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Fundamental Thermal Noise Limits for Optical Microcavities
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We present a joint theoretical and experimental analysis of thermorefractive noise in high-quality-factor
(Q), small-mode-volume (V) optical microcavities. Analogous to well-studied stability limits imposed by
Brownian motion in macroscopic Fabry-Perot resonators, we show that microcavity thermorefractive noise
gives rise to a mode-volume-dependent maximum effective quality factor. State-of-the-art fabricated
microcavities are found to be within one order of magnitude of this bound. By measuring the first
thermodynamically limited frequency noise spectra of wavelength-scale high-Q/V silicon photonic crystal
cavities, we confirm the assumptions of our theory, demonstrate a broadband sub-uK/ VHz temperature
sensitivity, and unveil a new technique for discerning subwavelength changes in microcavity mode
volumes. To illustrate the immediate implications of these results, we show that thermorefractive noise
limits the optimal performance of recently proposed room-temperature, all-optical qubits using cavity-
enhanced bulk material nonlinearities. Looking forward, we propose and analyze coherent thermo-optic
noise cancellation as one potential avenue toward violating these bounds, thereby enabling continued
development in quantum optical measurement, precision sensing, and low-noise integrated photonics.

DOI: 10.1103/PhysRevX.10.041046

I. INTRODUCTION

Room-temperature, high-quality-factor (Q) optical
cavities enable the investigation of new physical phenom-
ena by enhancing light-matter interaction [1], shaping
electromagnetic modes [2], and modifying the vacuum
photon density of states [3]. However, these advantages
come with an often forgotten cost—interaction with a
thermally equilibrated confining medium inherently injects
noise into the optical mode in accordance with the fluc-
tuation-dissipation theorem (FDT) [4]. Macroscopic reso-
nators [Fig. 1(a)], such as those implemented in gravitational
wave interferometers, minimize this interaction by support-
ing a large mode volume V > 1 in vacuum, where V =
V/(A/n)?3 for the volume V of a A-wavelength optical mode
confined in a refractive index n. The surprising realization
that the sensitivity of these kilometer-scale cavities can still
be limited by Brownian motion in few-micron-thick mirror
coatings [5,6] has spurred interest in low-noise mirror
coatings [7], grating-based mirrors [8,9], and the
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fundamental limits of macroscopic cavities in the presence
of thermal fluctuations [10-12].

Here, we consider the opposite case: optical microcavities
[Fig. 1(b)] [13], whose small mode volumes V~1)
facilitate single-molecule label-free sensing [14], high-
repetition-rate frequency combs [15,16] for frequency
synthesis [17], spectroscopy [18], and astronomy [19],
enhanced coupling for atom-photon interfaces [20-22],
and low-energy (down to single-photon level) nonlinear
interactions [23]. These microcavity-enhanced nonlinear-
ities even reveal new directions in physical science [24]:
experimental demonstrations of non-Hermitian phenomena
[25], topological enhancement [26,27], synchronization
[28], and chaotic dynamics [29] are just a few recent
examples. However, shrinking mode confinement toward
the near-diffraction-limited volumes offered by microcav-
ities significantly amplifies fundamental temperature fluc-
tuations (67%)e1/V [30]. These small-volume temperature
fluctuations are a classic problem in statistical mechanics
[31], and their exact nature was heavily debated [32-34]
until initial measurements were reported in the 1990s [35].
Temperature noise has since been studied in diverse contexts
including high-energy collisions [36], molecular dynamics
[37], spin ensembles [38], and state-of-the-art electron- [39]
or graphene-based nanocalorimeters [40]. In optics, the
associated refractive index fluctuations, so-called “thermor-
efractive noise” (TRN), have been studied extensively in
fiber-based lasers and interferometers [41-44]. In recent
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FIG. 1. Comparison of thermorefractive noise (TRN) in macro-
scopic resonators (a) and microcavities (b). Mode-averaged
temperature fluctuations 67 in large cavities induce refractive
index noise o7 (and, thus, path length changes SL) due to the
mirrors’ nonzero thermo-optic coefficient apg = dn/dT. The
large mode volume V reduces 67, yielding a narrow-band
resonant frequency noise spectrum S, (@) and an rms resonant
frequency fluctuation éw,,, < T, the cavity half-linewidth. This
nondominant thermal noise inhomogeneously broadens the intra-
cavity field spectrum S,,(w). Decreasing V increases both the
magnitude dw,,,; and bandwidth I'; of TRN, while increasing the
resonator quality factor Q = w,/2I" causes both quantities to
exceed I'. TRN, therefore, becomes a dominant source of
homogeneous broadening in wavelength-scale high-Q/V micro-
cavities, leading to thermal dephasing and reduced resonant
excitation efficiency of the cavity field a(r).

years, TRN has emerged as a principal source of resonant
frequency noise in various dielectric microcavity geometries
including microspheres [45], whispering-gallery-mode res-
onators [46,47], ring resonators [48], and photonic crystal
(PhC) cavities [49]. TRN has also recently been shown to
limit the stability of integrated lasers [50,51] and micro-
cavity frequency combs [52].

To date, microcavity TRN has been considered only in a
perturbative regime, where the resulting rms resonant
frequency fluctuation S, o« 1/ vV is much less than
the loaded cavity linewidth 2I" = wy/Q. For sufficiently
high Q and small V, this assumption becomes invalid.
Continued improvements in microcavity performance—
yielding Q > 107, V ~ 1 through fabrication advances
[53] and Q ~ 10°, V ~ 1073 using novel subwavelength
dielectric features [54]—thus raises a simple question: when
will fundamental thermal noise limit the performance of
high-Q/V microcavities?

Here, we answer this open question by deriving general
bounds for optical microcavity performance in the presence
of TRN and find that current photonic crystal and whisper-
ing-gallery-mode (WGM) devices are within one order of

magnitude of this bound. We verify our theory by meas-
uring TRN as the dominant noise source in high-Q/V PhC
cavities and demonstrate the ability to distinguish between
subwavelength mode volumes (V < 1) using fundamental
noise spectra. To our knowledge, these are the first
spectrally resolved measurements of a near-diffraction-
limited optical mode operating at the thermal noise limit.
We believe that our devices’ unique combination of
micron-scale spatial localization with a broadband temper-
ature sensitivity comparable to state-of-the-art room-tem-
perature optical thermometers will enable new directions in
thermal physics and nonequilibrium thermodynamics
[55,56]. As an example of the immediate impact of our
formalism, we analyze the implications for an outstanding
goal in quantum photonics: all-optical qubits using cavity-
enhanced bulk material nonlinearities [57]. Since thermal
noise is found to limit the qubit coherence, we propose and
analyze coherent thermo-optic noise cancellation as one
potential avenue toward continued developments in low-
noise, high-Q/V microcavities. Together, these results
reveal the importance of thermal noise in state-of-the-art
optical resonators, inform design choices to minimize its
impact on device performance, and motivate new research
directions to violate the proposed bounds.

II. FORMALISM

As schematically illustrated in Fig. 1, fundamental
stochastic temperature fluctuations 57(7, ) within a cavity
confining medium of refractive index n and thermo-optic
coefficient arg = dn/dT drive a mode-averaged refractive
index change 6&ii(t) = argdT(t). For an optical mode
completely confined in dielectric, the resulting resonance
shift S (t) = —woargdT(t)/n follows from first-order
perturbation theory [58]. For now, we neglect temper-
ature-induced deformations of the cavity, as the thermo-
elastic coefficient of common dielectrics is typically 2
orders of magnitude smaller than argp [46]. Resonant
enhancement of these mechanical effects over a narrow
bandwidth is possible; however, we are primarily interested
in the broadband noise performance.

In the presence of TRN, the steady-state rotating-frame
intracavity field amplitude is

a(t) = VTS, /’ d[/e—(iAJrl“)(t—t’)Jriﬂ dr"sw(1") (1)
—00

for a loaded amplitude decay rate I" and critically coupled

static drive §;, detuned by A from the cavity resonance.

The associated statistical moments can be computed using

the moment-generating properties of the characteristic

functional (e"ﬁj 00()d"y " \which in the case of zero-mean
Gaussian noise requires only the autocorrelation
(bw(1)dw(t + 7)) = (wparg/n)*(ST ()T (t + 7)) [59,60].
The latter autocorrelation of temperature fluctuations can
be computed from the heat equation
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in a medium of thermal diffusivity D7 driven by a Langevin
forcing term Fp(7,t) which satisfies the FDT. As we
illustrate for slab PhC cavities, Eq. (2) can be solved
analytically for specific geometries; however, for general-
ity, we follow the approach of Ref. [61] and enforce a
single-mode decay approximation by introducing a phe-
nomenological thermal decay rate

f {V[e(7)
Je@@)?
evaluated for the envelope of intracavity energy
density. This form of I'; is chosen for consistency with
(6T?) = kgT3/cyVr, the well-known statistical mechanics
result for temperature fluctuations in a volume V; of
specific heat capacity cy at thermal equilibrium with a

bath temperature 7y [31]. Averaging Eq. (2) over the
optical mode profile, we then find

I'r=D

'é G| .

(F)[*d*F

i&T(Z) + 76T (1)

y = (1), 4)

leading to the solution

(bw(t)ow(t + 7)) = <%aTR> kT e Tl (5)

CVVT
—

2
OWins

where the thermal mode volume

v e
Je(@)?

is the common Kerr nonlinear mode volume found by
solving Eq. (2) in a homogeneous medium [45,62]. For a
three-dimensional mode with a Gaussian-shaped energy
density distribution, V is larger than the standard Purcell
mode volume V = [€|E[2d*7/ max{e|E|*} by a factor
of 2v/2.

Combining Egs. (1) and (5), we can solve for the
statistical moments of the driven cavity amplitude a(r)
as a function of the primary parameters V; and I'y. The
results are discussed in Secs. IV and V based on the
complete derivations in Appendix A. Here, however, we
consider a simplified example of free cavity evolution,
which demonstrates the basic techniques and the cavity
behavior in two limiting regimes. In this case, the amplitude

. Nk -if’*’aw(f)dz/ Iz
autocorrelation  (a(t)a*(r+ 7)) ~ (e )i ye T =
F(z)e™™ can be simplified by evaluating the dephasing
function

-

(PP
EERE

(6)

= exp [(6011”“S> 2(1 —Tyr— e—FT’)} , (7)

T

where we implement the previously described character-
istic functional properties with the frequency noise statis-
tics of Eq. (5). For sufficiently large V (corresponding to a
slow ') and small Q as assumed in previous analyses, the
cavity resonance is quasistatic over the photon decay period
and shifts by much less than a cavity linewidth over time. In
this perturbative limit [Fig. 1(a)], I'y7 << 1 over the cavity
ringdown time. We can therefore expand e~'7% in Eq. (7) to
second order, yielding (a(t)a*(t + 7)) ~ e Tre=m=/2,
The associated line shape, given by the Fourier transform
of (a(r)a*(t+r)) via the Wiener-Khinchin theorem, is
then the original Lorentzian with a small inhomogeneous
Gaussian broadening due to TRN. Simply put, TRN limits
the cavity stability without substantially altering the intra-
cavity dynamics.

However, as the thermal mode volume V; shrinks, 6@,
and I'; increase until they eventually exceed I" [Fig. 1(b)].
In this high-Q/V limit, the resonant frequency @y(?)
directly tracks the temperature noise over the relevant
timescales [i.e., the frequency noise in Eq. (5) is effectively
0 correlated], leading to a homogeneous broadening
of the resonance that dephases the intracavity field.
Inserting the associated limit I'7z > 1 into Eq. (7), we
find (a(t)a* (1 + 7)) ~ e~ (T+00s/T1)7 corresponding to the
broadened linewidth 2I" + 26w, /T ~ 26w, /T7.

