
 

Storage and Release of Subradiant Excitations in a Dense Atomic Cloud

Giovanni Ferioli,1 Antoine Glicenstein,1 Loic Henriet,2 Igor Ferrier-Barbut ,1,* and Antoine Browaeys1
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We report the observation of subradiance in dense ensembles of cold 87Rb atoms operating near Dicke’s
regime of a large number of atoms in a volume with dimensions smaller than the transition wavelength. We
validate that the atom number is the only cooperativity parameter governing subradiance. We probe the
dynamics in the many-body regime and support the picture that multiply excited subradiant states are built
as a superposition of singly excited states that decay independently. Moreover, we implement an
experimental procedure to release the excitation stored in the long-lived modes in a pulse of light. This
technique is a first step towards the realization of tailored light storing based on subradiance.
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I. INTRODUCTION

The interaction between a single two-level atom and
radiation is well understood: The atomic response is
described by a resonance frequency and a decay rate.
When considering more than one emitter in a volume with
dimensions smaller than the transition wavelength, this
response may be altered, as was proposed in the pioneering
work of Dicke [1,2]. Indeed, light-induced interactions
dramatically modify the behavior of the ensemble, and its
response becomes collective. In particular, the decay rate of
excitations hosted in the ensemble can be starkly modified.
Superradiance, i.e., a decay of the excitation at a rate faster
than the single-atom one, has been verified experimentally
in atomic systems from ions to dilute clouds of atoms [2–6].
The study of its counterpart, namely, subradiance with a
decay rate smaller than the atomic one, has been restricted
to a handful of works [7]: Direct observations were reported
in a pair of ions at variable distance [3] and in molecular
systems [8–10]. Recently, subradiance was also observed in
a cold, dilute atomic cloud [11–13]; in Rydberg nonlinear
quantum optics [14]; and as a line-narrowing in an ordered
2D layer of atoms [15].
Engineering subradiant states has drawn increasing

attention since it might pave the way to several applica-
tions. For instance, the possibility of storing an excitation in
subradiant modes and of addressing it in real time while the

excitation is stored has inspired proposals to use it as a
storage medium [16–20]. Second, the narrowing of the line
associated with subradiant modes and their subsequent
enhanced sensitivity to external fields could be a promising
application for metrology [16,21,22]. Recent proposals have
also suggested using subradiance as a tool for quantum
information processing and quantum optics [23,24].
All of these proposals have been formulated in ordered

systems with small interparticle distances, r̄≲ λ, where λ is
the wavelength of the atomic transition. Motivated by these
proposals, we take a first step in this direction by exploring
the regime r̄ < λ but in the disordered case using dense
clouds of 87Rb atoms, characterized by a peak density ρ0
satisfying ρ0λ

3 ≫ 1 (r̄ ¼ ρ−1=30 ). Furthermore, the ensem-
bles we produce have a prolate shape with a typical radial
size of about 0.5λ and an axial size of about 5λ. Thus, we
closely approach Dicke’s regime, where many emitters are
trapped in a volume comparable to the wavelength of their
transition. This regime introduces several important
differences with respect to the case of a dilute extended
cloud studied in Refs. [11–13]. First, the ensemble is
efficiently coupled only to a single mode, and thus the
parameter governing the collective properties should be the
atom numberN [25]. This case is in contrast to a cloud with
a volume much larger than λ3, where this parameter is the
optical depth on resonance, which was experimentally
shown to govern collective effects [4,11]. Second, since
in our clouds kr̄ ∼ 1 (k ¼ 2π=λ), all the terms of the dipole-
dipole interaction [26] play a role, as opposed to the dilute
regime where only a radiative 1=r term is considered [27].
Here, we observe subradiance in the time domain in a

cloud operating near Dicke’s regime. First, we validate the
characteristic dependence on the atom number. Second, we
explore the storage of light in long-lived multiply excited
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states. Varying the intensity of the excitation laser, we
characterize these subradiant states containing few to many
excitations. Our finding supports the idea that multiply
excited subradiant states are built as a superposition of
singly excited states in random ensembles, similarly to
what was recently predicted in ordered 1D systems [19,
28–30]. Finally, we demonstrate dynamical control of
subradiance while excitations are stored by releasing it
on demand via the application of a laser. This real-time
control of the coupling of an ensemble to the electromag-
netic modes while it hosts an excitation offers new
possibilities for light storage.

