the
reader to Refs. [43,44].

C. Some technical aspects

The Pauli-Fierz Hamiltonian in Eq. (15) is defined on the
direct product Hilbert space H ¼ He ⊗ Hp. In the trun-
cated description, where He and Hp are finite dimen-
sional, expðTÞjRi has an effectively finite expansion due to
the finite projection basis. For instance, in QED-CCSD-1,
the terms in expðTÞjRi that give nonzero contributions are
up to quadruple electronic excitations and double photonic
excitations. However, in the limit of an infinite-dimensional
Hp, special care might be required to define the exponen-
tial operator [60].
Because of the non-Hermiticity of coupled cluster

theory, it is known to give nonphysical complex energies
close to conical intersections between excited states of the
same symmetry [61–63]. The same issue can arise in QED-
CC and is mentioned by Mordovina et al. [39]. The
problem can be traced to defects in the Jacobian matrix
for a truncated projection basis. In the untruncated case, the
states satisfy generalized orthogonality relations, ensuring a
correct description of conical intersections [63]. To obtain a
physically correct description with a truncated excitation
space, one can enforce the orthogonality conditions

hRkj expðT†ÞP expðTÞjRli ¼ δkl; ð48Þ

where P is some projection operator [64,65]. This
approach, unlike a posteriori corrections [39,62], can be
extended to analytical energy gradients and nonadiabatic
coupling elements using well-established Lagrangian tech-
niques [66,67]. In passing, we note that no defects or
complex eigenvalues were encountered in the results
reported in this work.

IV. MOLECULAR POLARITONS

In this section, the QED-CCSD-1 model is used to
investigate cavity-induced effects on the chemistry of
molecules. All calculations are performed using a develop-
ment version of eT [38]. Molecular geometries are provided
in the Supplemental Material [68]. A single cavity mode is
used throughout; this approximation typically breaks down
for small values of ωcav, when several replica states overlap
energetically with electronic states. This can occur in large
cavities, where ωcav may be smaller than the electronic
spectral range. In the following calculations, we assume
that the single-mode approximation is valid for the inves-
tigated properties.

In all calculations, we have chosen a coupling strength
λ ¼ 0.05. The coupling strength is usually calibrated using
the Jaynes-Cummings model, where λ ¼ 0.05 corresponds
to a value well within the strong-coupling regime. Although
this coupling leads to relatively large Rabi splittings
(∼1 eV), comparable but smaller Rabi splittings have also
been observed experimentally (∼0.3 eV) [21,69].

A. Diatomic molecules

Interesting QED effects can be observed for small
diatomic molecules, such as H2 and HF. We also use these
molecules to benchmark the coupled cluster model against
the more accurate QED-FCI approach. The comparison
shows an excellent agreement; see Appendix E for a
detailed discussion. For the calculations here, we use a
Gaussian basis set, in particular, cc-pVDZ [70].
The potential energy curves for the ground and excited

states of these systems are shown in Fig. 2. The conical
intersections and avoided crossings in the UV range define
the photochemical properties of these molecules. An
optical cavity set in resonance with one of the excited
states can completely restructure the excitation landscape
and redefine the photochemistry of the system. The color
map in Fig. 2 indicates the electronic or photonic con-
tributions to the states. The electronic states are highlighted
in blue, while the photonic states are transparent white. For
more details, see Appendix D.
Considering first H2 set in resonance with the first singlet

excited state (at the ground-state equilibrium geometry), we
are able to induce significant changes of the potential
energy curves. Here, we focus on the first Rabi splitting,
where, in particular, the upper (UP) polariton is more bound
than the bare electronic state. Hence, it should be possible
to trap the molecule in the UP state. In contrast, the bare
electronic state has, to a larger extent, a dissociative
character.
Similar conclusions can be drawn for the HF molecule.

Differently from H2, it has a permanent dipole moment.
However, this seems to have minor effects on the general
landscape, which is consistent with the fact that the total
energy depends only on the fluctuations in the dipole
moment (see Sec. III A).
From the above analysis, we see that the application of a

quantum field inside an optical cavity can be used to fine-
tune the excited-state properties of molecules. This opens
the way towards new decay paths, the possibility of
trapping systems in excited dark polaritons, and many
other effects redesigning the molecular photochemistry.