Our analysis focuses on the transition to this high-Q/V
limit. Specifically, we derive general solutions to Eq. (1)
for arbitrary TRN powers and bandwidths to calculate
mode-volume-dependent maximum “effective” cavity
quality factors Q. that describe the fundamental limits
of microcavity stability and coherence. Whereas the simple
free evolution model presented in this section reveals the
essential physics of the extreme low- and high-Q/V cases,
our latter generalized solutions are broadly applicable to
any highly confined dielectric microcavity, including
microspheres [45], micropillars [63], ring resonators [48],
microtoroids [64], PhC cavities [49], microdisks [65],
vertical Fabry-Perot cavities [66], and more.

III. TRN MEASUREMENT

Before pursuing these goals, we first experimentally
verify the fundamental assumptions of our TRN model by
measuring the noise spectrum of high-Q/V PhC cavities.
As shown in Fig. 2, our setup uses a Mach-Zehnder
interferometer to measure the phase of a cavity reflection
signal via balanced homodyne detection. A variable beam
splitter separates the emission from an amplified tunable
infrared laser into local oscillator (LO) and cavity input
paths, which are passively balanced to minimize laser
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FIG. 2. Calibrated measurement of TRN in high-Q/V silicon PhC cavities. A shot-noise-limited, balanced homodyne detector (a) is
locked to the phase quadrature of the cavity reflection signal and records the spectrum of resonant frequency fluctuations. The finite
difference time domain (FDTD) simulated mode profiles, thermal mode volume ¥ [Eq. (6)], and thermal decay rate I'; [Eq. (3)] of the
L3 and L4/3 devices tested are shown in (b). The radii of the green holes are increased by up to 5% to form superimposed gratings
which improve vertical coupling efficiency. The measured spectral density of cavity resonant frequency and temperature noise—Sg(f)
and St (f), respectively—(red) for L3 (c) and L4/3 (d) cavities are compared to noise from a specular reflection off the sample surface,
finite-element method (FEM) simulations of cavity TRN, as well as single- and multimode fits. The listed multimode fit parameters
agree with the predicted values in (b). Inset reflection spectra of each device reveal quality factors on the order of 10°, which compare
favorably with the FDTD computed values (1.7 x 10° and 1.6 x 10° for the L4/3 and L3, respectively). Micrographs of the fabricated
designs with enlarged holes relative to the optimal designs in (b) are also inset.

frequency noise coupling. A 1/2 plate rotates the input
signal polarization by 45° relative to the dominant cavity
polarization axis such that the cavity reflection can be
isolated from any specular reflection from the sample using
a polarizing beam splitter (PBS) [67]. The sample stage is
temperature controlled to better than 10 mK using a Peltier
plate and feedback temperature controller. A balanced,
shot-noise-limited photodetector measures the homodyne
signal from the recombined cavity reflection and LO, and
the result is recorded on an electronic spectrum analyzer
(ESA). By actively locking to the phase quadrature of the
homodyne signal with a piezocontrolled mirror, TRN-
induced cavity frequency noise is detected as frequency-
resolved voltage noise. To calibrate the spectrum, we inject
a known phase noise with an electro-optic modulator
(EOM) whose modulation efficiency is measured by side-
band fitting [68].

Figure 2 shows the resulting measurements for two
released (air-clad) silicon PhC cavities: the common L3
cavity [69] and the recently proposed “L4/3” cavity [70].
Fabricated cavities yield high quality factors (up to Q =
400000 at 4y =~ 1550 nm) with efficient vertical coupling
[71]. The variation of Purcell mode volume—V =
(0.95,0.32) for simulated L3 and L4/3 cavities, respec-
tively—also allows us to confirm the expected volume
dependence of TRN. Whereas a direct reflection from the
sample surface (green trace) adds little additional noise to
the LO background (blue), we observe broadband noise

from either cavity’s reflection (orange). The calibration tone
is visible at 200 MHz, and we attribute the resonance at
approximately 15 MHz to optomechanical coupling from
the fundamental flexural mode of the suspended membrane
[72]. In the corrected cavity noise curve (red), we subtract
the LO shot noise and account for attenuation due to the
finite cavity linewidth. As expected, the wavelength-scale
mode volumes yield a spectral density of resonant frequency
fluctuations Sg(f) with nearly 2 orders of magnitude larger
amplitude and bandwidth compared to previous results in
microspheres [45] and ring resonators [48]. The corrected
L4/3 noise spectra in Fig. 3 also confirm that the meas-
urement is invariant across the range of acceptable input
powers, which is limited below by the homodyne locking
stability and above by the onset of nonlinear effects leading
to excess noise. Calibration data, an extended description of
the setup, and an analysis of other possible noise sources are
provided in Appendix B.

The measured noise spectra show excellent agreement
with numerical simulations based on a modified version
of the fluctuation-dissipation theorem for thermorefractive
noise [73], which is further described in Sec. VI. We also
develop an analytic noise model based on a multimode
solution to Eq. (2) in a thin slab, which is similarly
well fitted to the data and yields the fit parameters
(VB3 T3 )2, VEY3 TE3 o) = {3.440.3,28 + 1 MHz,
1.4+0.1,80 £ 3 MHz} that compare favorably with the
expected values ({3.9,29 MHz, 1.5,84 MHz}) from
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FIG. 3. Comparison of corrected L4/3 cavity frequency noise
spectra at various input powers P;, normalized to the maximum
value for the dataset. The rms fractional frequency fluctuation
\/{60?)/wy is computed from the integrated noise over the
plotted measurement bandwidth and plotted in the inset as a
function of P,,. No significant power scaling or deviation from
the mean value (black dashed line) is observed, indicating that
noise contributions from nonlinear effects can be neglected.

Egs. (6) (evaluated numerically from the finite element
method-simulated mode profiles) and (3). In Eq. (3), we
assume a two-dimensional Gaussian mode and reduced
thermal diffusivity Dy = D(1 —¢)/(1 + ¢) for the pat-
terned slab with porosity ¢ compared to the unpatterned
thin film diffusivity D [74,75]. As predicted, the reduced
mode volume of the L4/3 cavity increases the bandwidth
and spectral density of thermal fluctuations. These obser-
vations thereby illustrate a new technique for evaluating
the mode volume of fabricated optical resonators using
fundamental quantities as opposed to complex invasive
techniques, such as near-field scanning optical micros-
copy [54].

The noise spectra of the proposed single-mode approxi-
mation [Eq. (5)] underestimate the measured noise of both
devices at low frequencies @ < I'7 but accurately approxi-
mate S in the range of frequencies of interest (near and
above the cutoff frequency ') and conserve the integrated
frequency noise (Swzy). Our results indicate that TRN is
the dominant noise source in high-Q/V resonators and
validate the suitability of a single-mode approximation
to describe the spectrum of frequency fluctuations in
general microcavity geometries. To our knowledge, these
measurements are the first demonstration of broadband,
wavelength-scale cavity readout at the thermodynamic
limit. The corresponding temperature sensitivity, SIT/T2 ~
300 nK/+/Hz as shown in Fig. 2, is within one order of
magnitude of room-temperature records set by multimode
WGM thermometers [76,77]. Compared to those state-of-
the-art sensors, our PhC devices occupy 6 orders of

magnitude less area and offer 3 orders of magnitude larger
bandwidth. We expect this unique combination of micron-
scale spatial resolution and broadband, thermodynamically
limited readout to enable new directions in thermal physics.

IV. MICROCAVITY Q/V LIMITS

Having experimentally verified the TRN model, we can
now use it to estimate the fundamental performance limits
of room-temperature microcavities. As described in Sec. 11,
TRN broadens the cavity linewidth to 21" according to the
cavity mode volume V; and thermal decay rate I';. The
associated quality factor Q. = wy/2l e is therefore
bound to a maximum value indicative of the resonance
stability, which, in turn, determines the fidelity of inte-
grated optical frequency references or synthesizers [17], the
minimum resolvable resonance shift in microcavity sensors
[78], and the spectral purity of microcavity lasers [79]. We
also specifically consider the quality factor to mode volume
ratio Q¢/V, which is proportional to the peak intracavity
intensity and, therefore, of particular significance for cavity
nonlinear optics [80] and enhanced sensitivity to pointlike
defects [81].

The effective quality factor Qe = wg(|@(t)|?) /2|5 |* of
interest in this case can alternatively be viewed as the ratio
of intracavity energy (|@()|?) to energy input per cycle
2[5in|? /@, in a resonantly excited, critically coupled cavity.
Under the same conditions, solving Eq. (1) for (|a(z)|?)
subject to the noise autocorrelation of Eq. (5) yields

Oeir (@) _
L= _ xS , , 8
o = arp e ) (8)

where y; is the lower incomplete Gamma function,
x = (8pms/T'7)%, and s = I'/T'; + x. Intuitively, decreas-
ing the cavity linewidth 2I" well below the broadened
linewidth has little impact: the prolonged energy storage
offsets the reduced excitation rate of the rapidly shifting
resonance, leaving the intracavity energy unaltered. Q. is
maximized in this limiting case. The corresponding upper
bound of Eq. (8) at 7 =300 K is plotted for various
material systems in Fig. 4 as a function of V assuming a
three-dimensional Gaussian-shaped mode in a homo-
geneous three- or two-dimensional confining medium. In
the latter case, the decay rate I'; = 37Dy/V?/? decreases
by a factor of 3v/2V'/? to account for the restricted
dimensionality of thermal diffusion.

In the joint limit (Swgys, ') < 'y, valid for sufficiently
high-Q, low-V cavities, Eq. (8) simplifies to Q3 =
w7 /20w?,, thereby recovering the broadened linewidth
26@2ys /Ty derived in Sec. II. Q™ then scales as V!/3 in a
homogeneous medium, indicating that larger mode vol-
umes reduce the integrated thermo-optic noise, as expected.
For this reason, recent ultrahigh-Q (Q > 10®%) integrated
resonators are specifically designed with V > 1 to limit
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Gaussian mode thermal noise limits (7' = 300 K)
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FIG. 4. Thermal-noise-limited room-temperature quality factor
to mode volume ratios (QM¥* /V) for the materials considered in
Appendix C assuming a Gaussian-shaped mode at 4y = 1550 nm
admitting thermal diffusion in two or three dimensions (dash-
dotted and solid lines, respectively). These limits are compared
our devices as well as other fabricated and proposed micro-
cavities. Insets illustrate typical confinement geometries for the
range of V listed (see Refs. [23,53,54,64,80,82-89]).

TRN [65,90]. Alternatively, Fig. 4 illustrates the advantage
of reducing V to maximize QI*/V. Further optimization
of subwavelength cavities [54,91] could therefore improve
the intensity enhancement achievable in room-temperature
devices toward the open goal of microcavity-based quan-
tum nonlinear optics.

Surprisingly, the Qm*/V limits of several common
materials lie within an order of magnitude. Yet this effect
is not fundamental: aluminum nitride, for example, is
shown to outperform all other plotted materials by over
an order of magnitude due to its simultaneously large
thermal conductivity and small thermo-optic coefficient.
While our review of high-Q/V cavities (Fig. 4) in various
materials shows that all fabricated cavities obey the
projected bounds, silicon PhC slab cavities [53] and silica
microtoroids [64] lie within an order of magnitude of the
thermal noise limit. Furthermore, various simulated devices
[84—-87] exceed the limit; their practical realization thereby
requires low-temperature operation—where TRN and the
thermo-optic coefficient are both suppressed [92]—or
novel noise-suppression techniques as discussed in Sec. VI.