II. EXPERIMENTAL SETUP

A detailed description of the experimental setup can be
found elsewhere [31,32]. Briefly, as sketched in Fig. 1(a), it
is composed of four aspherical lenses with large numerical
aperture (0.5) in a maltese-cross configuration [33]. We use
the x high-resolution optical axis to create an optical

tweezer at a wavelength λtrap ¼ 940 nm, with a tunable
waist (range 1.8–2.5 μm). Exploiting a gray-molasses
loading on the D1 line, we trap ≃5000 87Rb atoms in
the largest tweezer at a temperature of about 650 μK in a
4.2 mK trap. In this configuration, the trapping frequencies
are ωr ≃ 2π × 81 kHz and ωz ≃ 2π × 7 kHz, where ωr and
ωz represent the radial and the axial directions. The central
density of the cloud in these conditions is ρ0=k3 ¼ 0.3�
0.1 (r̄ ≃ 0.2λ), where k ¼ 2π=λ. The trap can then be
compressed either by increasing the power of the trapping
beam or reducing its waist [32].
We use theF ¼ 2 → F0 ¼ 3 transition on theD2 linewith

wavelength λ ≃ 780 nm, line width Γ0 ≃ 2π × 6 MHz, and
saturation intensity Isat ¼ 1.6 mW=cm2. In order to excite
the cloud, we switch off the trap and shine a 150-ns-long
pulse of resonant light along the y-z direction of Fig. 1(a).
This duration is long enough to reach the steady state during
the excitation. After 1 μs, the atoms are recaptured in the
tweezer. This time is short enough (< 1=ωr) that the density

Pulse

(b)

(c) (d)

(a)

FIG. 1. (a) Schematics of the experimental setup. Four high-numerical-aperture (0.5) lenses collect the fluorescence emitted by the
atomic cloud along two axes, which is then fiber-coupled to avalanche photodiodes (APD). The excitation beam is aligned in the vertical
direction. The trap beam (not shown) propagates along x, which is also the first collection axis. The second collection axis is at 45° with
respect to the excitation direction. (b) Number of photons collected in bins of 0.5 ns as a function of time after switching off the
excitation light (saturation parameter s ≃ 27) for a cloud containing about 5000 (blue solid line) and 300 atoms (purple solid line), where
data are represented with a moving average. These data are obtained by repetition of 20 pulses on 10000 clouds. Gray line: excitation
pulse temporal shape. Dashed line: solution of the optical Bloch equations solved for our pulse shape. All curves have been normalized
to their steady-state value during the excitation. (c) Time traces collected using the APD aligned along the y direction (APD⊥, long-
dashed purple) and along x (APD//, solid blue). The dashed black line shows the solution of OBEs. (d) Numerical simulations of the
experiment using a nonlinear coupled-dipole model [31,34] in an ensemble of 200 atoms with ρ0=k3 ¼ 0.3. Black dashed line: solution
of optical Bloch equations for a single atom.
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remains constant during this trap-free time. We repeat the
same sequence up to 20 times on the same cloud (depending
on the trap geometry), checking that the atom number is
reduced by less than10%at the endof thepulse sequence.We
then repeat this sequence on 3000 to 10000 clouds at a 2-Hz
rate to obtain one trace (photon count per 0.5-ns bin versus
time). For the largest atom number, N ≃ 5000, we typically
collect, in the steady state, 0.01 photon per pulse in a 0.5-ns
time bin. The excitation pulse is controlled by means of two
acousto-optical modulators in series, ensuring a high extinc-
tion ratio. The characteristic rise and fall time is 10 ns; the
temporal shape of the pulse is shown in Fig. 1(b) (gray line).
The excitation beam waist that is approximately 1 mm is
much larger than the cloud size, so all the atoms experience
the same Rabi frequency. We can vary the saturation
parameters s ¼ I=Isat up to s ≃ 250, with Isat the saturation
intensity (we have calibrated this intensity independently
using dilute clouds). Exploiting the two high-resolution
optical axes, we collect the fluorescence light into two
fiber-coupled APDs operating in single-photon-counting
mode—one aligned along the axial direction of the cloud
(APD//), the other perpendicularly to it (APD⊥)—as
sketched in Fig. 1(a).