B. Charge transfer molecules

Recently, some research groups have suggested that
quantum fields can have a significant impact on the charge
transfer [71,72] and energy transfer [71,73] properties in
molecules. These preliminary studies are based on model
Hamiltonians; thus, only qualitative interpretations of the
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phenomena are provided. Here, we present a quantitative
analysis of cavity-induced effects on a charge transfer
process.
We investigate p-nitroaniline (PNA), a simple amine often

used as a prototype dye for solar energy applications—
for instance, in dye-sensitized solar cells [74,75]. This
molecule has an intense, low-lying, charge transfer
excitation (at about 3–4 eV) that can potentially be used
to inject charge into a semiconductor and produce a current.
Developing strategies to control the charge transfer process
is of fundamental importance to increase photovoltaic
efficiencies.
In our calculations on PNA, we have used the cc-pVDZ

basis and oriented the polarization (λ ¼ 0.05) along the
principal axis of the molecule. The molecular structure
was optimized with DFT/B3LYP using the 6-31+G� basis
set [76].
Initially, we investigate the effects of the cavity on the

electronic ground state by analyzing the electron density.
This can conveniently be carried out using the charge
displacement analysis [77–79]. The charge displacement
function is defined as

ΔqðzÞ ¼
Z þ∞

−∞

Z þ∞

−∞

Z
z

−∞
Δρðx; y; z0Þdxdydz0; ð49Þ

where we integrate over the electron density difference Δρ.
This function measures the amount of charge that has been
moved along the z coordinate. In particular, if ΔqðzÞ is
positive, charge is transferred from right to left, and if
negative, charge is transferred in the opposite direction.
In Fig. 3, we show the QED-CCSD-1 charge displace-

ment function and isosurface for the ground-state electron

density difference with and without the cavity, Δρ ¼
ρcavgs − ρno cav

gs . The cavity is set in resonance with the
most intense, low-lying, charge transfer excited state,
ωcav ¼ 4.84 eV. Although the charge displacement is
small, a clear cavity-induced charge reorganization is
observed in the ground state. Specifically, we have a charge
transfer of about 0.005 e− going from the acceptor (NO2) to
the nitrogen atom of the donor (NH2) group, reducing the

FIG. 3. QED-CCSD-1 ground-state density difference induced
in PNA by an optical cavity (λ ¼ 0.05 and ωcav ¼ 4.84 eV) and
the corresponding charge displacement analysis. The blue and
red regions represent charge accumulations and depletions. The
isosurface value is �5 × 10−5 e− a:u:3.

FIG. 2. Potential energy curves calculated with (blue solid lines) and without (red dashed lines) an optical cavity for (a) H2 and (b) HF.
The polarization is along the main axis of the molecules, and the field is in resonance with the first bright excitation of the system at its
equilibrium geometry. The coupling strength is set to λ ¼ 0.05 in both cases. The blue color map indicates the electronic or photonic
character of the states.
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magnitude of the dipole moment from 6.87 D in a vacuum
to 6.77 D in the cavity. This counterintuitive effect is in
agreement with previous QEDFT/OEP studies from Flick
et al. [35]. The cavity field accumulates more charge in the
high-density regions. In this way, the variance of the dipole
operator is reduced [see Eq. (31)].
In the excited states of PNA, the cavity-induced effects

are more evident. In Fig. 4, we show the dispersion of the
low-lying excitation energies of PNA with respect to
the cavity frequency ωcav. Because of the large transition
dipole moment for the charge transfer excitation, a large
Rabi splitting is observed when the cavity is resonant with
this state. As discussed in the previous section, the cavity
can induce significant changes in the excited states.
Specifically, we have a state inversion between the lower
polariton and the first two excited states. This effect in PNA
and other dye molecules could be important for photo-
voltaic applications, where a proper alignment of charge
transfer states with the states in a semiconductor is essential
to optimize solar-cell efficiency.
In Fig. 5, we show a charge displacement analysis of the

charge transfer state, with a resonant quantum field. Here,
we use the density difference between the ground and
excited states, Δρ ¼ ρes − ρgs, with and without the cavity.
Both the lower and upper polaritons have charge transfer
character and are shown separately.
Differently from the ground state, a sizable charge

transfer of almost 0.4 e− is moved from the donor to the
acceptor group. The cavity divides the total charge transfer
between the polaritons; thus, a compromise must be made
between energetically aligning states and maintaining the

charge transfer character. We note that the cavity field
slightly reduces the total charge transfer (see the black
dashed line in Fig. 5) because the charge transfer state also
contributes to the other excited states, not just the
polaritons.
In Fig. 6, we show how fine-tuning the cavity frequency

can be used to change the degree of charge transfer in the
lower and upper polaritons. This provides another pos-
sibility for charge transfer control, with the potential for
technological applications.