V. IMPLICATIONS FOR ALL-OPTICAL QUBITS

These proposed thermal noise limits have practical impact
for future devices. Chief among the applications driving the
pursuit for high-Q/V cavities is quantum information.
Within the past year alone, numerous proposals [93-97]

have explored the feasibility of photonic microcavity-based
quantum gates using strong photon-photon interactions
mediated by bulk material nonlinearities. Driven by recent
developments in high-Q/V microcavities [54,98] and thin
film nonlinear optical materials, current experiments are
approaching 1% [99] of this so-called “qubit limit of cavity
nonlinear optics” [57] where single-photon nonlinearities
outpace cavity losses. Strong emitter-based single-photon
nonlinearities in high-Q/V cavities are also a promising
route toward optically addressable qubits but rely on precise
coupling to single atoms [100], ions [22], quantum dots
[101], or defect centers [102]. We therefore focus our
analysis on emitter-free, all-optical qubits using bulk non-
linearities. These techniques promise room-temperature
operation—the requisite hallmark for connecting distant
nodes in future quantum networks [103]—by leveraging the
relative immunity of optical photons to thermal noise. While
this insensitivity is granted by Planck’s law, we show here
that, through the thermorefractive effect, temperature fluc-
tuations can significantly impact light in a high-Q/V
resonator. For coherent processes, TRN-induced dephasing
of the field amplitude @ (#) must be considered in addition to
the previously discussed stability and intracavity energy
limitations in Sec. IV. We therefore solve for (a(z)) in the
presence of TRN. This result corresponds to an effective
quality factor Q. = wo|{@(1))|*/2|5i|> in a resonant,
critically coupled cavity, yielding

oy (TN s
O == o) it

for the previously defined x and 5. Equation (9) describes the
coherence of the intracavity field and is synonymous with
the dephasing time 75 = 1/To = 2Q.¢/®wy commonly
considered for quantum emitters [104].

We can compare [y to a nonlinear coupling rate g
between qubit basis states with the simple figure of merit
FOM = ¢g/2I ., which intuitively corresponds to the
number of qubit operations that can be completed prior
to decay or dephasing. For bulk y*) and y(®) nonlinearities,
the coupling rate g is a function of material parameters and
mode volumes [105]. In the case of )((3> interactions, g =
oK,/ Vier for the Kerr interaction mode volume Vi, =

V7 (as discussed in Sec. II) and coupling constant

®3)

r = zﬂi)(_é“ (10)
negy /10

at wavelength 4,, where 7, ¢, and ¢, are Planck’s constant,
the speed of light, and the vacuum permittivity, respec-
tively. In the strong coupling regime g¢/2I'> 1, the
intensity-dependent refractive index leads to an anharmo-
nicity of Fock state energies that decouples the qubit
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Photonic Qubit Figures of Merit (Silicon Cavity, T' = 300 K)
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FIG. 5. Performance of room-temperature all-optical qubits using bulk ) (left) or electric-field-induced y® (right) nonlinearities in
silicon microcavities as a function of loaded cavity quality factor Q at 4, = 2.3 ym and the relevant normalized nonlinear mode volume
V (Vker = V7 and Vshg, assumed to be equal to V, for @) and y, respectively). The figure of merit (FOM)—the ratio of qubit
coupling rate g to the composite decay and thermal dephasing rate 2I'oyy = @/ Q;r—is largest for strong coupling (g/2I" > 1) and weak
dephasing (Q.¢ = Q). These competing characteristics yield an optimum quality factor Q = Q for any V. Three-dimensional thermal

diffusion in a homogeneous medium is assumed.

basis (zero- and one-photon states) from higher-energy
states [57].

Alternatively, bulk y{?) nonlinearities can mediate cou-
pling between doubly resonant first- and second-harmonic
qubit basis states. The coupling rate g = @wyK, /Vsl,fg2 then
describes the frequency of Rabi oscillations between a
single photon in the second-harmonic mode and two
photons at the fundamental frequency [93,106,107].
Assuming an equal amplitude decay rate I" for both modes,
strong coupling again requires g/2I" > 1. Here, the appli-
cable coupling constant and second-harmonic mode vol-
ume are defined as

mhe y?

K, = | 2ex 1
¢ ndey A% (11)

_ (2 B PR | P

Ve = MAY, (12)
L LB EDE 8T

for the first- and second-harmonic modes Ew and Ezw,
respectively, and the indices i, j, and k corresponding to
field components associated with the dominant > tensor
element. The integral [(...)d°F is taken over all space,
while [, (...)d°F is restricted to the nonlinear material.
Extended derivations of K,, K,, Vg, and Vi, are
included in Appendix D.
The resulting figures of merit

Q ff Q ff
FOM,o =K, =,  FOM,o =K. (13)
Kerr shg

are plotted in Fig. 5 for Gaussian-shaped modes in silicon.
Similar figures of merit are applicable to high-fidelity

single-photon sources [105,107]. While silicon’s centro-
symmetric structure precludes an intrinsic (®) nonlinearity,
we assume the intrinsic y©) nonlinearity can create an
electric-field-induced y® = 3y®)E,. near the breakdown
dc electric field Eg4. [108].

An ideal qubit operates well within the strong coupling
regime with minimal dephasing. In the presence of TRN,
increasing Q/V improves the former at the cost of the latter,
leading to the observed mode-volume-dependent optimum
loaded quality factor Qg ~ wol'z/ 26w2,. Figure 5 also
illustrates a relative performance advantage for y?) devices
in silicon, as strong coupling can be achieved at lower
quality factors. For example, the peak FOM,¢) ~ 10 is 3
orders of magnitude greater than FOM, s assuming Q =

Qop and Vier = Vshg = 1. Although small f/shg—which as
illustrated in Eq. (12) involves maximizing the nonlinear
overlap function between two colocalized cavity modes—
is generally more difficult to achieve than small V., [109],

FOMI(Z) x nglg/ 2 also demonstrates more favorable scaling

at larger mode volumes.

VI. BEYOND THE THERMAL NOISE LIMIT

This brief example manifests the practical limitations
imposed by TRN, which yield wavelength-scale ultrahigh-
Q resonators [65], narrow-linewidth lasers [110], and high-
performance optical qubits thermodynamically forbidden.
Breaking this fundamental “noise-volume trade-off” in
optical microcavities would lift our proposed Q/V limits
and could enable quantum-noise-limited readout of dif-
fraction-limited optical modes, thereby unveiling new
possibilities in physics. Active cavity stabilization is one
candidate solution; however, the limited speed of control
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loops and tuning mechanisms has restricted the noise
rejection bandwidth of previous demonstrations to a few
hundred hertz [76]. Passive feedback noise rejection
via photothermal backaction [61]—resonance-detuning-
dependent laser heating that counteracts temperature
fluctuations—has also been experimentally demonstrated

[52], but the noise reduction scales with F}l/ 2 and therefore
becomes ineffective for small cavities. Furthermore, neither
feedback-based technique can suppress fluctuations in the
high-Q/V regime, where the rate of resonant frequency
fluctuations exceeds that of cavity leakage.

To overcome these limitations, we propose and analyze
coherent thermo-optic (TO) noise cancellation as an
avenue toward the open goal of broadband thermal noise
suppression. This technique stems from an analogous
proposal for thermal noise reduction in mirror coatings
[7,30,111-113]: when the uniform temperature of a
thickness ¢ coating is raised by 67, the increase in phase
accumulation 8¢ = 2xtén/A = 2rtagST/A  from an
increase in refractive index om can be offset by the
coating expansion 8t = tak; ST toward the incident beam
provided the linear coefficient of thermal expansion akg
and atg have the same sign. In a microcavity, this
relationship is reversed. Intuitively, we expect thermo-
optic noise to be minimized when the normalized
thermoelastic (TE) frequency shift dwrgr = dwg/w =
—ak 6T of a freely expanding cavity equals that of
the thermorefractive (TR) effect, dwrr = —arrdT/n,
leading to the athermal condition

A _ 1 (14)
ATR n

for the energy confinement fraction y € (0, 1] of the optical
mode in the dielectric. Equation (14) can be satisfied by
tuning y provided ok and ary are of comparable magnitude
with opposite sign. Whereas we previously assumed
|aks /arr| < 1 for common dielectrics, these two require-
ments are remarkably well satisfied by a range of polymers,
where the Clausius-Mossotti relation dictates aky/arg ~
—(n>+2)(n*>—1) [114]. In polymethyl-methacrylate
(PMMA, n =1.48), for example, y = 0.83 enables
steady-state athermal operation. Our previously demon-
strated high-Q/V polymer “ladder” cavity designs [115]
schematically illustrated in Fig. 6(a) are therefore well suited
for TO noise cancellation.

But does steady-state athermal behavior imply complete
broadband TO noise cancellation? Unfortunately, the
answer is no, which we illustrate with the computational
form of the FDT used to simulate TRN in Sec. III [5,73]. In
this formalism, the total TO resonance shift

Sivro = / () + g PTEHPT.  (15)
—_——

gro(7)

f [H7]

FIG. 6. Athermal polymer (PMMA) microcavity design by
coherent thermo-optic noise cancellation. The Q-optimized base-
line ladder-type nanobeam cavity (a) with {a,a’,w,,w;,w,}=
{64701m,0.9144,3a,0.85w,,0} and thickness ¢ = 3a is formed by
quadratically tapering the lattice constant a to a’ over the inner
12 periods with a constant “rung” duty cycle , = w,/a = 0.4.
This cavity is driven by anticorrelated volumetric and boundary
heat sources corresponding to TR and TE noise, respectively, in
FEM-based fluctuation-dissipation simulations. The composite
TO frequency noise spectrum Sg o [VST(7, f)]* is computed
from the resulting harmonic temperature profiles 5T(7, f) (b). The
TO noise level is bounded by the coherent (—) and incoherent (+)
sum of TR and TE contributions (shaded region). The optimized
parameters {a,a’,w,,w;,wq,t,n,}={697nm,0.874a,3a,0.85w,),
10nm,0.84,0.6} provide broadband TON cancellation (e) as
visually depicted by reduced ST(7, f) at low frequencies (d).
The color scale in (d) is equal to (b) to facilitate comparison.

i.e., the spatial average of temperature fluctuations
ST (7) weighted by gro(7), is calculated at frequency w;
by driving the entropy S (conjugate to o67) with a
harmonic, perturbative heat source 6Qro (7,1) =T5S(r,t)=
T Qogro(r)cos(w;t), where Qy is a constant of proportion-
ality. The resulting spectrum of fluctuations,

2kpT
Sma)(a)i) = FBQ% diss»
i

(16)

at the equilibrium temperature 7 is then computed from the
time-averaged ((-)) power dissipation [73]
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Was = [ FUVOTGORT  (17)

due to irreversible heat flow from the resulting harmonic
temperature profile §7(7,¢) in a material with thermal
conductivity k. We obtain the functional form of the TR and
TE contributions to the composite TO weight function
g10(7) = g1r(F) + gre(7) by placing the associated first-
order perturbation theory results [58,116] into the form of
Eq. (15):

S & / e (AR ERRSTH R, (18)
Q

grr (7)

dheh®) [z o DL
S~ | ———E L |E (F) P + =2 | 8T (F)d2F.
o~ [ BB P + PO rrars

~~

gre(7)

(19)

Here, E I (D 1) is the electric (electric displacement) field
parallel (perpendicular) to the cavity boundary 0Q, h(7) is
the dielectric thickness between neighboring boundaries,

and we assume a normalized mode [ n?|E[2d*7 = 1. We
also note that Eq. (19) is valid only for sufficiently low
frequencies @ < D7/ max {h(F)}* such that §T(F) is
approximately uniform throughout the dielectric between
neighboring boundaries. We therefore see that TRN is
associated with an energy-density-dependent volumetric
heat source §Qr(7) = TQogrr(7), whereas TE noise is
associated with a surface heat source 6Qg(7) =
TQogre(7) that depends on the field intensity and mechani-
cal displacement amplitude of the dielectric boundary.
Given this formulation, we immediately see that the TO
noise cannot be completely canceled at all frequencies due
to the spatial mismatch between the heat sources, which
invariably leads to irreversible heat flow and the associated
noise. However, our analysis reveals two intuitive design
principles to maximize the coherence between anticorre-
lated TR and TE sources, thereby minimizing the total TO
noise: (i) The cavity boundaries should be placed near high-
intensity regions of the cavity mode to maximize the spatial
overlap between TR and TE sources; (ii) we intuitively
expect that the amplitude of the harmonic temperature
profile, and thereby the TO noise, should be minimized if

the total added heat Qo= [, 601r (P A7+ [,080 (P d?F

is zero. This expectation is true away from the sources at
sufficiently low frequencies, where thermal diffusion effec-
tively “masks” the exact source locations, and is actually
equivalent to the athermal condition of Eq. (14).