III. SUBRADIANCE NEAR DICKE’S REGIME

In Fig. 1(b), we report two time-resolved fluorescence
traces recorded along x, obtained for two clouds with,
respectively, 300 atoms (ρ0=k3 ≃ 0.02, purple line) and
5000 atoms (ρ0=k3 ≃ 0.3, blue line) after the excitation
laser has been switched off for s ≃ 27. We also show the
solution of the optical Bloch equations (OBEs) for a single
atom, solved for the measured pulse shape. In the low-
atom-number case, the decay of the excitation is very well
described by the OBEs, indicating that the atoms act as
independent atoms. On the contrary, for a large atom
number, the fluorescence decays nonexponentially: First,
we observe a decay at a rate larger than the single-atom
decay (superradiance), followed by a slower one (subra-
diance). Moreover, as shown in Fig. 1(c), we observe that
superradiance occurs mainly in the axial direction of the
cloud, while the emission of subradiant excitation is
observed in both directions. The finite switch-off time of
the driving pulse limits the superradiant decay that can be
observed. For this reason, in the rest of the paper, we focus
our attention on the subradiant tail, leaving a detailed study
of superradiance for future works.
All the measurements reported here have been performed

with resonant and linearly polarized light, in the absence of
Zeeman optical pumping, thus exciting a multilevel system.
We find that the polarization direction does not impact the
observed subradiance. Furthermore, we have observed that
subradiance is essentially unchanged within our dynamical
range in the presence of a magnetic field and a circularly
polarized pulse with prior optical pumping (see the
Appendix E), which suggests that the internal structure

does not play a major role for subradiance in our regime.
Finally, we have checked that subradiance is unchanged
when we vary the detuning of the excitation laser around
the atomic resonance (Appendix B). This result indicates
that radiation trapping of light in the cloud, which is seen as
a random walk of the photons before escaping, cannot
explain the observed slow decay [35]. For our small, dense
cloud—and contrarily to the case of dilute, optically thick
clouds [11]—this result is expected, as the photon mean-
free path lsc ¼ 1=ðρσscÞ (with ρ the atomic density and
σsc ¼ 3λ2=2π the resonant cross section) is smaller than the
mean interparticle distance.
To further support our observations of subradiance, we

perform numerical simulations in a simplified setting of
two-level atoms. For the large number of atoms involved in
the experiment, the ab initio simulation using a master
equation is beyond reach, and we therefore resort to
approximations. We use a nonlinear coupled-dipoles model
[31,34] consisting of a coupled system of OBEs, given in
Appendix A. It formally amounts to a mean-field approxi-
mation, assuming that the density matrix of the system can
be factorized [34,36,37]. Thus, we can take into account
saturation effects of individual atoms. We numerically
solve the equations forN ¼ 200 atoms at a density ρ0=k3 ¼
0.3 [Fig. 1(d)]. The results do not feature superradiance, but
they do yield subradiance. The origin of the superradiance
observed in the experiment and not present in the mean-
field simulation is left for future investigations. The
prediction of subradiance in our simulations could suggest
that the mean-field model is enough to account for our
observations. However, as we will show below, it fails to
reproduce our results in the strongly saturated regime, even
qualitatively. In the remainder of this section, we character-
ize the observed subradiance as a function of atom number.
To reveal the characteristic scaling of subradiance in our