C. Photochemical processes

We now turn our attention to photochemical processes
and the possibility of changing the ground-state potential
energy surface using an optical cavity. For this purpose, we
choose the pyrrole molecule that exhibits conical inter-
sections between the ground state and two low-lying
excited states. A detailed analysis of these conical inter-
sections, and of the involved relaxation mechanism, can be
found in Refs. [80,81]. In C2v symmetry, the ground state is
1A1, while the first two excited states are 1A2 and 1B1. The
equilibrium geometry is calculated with CCSD and a
cc-pVDZ basis set.
We investigate the behavior of the potential energy

curves when the NH bond distance R is varied, preserving
the C2v symmetry (Fig. 7). The polarization of the cavity is
chosen as e ¼ ð 1ffiffi

3
p ; 1ffiffi

3
p ; 1ffiffi

3
p Þ, such that the point group

FIG. 4. QED-CCSD-1 dispersion with respect to cavity fre-
quency ωcav of the excitation energies in PNA. The blue color
map indicates the electronic or photonic character of the states.

FIG. 5. QED-CCSD-1 excited-state charge displacement analy-
sis of PNA with and without an optical cavity (λ ¼ 0.05 and
ωcav ¼ 4.84 eV). The charge displacement functions with the
cavity for lower (LP, blue) and upper (UP, red) polaritons are
shown. In green, we show the function for the charge transfer
state without the cavity. The dashed black line represents the sum
of the curves for LP and UP.

COUPLED CLUSTER THEORY FOR MOLECULAR POLARITONS: … PHYS. REV. X 10, 041043 (2020)

041043-9



symmetry of the Hamiltonian reduces to C1. The
coupling strength is set to λ ¼ 0.05, and the cavity
frequency is set in resonance with the 1B1 state at R ¼
2.0 Å (ωcav ¼ 1.06 eV).
In Fig. 8, we show the potential energy curves along

the coordinate R with and without the cavity. Without the
cavity (λ ¼ 0), the CCSD model mostly reproduces the
accurate potential energy curves calculated in Refs. [80,81].
The main difference is an inverted ordering of the 1A2 and

1B1 states close to the conical intersection. The correct
ordering can be recovered by including triple excitations in
the model, as we have confirmed with CC3 [56] calcu-
lations (see Appendix F). Since the ordering of the states
does not change the conclusions, we perform the analysis at
the QED-CCSD-1 level.
We first observe the lifting of the degeneracy as shown in

Fig. 8(d). In the coupled system, now in C1 symmetry, all
states can interact, as they have the same symmetry. This
unequivocally demonstrates that the cavity can also sig-
nificantly impact the potential energy surface of the
electronic ground state, which is the first time this phe-
nomenon has been demonstrated in a molecule using an
ab initio Hamiltonian. Previously, a similar observation
was made with a model Hamiltonian for graphene [6].
Interestingly, a coupling strength (λ ¼ 0.05) that pro-

duces a relatively small Rabi splitting of 0.03 eV around
2 Å is able to open a gap almost twice this size, 0.05 eV, at
the conical intersection. We can rationalize this observation
in the following way. The Rabi splitting is mainly due to
the bilinear term in the Hamiltonian, whereas the lifting
of the degeneracy is mainly due to the self-energy term. In
Appendix F, we show that the symmetry breaking is
insensitive to basis sets and cavity frequencies.
A consequence of the above observation is the possibility

to change relaxation pathways in chemical reactions. The
electron-photon coupling may cause intersection seams to

FIG. 6. QED-CCSD-1 excited-state charge displacement analy-
sis of PNA with and without an optical cavity (λ ¼ 0.05 and
ωres
cav ¼ 4.84 eV). The charge displacement functions with the

cavity for lower (LP, blue) and upper (UP, red) polaritons are
shown in panels (a)–(d). In green, we show the function for the
charge transfer state without the cavity. The dashed black line
represents the sum of the curves for LP and UP.

FIG. 7. Orientation of pyrrole with indication of the
coordinates.