Guided by these two simple principles, we optimized the
coherent TO noise cancellation of the PMMA ladder cavity
in Fig. 6. Our baseline design yields Q = 3 x 10°, V = 2.6,
and y = 0.75—approximately 10% away from the athermal

confinement condition. However, the beam ends are
assumed to be fixed for support, which restricts lateral
thermal expansion and leads to a dominant TR effect
as shown by the individual TR and TE noise spectra in
Fig. 6(c). If both heat sources are simultaneously simulated,
the resulting TO noise resembles the coherent combination
of the individual contributions; i.e., the noise amplitudes
subtract as desired. However, as depicted by the associated
harmonic temperature profiles in Fig. 6(b), the achievable
noise reduction is modest owing to the dominant amplitude
of the TR source near the center, high-intensity region of
the cavity mode.

According to criterion (ii), it is evident that the TE source
must be amplified to improve the noise cancellation.
Freeing the cavity ends achieves this goal by enabling
isotropic expansion but violates criterion (i): expansion
along the beam length amplifies boundary displacements
and the associated TE heat source away from the TR source
maximum at the cavity center, thereby minimizing the
spatial overlap between the two heat sources. As a result,
TO noise suppression is again limited despite the nearly
equal TR and TE noise contributions.

To simultaneously colocate the heat sources and magnify
the TE effect, we instead propose placing a thin air slot
through the ladder rungs at the center of the cavity as shown
in Fig. 6(a). In the original design, expansion along the
ladder rung length displaces the side rail boundary, where
the cavity field is weak. The modified design’s narrow slot
moves this displacement boundary to the center of the beam
(the “half-rungs” expand to fill the gap), where the cavity
field and TR heat source are maximized. We then thin the
beam to satisfy criterion (ii) within 1% and redesign the
cavity defect region to maximize Q. The final optimized
design supports a high-Q/V resonance (Q =6 x 10%,
V = 0.75) that suppresses fundamental thermal noise by
over an order of magnitude at low frequencies. The
temperature profiles in Fig. 6(e) graphically evidence this
cancellation and suggest again that the achievable suppres-
sion is limited by the imperfect coherence of the two
spatially resolved heat sources.

This intuition-driven optimization is a first proof-of-
concept demonstration of broadband, coherent cancellation
of fundamental thermodynamic fluctuations in a micro-
cavity. While the achievable noise reduction in our trial
structure is relatively limited, the design is based on simple
principles that can be readily extended to other designs,
materials, and optimization techniques. For example, the
interdisciplinary thermo-optical design of high-Q/V, low-
noise resonators requires structural modifications that are
well suited to recent developments in topological optimi-
zation of subwavelength integrated photonics [91,117,118].
The coherent thermo-optic cancellation scheme can also
be applied other materials beyond polymers, such as
CMOS-compatible titanium dioxide (TiO,) [119] or per-
ovskites [120] with negative thermo-optic coefficients. Our
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preliminary results thus motivate an exciting new research
avenue into novel noise abatement schemes in pursuit of
ultrahigh-Q/V cavities beyond the thermal noise limit.

VII. SUMMARY AND OUTLOOK

Ultimately, understanding the fundamental stability and
coherence limits of optical microcavities relies on the
proper characterization of thermo-optic noise. Toward this
end, we have presented a general theory for thermorefrac-
tive noise in optical microcavities, discussed the resulting
practical limitations on future integrated photonic compo-
nents, and highlighted design choices that optimize device
performance in its presence. We experimentally verified our
model by measuring the dominant effect of temperature
fluctuations in high-Q/V silicon PhC cavities, which
demonstrated the viability of optical microcavities as
high-spatial-resolution temperature probes operating at
the fundamental thermal noise limit. Our results show that
nonperturbative TRN ultimately limits the achievable
quality factor in small-mode-volume cavities and that
experimental devices have neared this fundamental bound.
Violating the observed trade-off between mode volume and
thermo-optic noise stands as an exciting avenue for future
investigation. We hope that our proposal and analysis of
one possible solution—coherent thermo-optic noise can-
cellation—toward low-noise, high-Q/V integrated optical
devices further motivates this field of research. Ultimately,
these advances will be necessary to achieve the perfor-
mance required for future developments in optical quantum
information processing, cavity optomechanics, precision
optical sensing, and beyond.
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APPENDIX A: TRN THEORY

While the development of ultrahigh-performance optical
resonators has only recently warranted its study within
optical systems, stochastic temperature fluctuations are a
fundamental concept in thermodynamics [31]. Assuming
Boltzmann statistics within a finite volume V with specific
heat capacity cy at temperature 7, we find

kyT?

5T?) = )
(677) oV

(A1)

In optical microcavities, V approaches diffraction-limited
volumes leading to temperature fluctuations that signifi-
cantly impact the resonance stability in materials with a
temperature-dependent refractive index.

Here, we derive the associated TRN spectrum in an
optical microcavity under the single-mode approximation
described in the main text. Using this approximation, the
intracavity field statistics are derived. In the typical pertur-
bative limit where the rms frequency fluctuation is much
smaller than the loaded cavity linewidth (dw,,s < 2I';), we
use perturbation theory to solve for the evolution of the
cavity field a(¢) and the associated noise spectrum S, (7).
We also provide general solutions for the first and second
statistical moments of a(¢), which are used in the main text to
derive “effective” quality factors in the presence of thermal
noise. The solution for S,,(#) in the limiting case of high-Q
cavities—where the thermal decay rate 'y > I'; and the
frequency noise can be assumed to be white—is also
provided. Finally, we compare the single-mode noise
spectrum to that derived from a formal solution to heat
diffusion in an infinite two-dimensional slab, which we find
to most accurately model the specific geometry of the
photonic crystal microcavities in our experiments.

A few notes on convention: (i) We derive two-sided
angular frequency noise spectra S,,,, (@) but plot one-sided
frequency SpeCtra Sff (f) = 2S(na)(2”f)/2” = Sa)w(zﬂf)/”
for experimental measurements to conform with the
common conventions of the gravitational wave community;
(i1) temporal coupled mode theory decay rates I'; are
amplitude decay rates; the associated quality factors are
therefore defined as Q; = w,/2l;.

1. Statistics of microcavity TRN

To first order, the change in resonant frequency under a
permittivity perturbation Se(7, r) can be expressed as

s (1) 1[5 8e(7, 1) | E(F)Pd°F
o0 2 [eE(PEF
1 [, nén(7, 1)|E(F)*d°F
Ver  max{e|E(7)?}

() 2

, (A2)

where we make the approximation e = 2n dn and intro-
duce the standard mode volume

2d3;.'

|
Glay

(A3)

The change in refractive index én(7, 1) is directly propor-
tional to temperature change 5T (7, ), with the thermo-optic
coefficient atg = dn/dT serving as the constant of pro-
portionality. We therefore find
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:_LftsnaTR5T('r’,t)n| ()|2d3?. s

max{e|E(7)*}

Alternatively, Eq. (A2) can be evaluated for a uniform,
mode-averaged temperature change 57'(¢) assuming com-
plete confinement of the mode within a homogeneous
medium. This approach yields

Sw (1)
o Vet

Sw(t) 1 _
@ = - n aTR(ST(l‘). (AS)
Comparing Eqgs. (A4) and (AS), we find
- jud 2 3=
5T (1) = LféT(r, t)e(7 2|E(r)| ad’r . (A6)
Vet max{e|E(7)[*}

Equation (AS5) can now be solved using the mode-averaged
temperature change, whose evolution is derived from the
heat equation (given a thermal diffusivity Dr)

OST (7. 1)

at - DTV25T - FT(7’ t)

(A7)

driven by a thermal Langevin source Fy(7,t) with the
statistics [121]

(Fr(71, 1)) F7(F2, 1))
2D kpT?
7T B 05

Cy

—

(ty = 1)V, - Vi [8(F — F5)]  (AS8)

1

that satisfy the fluctuation-dissipation theorem. Averaging
over the mode, we find the approximation

+ 76T (1)

= Fr(1). (A9)

d[oT (1))
dt
where 'z is introduced as a phenomenological thermal
decay rate whose form is chosen later to ensure the form of
(8T?) matches the canonical result from statistical mechan-
ics [Eq. (A1)]. In analog with 67(¢), the mode-averaged
thermal force Fy(1) is

_ 1 [Fr(7, 0)e(F)|E(F)PdF
Fr(1) _ L JF( f)€(rq)|q( )l (A10)
Ve max{e|E(F)|*}
The steady-state solution of Eq. (A9),
- ro ,
ST (1) = / F(#)eTr-"ap, (AI1)

can then be used to find the corresponding statistics of the
temperature fluctuation at equilibrium (i.e., long ?):

Fr(1))
(A12)

(6T()6T(t + 7)) / dt/ dt'"(Fr(t)F

) o-Tr(t+e=1")

The result requires the autocorrelation of Fr(t), which
is readily evaluated using the mode-averaged form of
Eq. (A10):

2 3;: Y. o 2
(Fr(OF; (14 2) = 213;5’;:0 fd[mij{efE)(|7E)\(2})]| 5 o
Ry (0)
= R, 7, (0)8(z). (A13)

Inserting this result into Eq. (A12) along with the change of
variables 1’ — ¢ + 7’ yields

R 7.0
FTFT( )e—FTM.

(6T (t)6T(t+ 1)) = (A14)
2
Correspondence with Eq. (A1) therefore requires
Rr,r,(0)  kgT} 2kpT2T;
= =R LA AR Al5
o, oV Friy (0) = oV (A15)

Comparing Eq. (A15) to Eq. (A13) then lends a calculable
form of the decay rate I';:

v, _ p, L EHVEDIED) il
[ aFe(RIED*

Combining Eqgs. (A14)-(A16) with the first-order per-
turbation theory relationship dwy (1) ~ —(wy/n)argdT (1)
lends the desired autocorrelation of the cavity resonance
frequency

(A16)

(bw(D)6w(t + 7)) ~ dwkye T, (A17)
for the rms resonant frequency fluctuation
@WoATR kBT(Z)
OWpms = \[ = AlS8
wrms n CVVT ( )

2. Derivation of the thermal mode volume

The same correspondence to Eq. (Al) can be used to
solve for the thermal mode volume V; [45]. For complete-
ness, we recapitulate this derivation. In an infinite homo-
geneous medium, we can solve Eq. (A7) using Fourier
modes instead of introducing the phenomenological param-
eter 'y, yielding
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o F(w,k)

5T(w. k) = - (A19)
iCU + DT|k|2

Taking the temperature mode average in Eq. (A6) and
inverse Fourier transforming yields

. 1 E(7)? .
ST (1) = : /d37 d (r)| /da)e"“”
(27)* Vg max{e|E(7)|*}

x/d3lze"’_"'77F(w’k)q )
iw + Dr|k|?