regime, we investigate the crossover between the low-atom-
number regime, where the system behaves as an ensemble
of noninteracting emitters, and the large-atom-number one.
To adjust the atom numberN, we release the atoms from the
trap and recapture them after a variable time prior to
sending the burst of excitation pulses. This technique
allows us to reduce the atom number by a factor of more
than 10 with negligible heating, thus leaving the cloud sizes
unchanged. To analyze the experimental data, we fit the
decay with a phenomenological model using either a single
exponential decay or the sum of two decays with different
characteristic times. The fitting function is decided based
on a χ2 criterion (see Appendix C for more details). The
decay time is extracted from data averaged over tens of
thousands of realizations and thus corresponds to an
average subradiant behavior.
In Fig. 2(a), we report the results of this analysis. We

observe that as N grows, a clear subradiant tail appears, and
that the characteristic decay time is an increasing function
of N. To determine the parameter that governs the
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cooperativity, we acquire three different data sets, shown as
different symbols in Fig. 2. They are taken in three different
trapping geometries, leading to different cloud sizes
(Appendix D). We plot the same data in Fig. 2(b) as a
function of the optical depth along x, b0 ¼ ρ0lx

ffiffiffiffiffiffi
2π

p
σsc, and

in Fig. 2(c) as a function of the peak density ρ0 ¼
N=½ð2πÞ3=2lxl2r � (lx;r are Gaussian sizes). We observe that

the data nearly collapse on a single curve when plotted as a
function of atom number rather than as a function of optical
depth. Furthermore, the decay times cannot be described by
the cloud density only, which is a local quantity. This is
expected given the long-range character of the dipole-
dipole interaction. We verify that the amplitude of the
subradiant decay measured as the relative area in the tail
(see Appendix F) is also governed by the atom number
only. Therefore, the two parameters describing subra-
diance, namely, lifetime and amplitude, are solely governed
by N, which is the cooperativity parameter for this regime,
as explained in the Introduction. This behavior distin-
guishes our results from the ones in dilute systems, where
the cooperativity parameter is b0 [27], and indicates that we
are approaching the Dicke limit. The imperfect collapse of
the experimental data in Fig. 2(a) might be due to the fact
that the system size along x is still larger than the excitation
wavelength.

IV. STUDY OF MULTIPLY EXCITED
SUBRADIANT STATES

A natural application of subradiance would be to store
light in an atomic medium. Storing multiphoton states
would require long-lived multiply excited states. Therefore,
understanding the nature of these excitations is a prerequi-
site for the application of multiple excitation storage [12].
Here, we investigate this question experimentally by
varying the intensity of the excitation laser.
Considering the strong driving limit first, the ensemble is

prepared in a product state where each atom is in a mixture
of the ground jgi and excited jei states, with density matrix
ρ ¼ ð1=2NÞðjeihej þ jgihgjÞ⊗N . In general, this mixture
contains subradiant components, as was discussed in
Ref. [12] for the case of two atoms. Reaching such a
steady state during the excitation therefore leads to the
initial excitation of long-lived subradiant states. However, it
does not preclude the further population of these states
during the early decay after switching off the laser
excitation [12,29,38]. For large N, since we are dealing
with two-level systems and not with classical dipoles, the
fact that a single atom cannot be excited twice leads to
nontrivial properties of multiply excited states. It was
shown [19,28–30] in the case of ordered 1D arrays that
subradiant states containing nexc > 1 excitations are built
from a superposition of subradiant states of the single
excitation manifold, which decay independently with their

respective lifetime Γð1Þ
n , as exemplified for nexc ¼ 2 in the

caption of Fig. 3. The signal resulting from the decay of an

nexc > 1 state is ∝
Pnexc

n¼1 expð−Γð1Þ
n tÞ. The interest of this

ansatz stems from the fact that the singly excited states can
be calculated via a model of classical coupled dipoles [39].
However, it is an open question whether this simple picture
holds in the disordered case studied here. As we show