FIG. 8. Potential energy curves in QED-CCSD-1 for pyrrole
calculated without (a,c) and with (b,d) the cavity. Panels (c) and
(d) are zoom-in views of (a) and (b), respectively, in the conical
intersections’ region. The energies are relative to equilibrium
energy. In panels (b) and (d), the blue color map indicates the
electronic or photonic character of the states.
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move or vanish. Note that the avoided crossing in
Fig. 8(d) does not exclude the possibility that the seam
has been moved to a distorted molecular geometry. In any
case, the changes to the energy surfaces may, for example,
lead to reduced relaxation through the conical intersection
to the ground state, such that the relaxation can be
dominated by radiative processes (which are generally
slower). Note also that the majority of molecular orienta-
tions allow for this type of symmetry breaking, which
should make the gap opening experimentally observable
in standard temperature conditions where the molecules
can rotate freely.

V. CONCLUDING REMARKS

We have developed a coupled cluster theory that
explicitly incorporates quantized electromagnetic fields,
denoted as QED-CC. This nonperturbative theory can
describe molecular photochemistry inside an optical
cavity. The QED-CC model is a natural extension of
the well-established coupled cluster model used in elec-
tronic structure theory. The method provides a highly
accurate description of electron-electron and electron-
photon correlation, at least in regions where the electronic
ground state is dominated by a single determinant. These
correlations are not accounted for in commonly used
model Hamiltonians and mean-field methods. The accu-
racy is demonstrated by comparison with exact diagonal-
ization (within an orbital basis) in a truncated photon
space (QED-FCI). Unlike QED-FCI, the QED-CC hier-
archy is computationally feasible for larger molecules.
Extension of QED-CC to approximately include the
environment, such as a solvent, is a natural next step in
further developments. However, one must then carefully
consider how the quantum field should be incorporated
into the environment.
Initially, we investigated the restructuring of potential

energy curves in diatomic molecules. In particular, we
found that the interaction with the cavity creates polaritons
that are more bound than the corresponding bare electronic
excited states. Clearly, polaritons have crucial implications
on the photochemistry. For instance, they can alter the
relaxation pathways and trap molecules in dark excited
states. A further study of these phenomena would be very
interesting.
Cavity-induced effects on charge transfer processes were

also investigated quantitatively for PNA.We explained how
the cavity restructures the charge inside the molecule and
how these effects could be applied in photovoltaics.
Finally, we demonstrated how the cavity field can be

used to manipulate conical intersections in molecules. We
showed that the quantum field is able to lift degeneracies
between ground and excited states. This analysis suggests
that new experimental strategies can be developed to
manipulate ultrafast molecular relaxation mechanisms
through conical intersections.
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APPENDIX A: DERIVATION OF
QED-HF THEORY

Consider the Pauli-Fierz Hamiltonian in the coherent-
state basis, Eq. (28), with a single photon mode,

H ¼ He þ ωb†bþ 1

2
ðλ · ðd − hdiÞÞ2

−
ffiffiffiffi
ω

2

r
ðλ · ðd − hdiÞÞðb† þ bÞ: ðA1Þ

When averaging over the photon vacuum state j0i and
using Eq. (9), we obtain

hHi0 ¼
X
pq

�
hpq þ

1

2

X
r

ðλ · dprÞðλ · drqÞ

− ðλ · hdiÞðλ · dpqÞ
�
Epq

þ 1

2

X
pqrs

ðgpqrs þ ðλ · dpqÞðλ · drsÞÞepqrs

þ 1

2
ðλ · hdiÞ2 þ hnuc: ðA2Þ

This operator has the same form as the electronic
Hamiltonian in Eq. (8), with modified integrals and con-
stants. These modified integrals can be inserted directly into
the expression for the inactive electronic Fock matrix,

Fe
pq ¼ hpq þ

X
i

ð2gpqii − gpiiqÞ; ðA3Þ

and we obtain Eq. (30) for a single mode. This procedure is
easily generalized to the multimode case.
We now consider the origin invariance in QED-HF by

shifting the dipole by a constant, d → d þ Δd. For neutral
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molecules, the dipole moment operator is origin invariant,
Δd ¼ 0, but for charged molecules, this is not the case.
Nevertheless, since the Hamiltonian (A1) is invariant, the

energy is also invariant. On the other hand, the inactive
Fock matrix in Eq. (30) is not invariant. As seen from the
shifted Fock matrix,