Using the frequency-space autocorrelation of the Langevin
driving force [compare Eq. (A13)] [122],

(A20)

<F(01»E1)F*(w27%2)>
42kBT%DT

= (2 LSRRy~ K)o —wa). (A2
we can then solve for the autocorrelation of 5T
~ ~ E 2112 ) T2
<5T(Z)5T*([+’[)>:[maX{€| %<'2| }] Bt 0
(27[)‘ Veff Cy
. ~ R ]2
x/d3ke‘DT|k2T /d37€(f)|E(17)|2e’k" .
(A22)

Equation (A22) must equal Eq. (Al) for z =0, which
reveals the final solution for the thermal mode volume V:

_ (Vi fmax (el E(R) )2
[ | | d7e(F)|EF) PP
_ ngf[max{€|ﬁ(7)|2}]2 _ ngf

. = Let
Var

et (A23)
J &re(P?ER)*

where

o [ dFe(F)?|E(F)*

T max{e2|E[*}

(A24)

This result matches Gorodetsky’s original result [45] with
the exception of different normalization conditions.

3. Comparison to multimode thermal
decay in a 2D PhC slab

Under the single-mode approximation derived in the
preceding sections, Eq. (A17) implies a Lorentzian TRN
spectrum

2 ko T?> 2T
©o )kB 0_“r (A25)

Sww(w) - (7 aTR CVVT 1—% + 02
As noted in the main text, this approximate spectrum can be
evaluated for any optical microcavity (photonic crystals,
microtoroids, microbottles, ring resonators, micropillars,
microdisks, and so on) independent of its exact confining
geometry. This feature allows us to derive general
noise limits as illustrated in the main text and derived in
Appendix A 4. If a particular experimental system is of
interest, we can verify the accuracy of this approximation
by solving the stochastic heat equation [Eq. (A7)] for that
particular cavity geometry. Here, since we measure TRN in
high-Q/V ¢ 2D slab photonic crystal cavities (see the main
text and Appendix B), we demonstrate this evaluation
for a Gaussian mode confined within an infinite two-
dimensional slab. The heat equation in this case lends
logarithmically—as opposed to exponentially—decaying
temperature fluctuations in time.

For a slab of thickness w lying atop the xy plane, the
local temperature change 67'(7, 1) = >, T, (7|, )¢, (z) can
be expanded in terms of the out-of-plane eigenfunctions
¢,(z) = cos(nmz/w) assuming insulating boundary con-
ditions on the top and bottom of the slab. The stochastic
heat equation then simplifies to the form

8Tn (?” s l)

o D7[V? — (nz/w)*|T, (7). 1)

+%/¢Z(Z)FT(7, t)dz. (A26)

If we assume a two-dimensional Gaussian mode profile

2012 2
L omI7l*/20

(PIEGP = {3

0 else,

O0<z<w, (A27)

all n # 0 terms in the temperature expansion have zero
contribution to the mode-averaged temperature fluctuation
[Eq. (A6)] of interest, which involves the integral
J #.(z)dz. Equation (A26) then simplifies to the two-
dimensional form

8T(?H, l)

5 = DrVAT(F|.0) + Fr (7).,

(A28)

where we drop the n =0 subscript and introduce a
modified fluctuation F 9(7“, 1) with statistics

(FY (), ) F (7, 1)

- [ [ @@ O F . 0)

1 2D;kpT?
— _STTBT0s (A29)
w Cy

(r=1)V; - 6;(‘5(7” — 7).
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Comparison of single-mode and multimode TRN spectra
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FIG.7. Normalized noise spectra S,,,(w) = I(w/T'7) for single-mode [Eq. (A31)] and multimode [Eq. (A30)] TRN in an infinite slab

of finite thickness.

Comparing Eqgs. (A28) and (A29) to their three-
dimensional analogs [Eqs. (A7) and (AS8)], we see that
projecting onto the n =0 subspace reduces the finite-
thickness slab to an infinite two-dimensional problem where
Fr is scaled by w™!/2. We can then apply the techniques of
Appendix A 2 (expansion in Fourier normal modes) to solve
for the spectrum of temperature (and, therefore, resonant
frequency) fluctuations. Without inverse Fourier transform-
ing frequency, the autocorrelation of Eq. (A20) gives

Sow (@)

2 kyT2 Drki
=2(DLar ) -2 °/ s |eE2 (k) Pk
n wey (DTkH) +w
= @a *_ ksTh ” a e ‘dx
n N 2zwe,Dr Jo x*+ (wo?/Dy)?

Imm(waz/DT)

(A30)

with the change of variables (kjo)* — x. Note that we treat
the effect of patterned holes in our experimental structures
through a reduced thermal conductivity, and, therefore,
thermal diffusivity, as a function of the slab porosity (see
Appendix B for further detail). We can compare this result
with the single-mode approximation, which [by evaluating
Egs. (A16) and (A23) for the Gaussian mode profile in
Eq. (A27)] gives the thermal mode volume V; = 4zwo?,
decay rate I'; = Dy/6?, and noise spectrum

R
qom _ (@ . A31
ww(a)> ( n aTR) 271'WCUDT 1 + ((‘)()-Z/DT)2 ( )
N—————
In(wo?/Dr)

As expected, the integral f 2. Swwdw/ 27 of either spectra
yields (6w”) = (woarg/n)*(6T?) = (woarr /n) ks T5/cyVr
in correspondence with Eq. (Al). Figure 7 plots each

normalized spectrum for comparison along with the ratio
Lum/ Ism- These results substantiate the claims in the main
text: the single-mode approximation undershoots at low
frequency @ < I'y, slightly overshoots at intermediate
frequencies w ~ 'y, and converges to the multimode spec-
trum at high frequencies @ > I'r. We further note that the
error of the multimode spectrum increases at low frequen-
cies for any finite volume system: in our experiment, for
example, the multimode estimate does not account for low-
frequency heat transfer through the underlying oxide around
the released membrane. Thus, in the range of frequencies
of interest (i.e., near the thermal cutoff frequency
I’y = Dy /6?), single-mode thermal decay is an appropriate
simplifying assumption that allows the thermal noise spec-
trum to be well approximated irrespective of the cavity’s
exact geometry.

4. Derivation of driven cavity dynamics

To determine the practical impact of thermorefractive
noise on microcavity dynamics, we now consider the case
of a cavity driven by a monochromatic laser with frequency
;. Intuitively, we would expect that the large (relative to
the cavity linewidth), fast (relative to the cavity decay time)
stochastic deviations of the resonance frequency in the
high-Q/V . limit would restrict the maximum intensity in
the cavity, as a narrow linewidth laser would no longer
always be on resonance with the fluctuating cavity reso-
nance. A mode-volume-dependent maximum ‘effective”
quality factor describing the stored energy should result. A
similar effective quality factor could be derived if the
coherence of the intracavity field—rather than the stored
energy alone—is also of interest.

To prove these suppositions, we solve the driven tem-
poral coupled mode theory relation

dfz(zt) = [ig (1) = TJa(r) + /2.5 (1),

(A32)
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for the cavity field a(t), where wy(f) = wy + dw(t) is the
instantaneous resonant frequency, I'; = wy/2Q; is the
amplitude decay rate of a corresponding to a loaded quality
factor Q;, and I',. is the amplitude coupling rate of the drive
field si,(¢) = 5j,e™t’ + c.c. detuned from resonance by
A =w; —wy. In the presence of TRN, Jw(f) is non-
Markovian, zero-mean Gaussian noise with the autocorre-
lation given by Eq. (A17). Solving with an integrating
factor and introducing the slowly varying cavity amplitude
a(t) = a(t)e™™:! in a reference frame corotating with the
drive frequency w;, we find

t . N kar /"
a(t) = /2T .5, / df e~iA+T(=1) i [y 480t (733

Since the steady-state solution is desired, we assume that
the integration starts at 1 = —oo such that the system has no
“memory” of the initial conditions. Using Eq. (A33), we
can compute (@()) and (|a(t)|*), the mean cavity field
amplitude and stored energy, respectively. In certain limit-
ing cases, the noise spectrum S, (@) of the intracavity field

can also be derived.

a. Cavity spectrum in the perturbative limit

One of these limiting cases is the perturbative regime
commonly studied in the literature for low-Q/V  cavities,
wherein dw.,s < T';. In this case, a(¢) and dw(t)—
described by [cf. Eq. (A9)]

déw(t
ﬂ = —I'76w(t) + W

2 W (t
- W)

(A34)
for a Wiener process W(¢) with (W(t)W (7)) = 6(t — ' )—
can be expanded in orders of dw,,\/21 7. The zeroth- and
first-order evolution equations (with subscripts 0 and 1,
respectively) are

ot
dac(i)[( ) _ {i[sw(t) = A] =T }aig(1) + /205, (A35)
da,(t
a;t( ) ={i[dwy(1) — Al =T }a, (1) + idw, (t)ay(t), (A36)
déwy(t
D) L), (A37)
dt
doéw, (t
%() = T80 (1) + 6w s/ 2T W (1). (A38)
Solving in the frequency domain yields
2L, 19 2I
i1 (@) = VeS80 /T W(@) (a)

I +iA (T —io) [0 + i(w + A)]°

corresponding to the frequency spectrum

o 2Fc|§in|2 2FT6w%m§
7+ A5+ 0?7+ (w+A)?)

Saa(@) (A40)

The intracavity noise spectrum can therefore be approxi-
mated as the product of two Lorentzians with spectral
widths 2I'7 and 2I';. When I' < I';, which often coincides
with the perturbative limit dw,,, < I'; for large mode

volumes (8@, V}l/ % and I'r « V}z/ 3 for a three-dimen-
sional Gaussian mode), the resonant frequency fluctuations
are small and occur over timescales much longer than that
of intracavity photon decay. Thus, TRN leads to a weak
inhomogeneous broadening of the resonant mode that can
often be neglected for common applications of low-Q/V ¢
optical cavities. Gravitational wave interferometry [6,122]
and ultrastable optical frequency references [47,123] are
two notable exceptions that have led to significant interest
in perturbative TRN.

b. General derivation for (@(t))

Our work focuses on the transition to nonperturbative
TRN in high-Q/ V. microcavities, where we are interested
in general solutions for the statistical moments of Eq. (A33)
in the presence of TRN. Specifically, (a(r)) provides insight
into thermal-noise-induced dephasing while (@*(¢)) lends a
bound on the maximum allowable energy storage.

The expected intracavity field amplitude

t . ’ t "isw (1"
(@) = /2T 5 / iA1= Jy B0l
(A41)

follows directly from Eq. (A33), where the average on the
right-hand side has a similar form to the characteristic
functional [60]

i frosoa, _ Je OO Pl @Dr()
o= AV TIOTC
(A42)

a normalized average of e[f ks along the paths f(¢)
with respective probabilities P[f(¢)]. For the special case of
Gaussian noise, the moment-generating properties of the
characteristic functional allow Eq. (A42) to be simplified to

O[k(1)] = eifk(r)M(t)dte—l/Zfdzfdt’k(t)k(t’)(f(t)f(t’))’ (A43)

which is characterized by two parameters only: the mean
path M(¢) and the autocorrelation of the noise f(¢),
(f(0)f(t+1)). Comparing Eq. (A41) to Eq. (A42), we find

k(") = { !

0 else

! <t <t,
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and f(t) = dw(t"). Since (wy(r)) =0,

® = ex ! tdt’ [dt”ﬁ 2 e Trln=1)
= p 2 y 2 ., 2 a)mse
2

o}
= exp { ?rms 1-Tp(t=71) - e‘rT(“’Jﬂ .