(a)

(b)

(c)

FIG. 2. Decay times in units of the single-atom lifetime Γ−1
0

evaluated by fitting the traces with a sum of two exponential
decays (filled symbols) or with a single one (empty symbols), as
explained in the text. The three different data sets are obtained in
three different geometries, giving cloud Gaussian sizes (lr, lx):
(0.7λ, 7.7λ) (circles), (0.5λ, 6.0λ) (diamonds), and ð0.4λ; 2.9λÞ
(squares). (a) Experimental data as a function of the atom number.
(b,c) Same data plotted as a function of the optical depth b0 and of
the central cloud density ρ0. For all the measurements, the
saturation parameter is s ¼ I=Isat ≃ 27. Error bars on the decay
time (standard errors from the fit) are smaller than the
marker size.
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below, our experimental findings support the picture of
multiply excited subradiant states constructed as a super-
position of independent, singly excited, subradiant states.
To control the number of excitations in the system, we

vary the saturation parameter s ¼ I=Isat between s ≃ 0.01
and s ≃ 30. For these measurements, we work without
compression of the trap, and the atom number is fixed at
about 4500. All the time traces acquired in this section are
reported in Appendix H. We extract the subradiant lifetime
using the procedure introduced earlier. In addition, we
calculate the tail fluorescence by summing the signal for
times larger than t0 þ ð4=Γ0Þ, where t0 marks when the
excitation pulse was switched off. We observe that the
subradiant decay time is constant over 3 orders of magni-
tude of the excitation intensity [Fig. 3(a)] and that the tail
fluorescence increases with excitation intensity before
saturating at an intensity smaller than Isat [Fig. 3(b)].
The constant lifetime suggests a first simple description
of the data as the excitation of a single mode. We thus use a
single-mode approximation to describe the subradiant tail
population with the following expression, assuming a
saturation behavior similar to that of a single atom:
∝ αs=ð1þ αsÞ, with α the fit parameter. We report the

result of this fit as the solid line in Fig. 3(b). From the
extracted α ¼ 3.4ð5Þ and assuming that the lifetime of a
given mode τ0 dictates its saturation intensity I0sat ∝ 1=τ0 as
for a single atom [40], we obtain τ0 ¼ 3.4=Γ0, represented
as a solid line in Fig. 3(a). This result agrees remarkably
well with the direct measurement of the decay rate. Thus,
the single-mode approximation describes our data very
well, seeming to confirm the validity of this approximation.
However, in the saturated regime, the long-lived modes
leading to the subradiant decay host up to 10% of the total
excitations (see Appendix F, Fig. 9), which for a fully
saturated (i.e., 1=2 excitation per atom) cloud of 5000
atoms, means several hundreds of excitations. Despite this
large number of excitations, the decay rate remains the
same, demonstrating that, in the subradiant tail, the rate at
which excitations decay is independent of the density of
excitations in the system. This finding is consistent with
multiply excited states constructed from a large population
of singly excited subradiant states that decay independ-
ently. In the opposite case of strong interactions between
singly excited subradiant states, we would observe an
excitation density-dependent decay rate due to additional
decay processes induced by interactions between excita-
tions. Experimentally, we observe average decay times of
about 3=Γ0, in agreement with the result of classical
coupled-dipole calculations, showing that the single exci-
tation manifold contains a large population of modes in the
range around 3=Γ0 [see Sec. V, Fig. 4(b)].
Finally, we come back to the description of the dynamics

in terms of the mean-field model introduced in Sec. III.
This model assumes a factorizable density matrix through-
out the decay, and the coupling between atoms is induced
by their dipole moment, which is proportional to the
coherence between ground and excited states, ρeg [40].
However, for high saturation, the atoms are prepared in an
incoherent mixture of the ground and excited states, hence,
the coherence and the dipole vanish. Therefore, the mean-
field model predicts a decoupling of the atoms, which then
decay independently with the single-atom lifetime 1=Γ0.
Our observations up to s ¼ 250 (see Appendix G) contra-
dict this prediction, showing that the density matrix of the
system cannot be factorized throughout the decay, although
it can be factorized initially.