�
Fij Fib

Faj Fab

�
→

 
Fij − ðλ · ΔdÞðλ · dijÞ − 1

2
ðλ · ΔdÞ2δij Fib

Faj Fab þ ðλ · ΔdÞðλ · dabÞ þ 1
2
ðλ · ΔdÞ2δab

!
; ðA4Þ

the occupied-virtual blocks of the Fock matrix, Fib and Faj,
are unchanged, whereas the purely occupied and virtual
blocks, Fij and Fab, are dependent on the origin. Explicitly,
for the occupied-virtual block of the Fock matrix, we have

Fjb → Fjb þ
1

2

X
a

δabðλ · ΔdÞðλ · djaÞ

−
1

2

X
i

δijðλ · ΔdÞðλ · dibÞ ¼ Fjb: ðA5Þ

APPENDIX B: QED-CCSD-1 GROUND-STATE
EQUATIONS

Using the QED-CCSD-1 cluster operator defined in
Eq. (38), the coupled cluster ground-state equations [see
Eqs. (10) and (11)] take the form

hRjH̄jRi ¼ hRjHþ ½H; T2� þ ½H; S11� þ ½H;Γ1�jRi; ðB1Þ

hμ; 0jH̄jRi ¼ hμ; 0jHþ ½H; T2� þ
1

2
½½H; T2�; T2�

þ ½H; S11� þ ½½H; S11�; T2� þ ½H; S12�
þ ½H;Γ1� þ ½½H;Γ1�; T2�jRi; ðB2Þ

hμ; 1jH̄jRi ¼ hμ; 1jHþ ½H; T2� þ ½½H; S12�; T2� þ ½H; S11�

þ ½H; S12� þ
1

2
½½H; S11�; S11� þ ½½H; S11�; S12�

þ ½H;Γ1� þ ½½H;Γ1�; T2� þ ½½H;Γ1�; S11�
þ ½½H;Γ1�; S12� þ ½½H; S11�; T2�jRi; ðB3Þ

hHF; 1jH̄jRi ¼ hHF; 1jHþ ½H;Γ1� þ ½H; S11� þ ½H; S12�jRi:
ðB4Þ

Here, we have introduced the notation

H ¼ expð−T1ÞH expðT1Þ: ðB5Þ

This operator can be expressed as H with transformed one-
and two-electron integrals [37].

APPENDIX C: QED-CCSD-1 EXCITED-STATE
EQUATIONS

The expressions for the Jacobian in Eq. (45) are derived
using the commutator expansion. We obtain

hμ; 0j½H̄; τν�jRi ¼ hμ; 0j½Hþ ½H; T2� þ ½H; S11�
þ ½H; S12� þ ½H;Γ1�; τν�jRi; ðC1Þ

hμ; 0j½H̄; b†�jRi ¼ hμ; 0j½Hþ ½H; T2�; b†�jRi; ðC2Þ

hμ; 0j½H̄; τνb†�jRi ¼ hμ; 0j½Hþ ½H; T2�; τνb†�jRi; ðC3Þ

hHF; 1j½H̄; τν�jRi ¼ hHF; 1j½Hþ ½H; S11�
þ ½H; S12� þ ½H;Γ1�; τν�jRi; ðC4Þ

hHF; 1j½H̄; b†�jRi ¼ hHF; 1j½Hþ ½H; S11�; b†�jRi; ðC5Þ

hHF; 1j½H̄; τνb†�jRi ¼ hHF; 1j½H; τνb†�jRi; ðC6Þ

hμ; 1j½H̄; τν�jRi ¼ hμ; 1j½Hþ ½H; T2� þ ½H; S11�
þ ½H; S12� þ ½H;Γ1� þ ½½H;Γ1�; S11�
þ ½½H;Γ1�; S12�; τν�jRi; ðC7Þ

hμ; 1j½H̄; b†�jRi ¼ hμ; 1j½½H; S11� þ ½H; S12�; b†�jRi; ðC8Þ

hμ; 1j½H̄; τνb†�jRi ¼ hμ; 1j½Hþ ½H; T2� þ ½H; S11�
þ ½H; S12� þ ½H;Γ1�; τνb†�jRi: ðC9Þ