5 (A44)

T

The above form, combined with the change of variable
T = (6@pms/T7)?e 1701 simplifies to

> 2{[~iA-T=(8w5ns /T1)]/ T}

Dpms 2
X \/'((S rms/FT> %{[iA+rl+(6wlgmsrT>]/rT}_le_%di-’
0
(A45)

which is in the form of the lower incomplete Gamma
function

yi(s.x) = /x #le T dz. (A46)
0
The final closed-form solution is, therefore,
V2T .5
(a(n) = ¥=eny (s.x). (A47)
T
S 2
= < “’”"S) , (A48)
I'r
I +iA
s= (A49)
I'r

To confirm this solution, we can evaluate the limiting case
of 6w — 0 (x = 0), corresponding to a noiseless thermal
reservoir when 7 — 0. Using the series expansion of
y:(s, x) in terms of s, x, and the complete Gamma function
v7(z), we find

_V 21—‘cgin ]/f(S) VvV 2Fc§inl

as expected from noiseless temporal coupled mode theory.
Assuming critical coupling (I', =T7,/2) and resonant
excitation (A = 0), we find the “effective” quality factor

wol(a(1))]

2 2
I 2%, —25,,2
= =0 =) x>y (s.x)  (ASI
0 =00 — 0, ({) i) ast)

by analogy to the noiseless result where Q=awy|{(a(1))[3_,/
2|§in|2‘

This result is used in the main text to describe dephasing
in the qubit limit of cavity nonlinear optics. For a given
mode volume, the optimum loaded quality factor Q;" ~
w7/ 26w, (assuming 8w, < 'z, which is valid for the
range of mode volumes plotted in Fig. 5 of the main text)
maximizes the resonant cavity amplitude: lower quality
factors incur excess loss, whereas higher quality factors
allow the qubit to “explore” a larger region of the phase
space, thereby reducing the integrated cavity amplitude.
Intuitively, the resulting maximum amplitude |{a(z))]
increases with increasing mode volume due to the reduced
magnitude of temperature fluctuations.

c. General derivation for (@*(¢))

Solving for (@(t)?) generally follows the same procedure
and reveals a limit on the allowable intracavity optical
energy in the presence of TRN. Starting from Eq. (A33),
the amplitude correlation takes the form

t . ,
(@)@ (0)) = 2[5,y / dile~IBT)i-0)
X/O dt//e—(iA—F,)r”<€j;;iéw(tz)dtz—j;(,),i&w(lz)dtz>.

(A52)

Following the method of Ref. [59], the average can be
expressed in the form of Eq. (A42):

<ef,§ iéo(t,)di~ [} idw(i)dizy _ <eiff:o Ky (A53)

(@(t))r—o = Ty y(s+1)  T7 sl by appropriately defining k(7). As illustrated in Fig. 8, the
~ dependence of k(t,) upon ¢, ¢”, and ¢ differs in three sectors
= ZFC.sin (A50) of the region of integration. Simple diagrams in each of the
L) +iA three scenarios can be used to find a closed form for k(7):
|
sgn(t" —7), ¢ <0 andmin(#,¢") <1, < max(¢,?")
1, <0 and0<p<t)or(f >0and ¥ <1, <1),
—1, >0andf”" <1, <0,
0, else.

This definition allows us to rewrite the autocorrelation as
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Raa(1) = (a(r)a(0))”

! : / O : 1 1 s o J /!
:2FC|§in2/ dt’e(’A-Fz)(t—’)/ dr’ e+ exp {—z/ dt’2/ dt’z’k(t’z)k(t’z’)éa)gmse_“’2_’2@. (A55)

[Se]

While a general solution to the full autocorrelation in
Eq. (AS55) appears intractable, we can find (|a|*) =
(|a(0)[?) by evaluating Eq. (A55) at t = 0 (thereby elimi-
nating integration region 3 in Fig. 8), which yields

(|a?) = 2T, |3 |? /0 At elid+T)! /O dt e(=ib+T)?"

—o0

5 2 i /
X exp [( ?ms> (1 =T|t" = 1| =Tl —f|)}.
T

(A56)

Note that the integral in region 1 or region 2 is nearly the
same—exchanging # and 7’ in either region returns the
integral for the other region but conjugates iA. Therefore,
we focus on evaluating Eq. (A56) in region 1 (#/ > ¢') and
then generalize this result to the other region by taking
the complex conjugate. In region 1, the substitution 7 =
(600ms/Tr)? exp [-T'r (¢ = 1')] yields

(aO)2), =20 5,2 [ arert Exs [* #5107z
1 c[Vin r oy
-0 T xe'T
e*
=2 [§in)? = x~*
c m FT

O /
x/ dre®™ " [y,(s',x) =y, (s, xe" )], (AS57)
where x=(8@/T7)? and s' = (8wlns/Tr =T, +iA)/Tr.
The first term can be directly evaluated, while the second
can be simplified with integration by parts using the
relationship

Iy(s', x)
Ox

/_ —
=x¥"le*,

(A58)

t//

FIG. 8. The complete region of integration can be divided into
three subspaces which yield different conditions for k(z).

|
With a second substitution 7, = xe'", we find

. - pe o [n(sx)
a(O)), =21 s 15

) ol o

X Y _(2r,/Ty)-1 JN.

S / /T (o 7)) drz]
T Jo

2T [P {y’(s"x) o <&>
I or T 3T
T i T }

r Ty=x
x {%ir’/%(s/,%z)ﬂu (”r_;’%z)] 0},

(A59)

where y,(s",x) is the upper incomplete Gamma function
defined by

Yu(s' x) = / ¥ e, (A60)

Evaluating the final terms, the result simplifies nicely to

5% (T ) 2r
(a(o)P), = (1) erwrrenimin (v + Tx ).

r; \I, .
(A61)

To find the complete result, we simply add the second term
in Eq. (A56) to find

(ap) =52 (2 )bl + i ol (a2

S3Wpms \ 2
= - A
' < Iy ) ’ (AG3)
r A
e (A64)
Iy

Note the similarity to Eqs. (A47)—(A49). Once again, we
must ensure that our solution corresponds to the noiseless
result expected when dw,,; — 0. Using the series expan-
sion of y,(s, x), we find
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al? _ Bl (T [ 7p(slico) 77(s™:=0)
lalr—0="F, (r) [yf<s|xo+1>+yf<s*|xo+1>]

IEN A IR VI v
Iy \[) |0, +iA " T,—iAl

_ 2Fc|§in|2
A?+T7

(lal)r—o (A65)

as expected. Similar to the solution for {a(¢)), we define the
effective quality factor

_w0<|&|2> _ Wy o

(A66)
for resonant excitation (A =0) and critical coupling
. =T,/2).

As opposed to the nonmonotonic scaling of the mean
field amplitude |(@(¢))| with Q,, the stored energy (|a(t)|?)
increases monotonically with increasing Q;. This behavior
is intuitively described in the main text: continuing to
increase (; decreases the cavity linewidth until Q. is
saturated by mode-volume-dependent thermal noise in the
high-Q,/ V. regime. Finally, we note that the maximum
energy storage (although not necessarily the maximum
intensity, which also depends on the mode volume) is
achieved with large mode volumes due to reduced thermo-
optic noise.

d. Cavity spectrum in the white noise limit

The complete field autocorrelation in Eq. (AS55) sim-
plifies considerably in the high-Q,; limit where I'; > ', as
the cavity resonant frequency wg(f) can be assumed to
directly track the temperature noise over the relevant
timescales. The frequency noise is then effectively
delta correlated in time, and the aforementioned—albeit
tedious—“integration by regions” technique can then be
similarly applied to solve for the field noise spectrum
S.a(w). A more intuitive approach to this solution is
through adiabatic elimination of w(¢)’s dynamics follow-
ing the procedure in Ref. [124]. Converting the optical field
and resonant frequency evolution equations [Egs. (A32)
and (A34)] into stochastic differential equations yields

da(t) = ({i[sw(t) — A] = T;}a(t) + /205, )dt,  (A67)

déw(t) = =T'péw(t)dt 4+ b/ 2 7dW (1) (A68)
for both Itd6 and Stratonovich forms, since the frequency
noise is additive (6w,m\/21'7 is constant). In the limit
't - o0, we can adiabatically eliminate the resonant

frequency dynamics, yielding a steady-state value dw(f) =

\/2/Tp8w s dW (1) /dt. The cavity evolution can then be
simplified to

dag(t) = [(—iA =T))ags(t) + /2T .5, dt

+ \/rzTéwmsas(t)dW(t),
da, (1) = { [—iA - (r, + 5?3;“5)}&,@) + 2FC§in}dz

+ \/FET(Swnnlel (t) dW(t)

in Stratonovich and Itd forms, respectively. Applying the
Ito rule [dW(1)]* = dt to the latter, we can solve for the
steady-state moments

(A69)

(A70)

~ _ mgin
<a(t>> a [rl + 5wr2ms/rT] +iA ’ (A71)
<‘C~l(l)|2> _ 2FC(1 +5w%ms/FTFl)|§m|2’ (A72)

[Fl + 5wr2ms/FT]2 + Az

which by comparison to Egs. (A50) and (A65) immediately
reveals a thermal broadening 2I'; — 2I"; + 26w?,, /Ty of
the microcavity linewidth. We can also derive an equation
of motion for the autocorrelation R, (z) = (a(t)a*(r + 7)):

d ) Sw?,
ER‘M(T): |:ZA—<FI+ F s

)}Raaw A5 a(1).

(A73)

T

Solving Eq. (A73) subject to the 7 =0 conditions of
Eq. (A72), we find

2Fc|sin|2
[Fl + 5wgms/FT]2 + AZ

2
X % e(iA—F[_(swgms/FT)T + 1 s
7l

Rua(7) =

(A74)

corresponding to the optical noise spectrum

S (w> _ & 2(<5a)r2ms|*s‘in|2/l—‘T
“ 1—‘l [Fl + 5wr2ms/FT]2 + AZ
Z(Fl + 5wr2ms/FT)

X .
(T) + 8w2ns/Tr)? + (0 + A)?

(A75)

Equation (A75) evaluated in the perturbative limit 6@, <
I'; coincides with the low-frequency (o < I'7) limit of the
previous perturbative spectrum [Eq. (A40)].
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ESA Balanced Homodyne Detection PhC Cavity

FIG. 9. Schematic of the setup built to measure TRN in photonic crystal cavities. An amplified (PriTel PMFA) continuous wave laser
(Santec TSL-710) is separated into a local oscillator and cavity signal by a polarizing beam splitter (PBS). The LO line is passively path-
length matched to the cavity signal using a tunable retroreflector delay line. The cavity signal is combined with a linearly polarized (LP)
white light source (LED) using a dichroic mirror (DM) and is reflected from a PhC cavity rotated 45° from the incident polarization
(adjustable with a half-wave plate, 1/2), which allows the cavity signal to be isolated from the specular reflection using a PBS. A
quarter-wave plate (1/4) allows the specular reflection to be extracted for comparison to the cavity-only reflection. The reflected
illumination light is separated and imaged onto a silicon CCD. The cavity signal can be directed with flip mirrors toward an IR camera
for imaging, an IR avalanche photodetector (ThorLabs PDB410C 10 MHz InGaAs APD) to collect low-noise reflection spectra, or
toward the balanced homodyne detector. For the latter, a balanced photodetector (ThorLabs PDB480C-AC 1.6 GHz InGaAs p-i-n
photodetector) measures the homodyne signal from the recombined cavity reflection and local oscillator, and the result is recorded on an
electronic spectrum analyzer (ESA; Agilent N9O10A EXA Signal Analyzer). The dc signal extracted from a low-pass filter (LPF) is used
as the feedback signal for a digital PID controller which stabilizes the signal-LO phase difference by actuating a piezoactuated mirror.
An EOM provides a known phase noise which can be used to calibrate the frequency noise of the PhC cavity. The sample stage is
temperature stabilized to AT < 0.01 K using a Peltier plate and a feedback temperature controller.