V. RELEASE OF THE SUBRADIANT EXCITATION

In this final section, inspired by theoretical proposals
[17–19], we perform a proof-of-principle demonstration of
the on-demand release of the light stored in subradiant
excitations. To do so, we apply a position-dependent
detuning. The resulting inhomogeneous broadening makes
the interaction between atoms no longer resonant: The
ensemble now consists of independent atoms efficiently
radiating, thus releasing the subradiant excitation.
To develop an intuition of how this protocol works, we

first consider a toy model consisting of two coupled linear

(a)

(b)

FIG. 3. (a) Measurement of the decay time of the subradiant tail
(unit of Γ−1

0 ) as a function of the saturation parameter s of the
excitation laser. Black dashed line: single-atom decay time.
(b) Total number of counts recorded in the subradiant tail
(normalized to the maximum value) as a function of s, together
with a fit by a function αs=ð1þ αsÞ (blue solid line). From the fit,
we extract a decay time τ ¼ αΓ−1

0 (see text), which is shown as a
solid blue line in panel (a). Black dashed line: single-atom
response obtained by setting α ¼ 1 in the previous equation.
Inset: independent decay process of multiply excited subradiant
states (here, exemplified with nexc ¼ 2). Singly excited states
decay independently at a rate given by decay rates of the single-
excitation subradiant eigenmodes.
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classical dipoles d1 and d2 with decay rate Γ0 and separated
by r12. The dynamics of the system is governed by the
following equations (here, ℏ ¼ 1):

� _d1
_d2

�
¼

� − Γ0

2
iVðr12Þ

iVðr12Þ iδ − Γ0

2

��
d1
d2

�
; ð1Þ

where δ is the difference between the transition frequencies
of the two atoms and Vðr12Þ is the (complex) dipole-dipole
interaction potential [26]. This system has super- and
subradiant eigenmodes with decay rates Γ� ¼ Γ0�
2Im½Vðr12Þ�. For δ ¼ 0, these modes are the symmetric
and antisymmetric combinations v� ∝ ð1;�1Þ. Hence, if at
time t ¼ 0 the dipoles are prepared in v−, the turning onof the
inhomogeneous broadening (δ ≠ 0) projects v− onto the new
basis provided by the eigenvectors of thematrix in Eq. (1). In
the limit δ ≫ jVðr12Þj, these are the uncoupled dipoles v1 ¼
ð1; 0Þ and v2 ¼ ð0; 1Þ, with identical decay rate Γ0. The
evolution of the two-atom dipole is then given by
vðtÞ ∝ e−Γ0t=2ðv1 − eiδtv2Þ, recovering the single-atomdecay
rate of the radiated power v2ðtÞ ∝ e−Γ0t. This toy model thus
shows that placing the atoms out of resonance with one
another allows the system to radiate again as an assembly of
independent emitters.
In Fig. 4(a), we report the results of the experiment

obtained by applying an inhomogeneous broadening. To do
so, we turn on the trap light at different times (indicated by
the vertical arrows) after the extinction of the excitation
laser. The black curve is our reference for which the trap is
turned on at long times (≃1 μs). The far off-resonant light
induces a position-dependent detuning described by