For completeness, we also give the expressions for the ην
block of Eq. (14):

hRjH̄jν; 0i ¼ hRjHþ ½H; T2� þ ½H; S11�jν; 1i; ðC10Þ

hRjH̄jHF; 1i ¼ hRjHjHF; 1i; ðC11Þ

hRjH̄jν; 1i ¼ hRjHjν; 1i: ðC12Þ

APPENDIX D: ELECTRONIC WEIGHTS

The ground-state electronic weightswe
gs in QED-CCSD-1

are calculated by projecting the ground-state wave function
jCCi on the elementary electronic basis, that is,
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we
gs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hCCjPeljCCi
hCCjPjCCi

s
: ðD1Þ

The electronic and total projection operators are defined
here as

Pel ¼ jRihRj þ
X
μ

jμ; 0ihμ; 0j; ðD2Þ

P ¼ jRihRj þ jHF; 1ihHF; 1j
þ
X
μ

ðjμ; 0ihμ; 0j þ jμ; 1ihμ; 1jÞ: ðD3Þ

Excited-state weights we
es are calculated in an approximate

way using the norm of the electronic part of the excitation
vector R,

we
es ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
μðRμ;0Þ2
jjRjj2

s
: ðD4Þ

In principle, an equation equivalent to Eq. (D1) should also
be used in this case, substituting jCCiwith jRi. Considering
that we are only interested in a qualitative estimate of the
weights, the approximate form of Eq. (D4) is adequate.

APPENDIX E: COMPARISON OF
QED-CCSD-1 AND QED-FCI

Here, we compare QED-CCSD-1 and QED-FCI. For the
latter method, we perform an exact diagonalization of the

Hamiltonian in Eq. (15) with one photonic excitation in
order to obtain a consistent comparison.
We use a 3-21G basis [82] for H2 and a STO-3G [83]

basis for HF, with internuclear distances RH2
¼ 1.0 Å and

RHF ¼ 0.917 Å. In both cases, the coupling value λ ¼ 0.05
is used.
In Fig. 9, we show the energy dispersion with respect to

the cavity frequency ωcav. In this figure, we use the QED-
FCI linear response spectral function,

AðωÞ¼−
1

π
Im
X
n≠0

hΨ0j
P

ija
†
i ajjΨnihΨnj

P
ija

†
i ajjΨ0i

ω− ðEn−E0Þþ iη
;

ðE1Þ

where jΨni are the eigenfunctions of the QEDHamiltonian.
In this case, we calculate the density-density spectral
function instead of the more appropriate optical spectrum
(with transition dipole moments) in order to compare the
states independently from the selection rules. Coupled
cluster results are displayed in Fig. 9 as red lines with
electronic weights.
For both molecules, we observe excellent agreement.

The only noticeable difference is the absence of a few
electronically excited states in the FCI spectrum. These
states have large double-excitation character and, thus,
small contributions to the spectral function. Notice here that
QED-CCSD-1 is also very accurate for hydrogen fluoride,
where the electronic structure is not exact in CCSD.

FIG. 9. Comparison between QED-CCSD-1 (red solid lines) and QED-FCI (contour map in the background) energy dispersion
plots for (a) H2 and (b) HF. The intensity of the red lines indicates the electronic or photonic contribution to the states,
λ ¼ 0.05 and η ¼ 0.01 a:u:.
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APPENDIX F: ADDITIONAL RESULTS FOR
PYRROLE

We also provide some additional results that are
important to validate the accuracy of QED-CCSD-1 for
pyrrole. First, we address the basis set appropriateness, as

electromagnetic fields may require more diffuse basis
functions. In Fig. 10, potential energy curves calculated
using an aug-cc-pVDZ [70] basis are shown. The inclusion
of diffuse functions does not change the general qualitative
picture described in Sec. IV C, confirming the accuracy
of our predictions. In particular, the position of the
intersections is nearly unaffected by the size of the basis,
and the qualitative shape of the potential energy curves is
unchanged.
In Sec. IV C, we noted that CCSD gives an incorrect

ordering of the 1A2 and 1B1 excited states. This can be
rectified by including triple excitations in the electronic
treatment, as shown with CC3 in Fig. 11.
The opening of the conical intersection is quite robust

with respect to changes in the cavity frequency, ωcav, as
seen in Fig. 12. This supports the claim that the dipole self-
energy term is mainly responsible for lifting the degen-
eracy. The position of the Rabi splitting is, as expected,
highly sensitive to the cavity frequency.
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FIG. 10. Potential energy curves in QED-CCSD-1 for pyrrole
calculated with the cavity for λ ¼ 0.05 using the aug-cc-pVDZ
basis set. The blue color map indicates the electronic or photonic
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