APPENDIX B: EXPERIMENTAL TRN IN (HF) acid. The designs are adapted from Refs. [69,70]. As

PHOTONIC CRYSTAL CAVITIES shown in Fig. 2 of the main text, superimposed gratings are
added to improve vertical coupling efficiency. The gratings
are formed via periodic hole radii perturbations in the range
Ar =0 — 0.05r at a period equal to twice the lattice
constant a. Although devices with quality factors as large
as 400 000 are measured for small values of Ar, the results
presented in the main text use Ar = 0.05r, which signifi-
cantly improves collection efficiency into our fiber-coupled
detector.

The single-mode thermal decay approximation made in
Eq. (A9) implies the decay rate of Eq. (A16) and the
spectral density of cavity resonant frequency in Eq. (A25).
This result is commonly used as a simplifying assumption
for temperature fluctuations [35,61]; however, it is not
immediately clear that the single-mode approximation
holds in the case of small-mode-volume optical micro-
cavities, where the characteristic length scales of the near
diffraction-limited optical mode (~A4/n) can approach that
of the phonon mean free path [75]. In the absence of any 2. Experimental setup
experimental data in the literature to verify the assumption,
we construct an experiment to measure thermorefractive
noise in high-Q;/V. silicon photonic crystal cavities.
The experiment also allows us to compare measured
TRN with the spectra derived from our multimode theory
(Appendix A 3).

A more detailed version of the experimental setup
depicted in the main text is provided in Fig. 9. The setup
consists of a typical polarized light microscope, where the
signal reflected from a PhC cavity is measured with
balanced homodyne detection. The homodyne detector is
balanced by zeroing the dc component of the homodyne
signal with a digital PID feedback controller connected to a
piezoactuated mirror. In this configuration, the homodyne

The L3 and L4/3 photonic crystal cavities are fabricated  voltage signal
by Applied Nanotools foundry via electron-beam pattern-
ing and dry etching of 220-nm-thick undoped silicon-on- vy, ~ 80! |Gcavity | OPcaviry (1) (B1)
insulator wafers with a 2-um-thick buried oxide layer. To
suspend the devices, the buried oxide is subsequently  for a local oscillator signal & g is directly proportional to
released via a 60 s timed wet etch in 49% hydrofluoric ~ the cavity amplitude |Gc,yiy| and to phase fluctuations

1. Photonic crystal cavity sample details
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S¢hcaviry (1) Tesulting from the stochastic resonant frequency.
An electronic spectrum analyzer is used to measure the
power spectral density S, of this homodyne voltage signal.

3. Phase noise calibration

The resonant frequency noise spectral density S,,, can
then be determined from S,, using the absolute calibration
technique discussed in Refs. [68,125]. For example, con-
sider a Mach-Zehnder interferometer with input power P;,
and splitting ratio 7;,, which creates the in-phase local
oscillator and cavity input signals
N Pin, ain =

aro = (1 =npy)Pjy,.

Assuming resonant drive (A = @w; — @y = 0) for a cavity
with input power coupling rate I',., total loss rate I';, and a
perturbative resonant frequency noise Sw(t), the output
cavity signal is then

(B2)

o 2Tt Pt (B3)
yielding a homodyne detection voltage
v;(1) % 2G . |ay o] |Gou|0Pcavity (1)
N =26\ M (L= 1 P 5L Slt)  (B4)
1

for a detector conversion gain G,. The final frequency noise
spectral density

K exptS o

2, — ')\ 2
st 421 =) () P
1

K. expt

(B5)

is therefore a function of various experimental constants
and cavity coupling parameters.

However, the value of K, can be exactly determined by
injecting a known phase noise 6¢(t) = ¢,,(V,) cos(w,,1)
into the interferometer with an electro-optic modulator
driven with an electrical tone with frequency w,, and peak
voltage V. Under the same experimental conditions, the
local oscillator and cavity input signals are, respectively,

ZlLO — ;/II_IPinei¢m(vp>‘305((“)7"7‘)7 (B6)
i = VT ) Ptasotons(B7)

With a small enough modulation depth ¢,,(V,) = zV,/V,
(and, therefore, a small enough drive voltage V , relative to
the half-wave voltage V), the local oscillator can be
approximated to first order as

(B8)

aro = /N Pinll + i, (V

Similarly, assuming w,, < I'; (as is the case in our experi-
ment), the cavity response yields the output signal

) Cos(@,,1)].

p) i
L

{1t (V) [costwnn) + L2sin(on)| . (B9)

l

(1_77H>Pin

Aout ~

The homodyne signal

2. —

- nH)Pln

1) ~2G 1
Uh() c ’7H( Fz

L0 (V) sin(@,,1)
(B10)

corresponds to a power spectral density

2, —T1,\2
S c 1
Sv?? ~ 4G%’1H(1 - ”H) (?) P%nw%ns¢¢|w:wm’
I

Kexpl

(B11)

which, similar to $9, is directly proportional to K. expt- Kexpt
can therefore be eliminated to yield an absolute calibration
for the resonant frequency noise spectral density:

Sﬁ%) S(/’¢|w Dy S&o
K

Sow 0 (B12)

N
expt v

W=y,

This result can be simplified by evaluating the phase
spectral density

Spp(@ /¢

— (2V ) [%5(w_wm)+%5(a)+wm) .

(cos(w,,1) cos[w,, (1 + 7)]) e~ dr

(B13)

The spectrum analyzer convolves the ¢ functions with the
intermediate frequency filter function F(w), which is
normalized such that F(0) = 1/ENBW [68], where the
effective noise bandwidth ENBW = 5-RBW for a resolu-
tion bandwidth RBW and a filter-shape-dependent n ~ 1.
Therefore, the measured noise spectral density evaluated at
the modulation frequency w,, becomes

¢n(V,) _ (V)
TF(a)) * 5(w — w,,) = 1. ENBW"

(B14)

Using this result, the calibration term in Eq. (B12) can be
simplified to a final form
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(a) Phase modulation sideband fitting, Vi = 2.2V
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FIG. 10. Measurement of phase modulator modulation depth ¢,,(V,) at 2 = 1550 nm. A balanced homodyne measurement is
performed on the output of a Mach-Zehnder interferometer with the EOM in one arm, yielding spectra similar to that of (a). The
sideband amplitudes are fitted to find the modulation depth at each peak drive voltage V,, and a linear fit is applied to find the
modulation efficiency (b). The measured value ¢,,/V, = 0.82 £0.01 rad/V corresponds to a half-wave voltage V, = 3.83 V.

o 4nr - RBW S%m ()

that agrees with Eq. (20) of Ref. [68].

a. Electo-optic phase modulator calibration

Equation (B15) demonstrates that the calibrated fre-
quency noise can be readily obtained by comparing
the recorded rf power spectral density S9%(w) to the

calibration PSD S§%%» (@,,) (which corresponds to a known
phase spectral density) for a given calibration frequency
,,/2x and spectrum analyzer RBW. The ENBW correc-
tion factor 7y is a function of various spectrum analyzer
settings (see Ref. [126], for example) and is therefore
measured by comparing the noise marker amplitude (dBm/
\/E) to the measured PSD divided by the RBW. This
technique yields 7y = 1.057, which is approximately equal
to the value given in Ref. [126] assuming typical spectrum
analyzer settings.

The only remaining unknown parameter required for
calibration is the peak-voltage-dependent modulation depth
¢m(V,) of the phase modulator, which can be determined
with a sideband fitting technique as shown in Fig. 10. An
EOM is embedded in one arm of an unbalanced Mach-
Zehnder interferometer, yielding a homodyne signal

vp & Y _Ju(¢hy) cos(naw,,1) (B16)

for a modulation frequency w,,. The power spectrum
observed on the spectrum analyzer therefore consists of
a periodic sequence of spectrum analyzer filter functions
F(w — nw,,) at frequencies w,, = nw,, with powers propor-
tional to J2(¢,,). Fitting the sideband powers (relative to
the n = 1 sideband, as the n = 0 peak is inaccessible on the

ac-coupled spectrum analyzer) via a least-squares regres-
sion yields ¢, (V,) for any peak drive voltage V,,.
Figure 10(a) illustrates the result for 4 = 1550 nm and
V, =224V, where the Bessel functions evaluated at
¢,, = 0.6z rad (red points) are well fitted to the measured
(blue curve) peak amplitudes. After repeating the experi-
ment for multiple values of V,, a linear fit [Fig. 10(b)] gives
the modulation efficiency

n = ¢_m
mod Vv

P 1Ag=Acal

=0.82+0.01 rad/V, (B17)

corresponding to a half-wave voltage V, = 3.75 V (roughly
in line with the manufacturer-quoted value of 3.17 V) at the
calibration wavelength.

Note that the dc phase of the fiber interferometer in this
experiment is allowed to drift, while the measurement is
averaged on a timescale much longer than that of the drift—
a standard technique [127] which affects only the total
power of the homodyne signal, not the relative magnitude
of the sidebands.

b. Balanced homodyne detector characterization

Using the measured EOM modulation efficiency, the
calibrated thermorefractive noise measurements in Fig. 2
of the main text are obtained by measuring the cavity
reflection with the stabilized homodyne detector in Fig. 9.
We confirm that the balanced photodetection is shot noise
limited (with 10 dB of shot noise clearance) for frequencies
greater than approximately 100 kHz and balance the
interferometer arms to well within 1 mm—over an order
of magnitude shorter than the expected cavity delay
(approximately centimeters). This balance is achieved by
tuning a retroreflector-based delay line while observing
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TABLE L.

Parameters used for calibrating the noise spectrum and computing or fitting I'; and V. Independent values

n for L3 and L4/3 microcavities are listed as {n;3,ny4 /3} for cavity-dependent parameters. The mode confinement
factor yg; ~ 1 confirms the validity of Eq. (B15), which assumes complete confinement of the mode in silicon.

Parameter Symbol Value Source
Temperature T 295.68 K Measured

Si refractive index ng; 3.48 [128]

Si thermo-optic coefficient oSk 1.8 x 107 K~! [128]

Si specific heat eyl 1.64 J/em? - K [75]

Si thermal conductivity Ks; 70 W/m - K [75]

Si thermal diffusivity (thin film) DSi 0.43 cm?/s K/cy

Lattice porosity ¢ {0.29,0.26} Calculated
Patterned thermal diffusivity D {0.23,0.25} cm?/s DS(1-¢)/(1+¢) [74]
Resonant wavelength Ao {1559.3,1551.5} nm Measured
Quality factor 0, {168 000, 163 000} Measured
Phase modulator efficiency Nmod 0.821 rad/V Measured (1550 nm)
ESA noise correction factor nr 1.057 Measured
Mode confinement factor Ysi {0.96,0.95} Simulated
Mode volume Vet {0.95,0.32} Simulated
Thermal mode volume Vr {3.92,1.51} Simulated [Eq. (A23)]

pulse delays from a picosecond fiber laser on both
interferometer paths.

4. Summary of experimental parameters

Table I summarizes the various experimental parameters
used to generate the data and fit parameters shown in the
main text. Note that, as described in the caption of Fig. 2 of
the main text, the expected thermal diffusivity is based on
thermal conductivity measurements in thin silicon films
[75] and the hole lattice porosity ¢ [74]. The porosity
¢ = 37r*/(3v/3a*/2 — 3nr*)—calculated as the ratio of
hole area 377> (assuming a hole radius r) to material area
within a hexagonal unit cell of a lattice with lattice constant
a—reduces the thin film diffusivity to Dy~ D(1 —¢)/
(1+¢) [74]. This “restricted” diffusivity is used to
calculate the expected decay rates in Fig. 2 of the main text.

5. Comparison of other noise sources

Other stochastic processes can also produce resonant
frequency noise. Here, we consider two such sources:
(i) multiphoton absorption leading to photothermal shot
noise from free carrier recombination and (ii) self-phase
modulation. Both noise sources evaluated at their respec-
tive nonlinear thresholds—as an estimate of the “worst-
case” maximum noise levels—are found to be more than
one order of magnitude weaker than TRN. Since the cavity
is measured well within the linear regime, we find that TRN
dominates both other contributions combined, thus further
confirming our experimental measurements.

a. Multiphoton absorption

Multiphoton absorption (MPA) within the resonator
leads to a free carrier population that stochastically

recombines, producing random local heating analogous
to fundamental thermorefractive noise. Considering this
similarity, we can analyze the MPA photothermal shot
noise by redefining the statistics of the mode-averaged
temperature driving force F'7(¢) in Eq. (A9). The mean rate
of intracavity k-photon absorption is [81]

k
(reea) = %IﬁkapA, (B18)

where I = cla|?/2nVey is the peak intensity of
the stored energy |a|*, B, is the k-photon absorption
coefficient, ¢ is the speed of light, and Vips =
Jiereeic |E(F)[*d®r/ max{|E(F)|**}. Note that we assume
that the heating produced by the photoexcited free
carriers is local (i.e., no carrier diffusion). The variance
of Fr(t) is then determined from the temperature change
expected from the variance of MPA events within an
infinitesimally small time (a Poisson process), yielding
the autocorrelation

N kfla)o

=—Z B19
v (B19)

Bl Vipad(t = 1').

Following the method of Appendix A 1, we arrive at the
spectral density

0 2 khw, 1
SPA () — L0 0B Vs —— . (B20
0w (60) ( n aTR C%/ V% ﬁk pk " kPA F%, + a)2 ( )

which can be evaluated for any intracavity stored energy.
Here, we consider I at the nonlinear threshold, i.e., the
peak intensity for a linewidth resonance shift |(Aw)|/2I"; =
arr{ATpa)Q;/n =1. The threshold intensity can
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Comparison of frequency noise source in PhC cavities
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FIG. 11. Approximate spectrum of microcavity noise sources for the experimental parameters in Table I. Note that Sflf/ is plotted as a

fractional stability (units 1/+/Hz to aid comparison with cavity stabilization literature). Noises from two-photon absorption (2PA) and
self-phase modulation (SPM) at their respective nonlinear threshold powers—which approximates the maximum noise level—are still

smaller than TRN.

therefore be derived from the steady-state value of
Egs. (A9), which lends the average temperature change

kha)0<rkPA> o ﬁk]ngkPA

AT = .
< kPA> cyVel'r eyl Vr

(B21)
Substituting this result into the spectral density equation
assuming two-photon absorption as the dominant process
(true for our silicon cavities driven at approximately
1550 nm), we can simplify to the final result

_ (U(z)aTR ha)o ZFT
no QieyVeTi+o?’

ww

§2PA threshold () (B22)

This result is plotted in Fig. 11 assuming the
experimental parameters of our devices listed in Table I.
Comparing with Eq. (A31), we find S2b,hreshold / gTRN
(n/Q,amRT)(hwy/kpT), which accounts for the factor of
approximately 10 weaker maximum photothermal shot
noise in our devices as shown in Fig. 11. We operate with
an input power much lower than the nonlinear threshold
power (such that (Awypp) < T7), so the experimental
photothermal shot noise is substantially weaker than the
maximum value calculated here.

b. Kerr self-phase modulation
When confined in a )(<3> nonlinear material, Poissonian
fluctuations of the mean intracavity photon number impart
self-phase modulational (SPM) noise on the resonant
frequency. From first-order perturbation theory, the Kerr
index change 5n(F) = 3y®e(¥)|E(¥)|2/8eon® results in a
resonant frequency shift

Sw(t 3,03)
(ﬂ) T sapp. (B23)
@0 /) Kerr 4egn™ Vier

where ¢, is the free space permittivity, |a@(z)|* is the stored
energy, and the Kerr mode volume V.. is equal to the
thermal mode volume V5 [80]. When driven with a
classical source, the intracavity energy autocorrelation

T,
7

(Sla(Pola(t)P) = = e " Thay (5 ?)  (B24)

can derived from temporal coupled mode theory assuming
a constant pump power {|3;,|?) coupled at rate .. to a cavity
with composite amplitude decay rate I';. The corresponding
resonant frequency autocorrelation can then be used to
compute the noise spectral density

3 \2(4r T,
4€0n4VT F12+w2

SN (@) = ( )hw3<|sm|2>. (B25)

Similar to the multiphoton absorption case, we evaluate
this result at the nonlinear threshold (Awy.,,)/2I; = 1 fora
conservative estimate of the associated noise. The final
result is

3,(3) 2
Sg]lZ)M,threshold(w) _ <4 )‘{V 0 > <1—~2 +1 2) hw% (B26)
€on” V), [T

Even at the threshold power, Fig. 11 shows that the SPM
noise is over an order of magnitude weaker than TRN.

APPENDIX C: COMPARISON OF TRN IN
VARIOUS MATERIALS

Surprisingly, the QI* / V¢ limits shown in Fig. 4 of the
main text for several common materials lie within an order
of magnitude. As shown in Table II, this observed invari-
ance can be attributed to an inverse relationship between
the thermo-optic coefficient and thermal diffusivity in
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TABLE II.

Material properties used to calculate the thermal noise limits in Fig. 4 of the main text. Aluminum nitride is the only

material listed with a favorable thermo-optic coefficient and thermal diffusivity.

Material Index n TR coefficient arg [K™'] Density p [g/cm®] Heat capacity cy [J/g-K] Thermal diffusivity Dy [cm?/s]
Si 3.48 1.8 x 107 2.32 0.7 0.8

GaAs 3.38 2.35x 107 5.32 0.35 0.31

InP 3.16 2x 107 4.81 0.31 0.37

Si3Ny 1.99 2.5 %107 4.65 0.7 0.02

LiNbO; 2.21 32x 107 5.32 0.63 7 x 1073

AIN 2.19 3x 107 3.23 0.6 1.47

common materials. Yet this relationship is not fundamental:
aluminum nitride, for example, is shown to outperform all
other plotted materials by over an order of magnitude due to
its simultaneously large thermal conductivity and small
thermo-optic coefficient. This realization demonstrates the
importance of material choice when designing state-of-the-
art high-Q/V . resonators.

APPENDIX D: EFFECTS OF TRN ON
ALL-OPTICAL QUBITS

1. Derivation of qubit coupling strengths

This section derives the figures of merit for qubit
operation in nonlinear optical cavities. For more informa-
tion, see Refs. [57,95]. The procedure is to first derive the
classical equations of motion for fields in nonlinear oscil-
lators and then to quantize them, deriving the Hamiltonian
and the single-photon coupling strength. In classical cavity
electrodynamics, a cavity field can be expressed as a sum of
resonant modes

E(F 1) = C,A,()E,(X)e ™ +ccl. (DI)

where C,, = \/hw/2¢,. The modes E, satisfy the Helmholtz
equation V x (V x E,)) = (n*w?/c?)E,,. This form is a
generalized eigenvalue equation, and the resulting solutions
can be orthogonalized: [n?E’ E,d’F = ¢* [ B! ,B,d°F =
O w- With this normalization, we find that the electromag-
netic energy density in the cavity is U = >, hw|A,|*.
Therefore, A, is the normalized field operator, where
|A,|? gives the number of photons in the mode E,,.

Nonlinear interactions can be treated as perturbations,
because the nonlinearity is weak on the order of a single
optical cycle. The Helmholtz equation acquires a nonlinear
polarization P = ey(y® : E> + ¥ :E® 4 ...), which can
be integrated to give perturbations to the equations of
motion for A, [129]:

n* ’E 1 8*(P/e)
VX(VxXE) +55a=—a 2 (P2
dA,  iw e [PEDT i
= dt _2Cw/EW(x> [ €0 Le o (03

a. Kerr (y) interaction
In the ) case, we have a cavity with a single resonant
mode E,,. The polarization term due to the Kerr interaction
is P = ey :(C,A,E, e ™ +c.c.)’. This term gives rise
to the equation of motion A, = —iy|A,|?A,,, where

w ?’

_([r|E,PdF)

3hao*y® 1
- Vken =~ 7 a5
[t |E,|'dF

41’1460 Vierr

(D4)

Quantizing the field to satisfy the commutation relations
[A,.Al] =1, this equation of motion can be generated
from the Hamiltonian:

1 sinsn

H Kerr 2

(D5)

As an open quantum system, the field interacts with
a bath through Lindblad dissipation terms, in this case

L =+/2T'A,, where I' = w/2Q. The figure of merit for
strong coupling is

_x  3ahcy® Q
2T 2ney A Vier
Ve —

K,

FOM, s, (D6)

b. Second-order (y?) interaction
In this case, we have two fields at frequencies (o, 2w).
The polarization term is P = egy?:(C, A E, e~ +
CopArpErpe @ + c.c.)?, which gives rise to the equa-
tions

A2w = __eAZ)’ Aw = GAZwAZ)’

5 (D7)

where

_ Vo Vhw/eo)((%’ (D8)

€ =
3y/1/2
n VShg

\% — (f n2|E2(1)|2d3?)(fn2|Em|2d37)2
e | f* n3E§wEmed37|2

(D9)
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TABLE III.  Silicon material properties assumed to calculate the qubit figures of merit at 4o = 2.3 um and 7 = 300 K.

Parameter Symbol Value Source

¥ nonlinear index n, 1.2 x 10713 cm?/W [130], Sec. 11
+©®) FOM constant K, 8.7 x 1071 Calculated [Eq. (D6)]
1@ (dc E-field induced) 7@ 40 pm/V [108]

;{<2> FOM constant K. 1.3 x 1077 Calculated [Eq. (D13)]
Thermo-optic coefficient aSh 1.8 x 107* K~! [128]
Thermal diffusivity DSi 0.8 cm?/s [75]

in the case that E and P are aligned (otherwise, € is reduced
by a geometric factor). The integral | (.. .)d*7 is taken over
all space, while [, (...)d*7 is restricted to the nonlinear
material.

As before, we can quantize the fields Am and AZm and
derive a Hamiltonian corresponding to Egs. (D7). As an
open quantum system, there will also be Lindblad dis-
sipation terms I'; = w/2Q; and I', = 2w/20,:

Al A A, —ALATA
H=e¢ 20 0w . o o 2&)’ (DIO)
2i
Ll - 2F1Aw, (Dll)
LZ =\ 2F2A2w. (D12)

The figure of merit for strong coupling again is expressed as
aratio of the coupling rate € to the loss rate. Here, there are
two loss channels, and a common approach is to take the
geometric mean of the two (a choice motivated by the limit
0, < 0y, in which the )((2) interaction can be adiabatically
eliminated to a y©) one with y/T" « €2/T",T",). Thus, we set
the figure of merit to be

#c (2)
FOM o =~ = = = ”3"%V91Q2. (D13)
2 2yII, ndey A V;}{gz
K

€

In the main text, we assume Q; = Q, = Q such that

FOM, ) & Q/V ;.

2. Parameters

The parameters used to generate Fig. 5 of the main text
are included in Table III.
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