δiðxi; yi; ziÞ ¼
δ0

1þ x2i =x
2
R
exp

�
−

2ðy2i þ z2i Þ
w2
trapð1þ x2i =x

2
RÞ
�
; ð2Þ

where δ0 is the light shift induced by the trap.
Experimentally, δ0 ≃ 32Γ0, wtrap ¼ 2.5 μm, and xR ¼
πw2

trap=λtrap. Using the atomic density distribution in
Eq. (2) for xi, yi, zi, the standard deviation of the detuning
induced by the trap is about 4Γ0. After turning on this
inhomogeneous broadening, we observe the emission of a
pulse of light [Fig. 4(a)]. The presence of this pulse can be
qualitatively understood using the toy model: When the
inhomogeneous broadening is applied, the atoms start to
radiate at a rate faster than the subradiant one; thus, the
intensity of the emitted light is initially enhanced before
decaying. Moreover, we observe that the pulse is followed
by a faster decay, similar to the single-atom regime [fitting
the experimental data after this pulse, we obtain a decay
rate of 1.3ð1ÞΓ0 for all data sets]. The measurements have
been performed with ≃5000 atoms and with s ≃ 27. We
verified the collective origin of this effect by performing the
same measurements for low atom number, observing no
pulse. Furthermore, the strong suppression of subradiance

obtained with a light shift varying slowly in space dem-
onstrates that the subradiant excitations are not stored in
pairs of close-by atoms but rather delocalized over all the
atoms of the cloud [41]. This is expected for a near-resonant
excitation of the cloud, as delocalized excitations corre-
spond to states with small interaction frequency shifts.
To go deeper into the understanding of the observed

behavior, we extend the toy model previously introduced to
large ensembles. We obtain the decay rates by evaluating
the eigenvalues λi of the interaction matrix for N ¼ 5000
classical coupled dipoles sampled using the experimental
position-dependent detuning. The associated modes are
single-excitation modes, but as observed earlier, they
should give a qualitative description of the behavior of
the subradiant tail. The results are shown in Fig. 4(b). They
indicate that, in the presence of the inhomogeneous broad-
ening, the distribution of decay times is much narrower
than in free space [note the log scale in Fig. 4(b)]. In
particular, a significant fraction of modes with decay rates
close to the observed subradiant one (between Γ0=3 and
Γ0=10) are suppressed by the inhomogeneous broadening.

(a)

(b) (c)

FIG. 4. Release of the light stored in subradiant excitations.
(a) Experimental realization, each time trace represents an
experimental sequence where the inhomogeneous broadening
is applied at a different time, highlighted by the respective arrows.
(b) Histogram of the decay times of the collective modes
evaluated from the eigenvalues of the interaction matrix for
5000 atoms with the same density distribution as in the experi-
ment, for ten realizations. Red (blue) histograms are calculated
with (without) inhomogeneous broadening. (c) Results of the
mean-field nonlinear coupled dipole simulations. Dashed lines:
temporal evolution of the total excited state population pðtÞ.
Solid lines: intensity −dp=dt emitted in a 4π solid angle. Purple
lines: case where the inhomogeneous broadening is applied at
t ¼ 12.5=Γ0. Blue lines: no inhomogeneous broadening applied.
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We further perform numerical simulations of the dynamics
for smaller atom numbers using the mean-field model
already introduced in Sec. III. The results are shown in
Fig. 4(c) for a cloud with N ¼ 200 atoms at a density
ρ0=k3 ¼ 0.3. The trap is turned on during the decay. We
take into account the finite rise time of the trap beam of
about 25 ns. The simulation provides the evolution of the

total population of the excited state pðtÞ ¼ P
N
i¼1 ρ

ðiÞ
ee ðtÞ

(dashed line). However, experimentally, we measure the
intensity of the light emitted by the cloud, which, in the
absence of a drive, is proportional to −dpðtÞ=dt (in a 4π
solid angle), represented by the continuous lines of
Fig. 4(c). When the inhomogeneous broadening is applied,
the population curve presents a change of slope, correspond-
ing to a peak in the intensity, followed by a decay at a rate
that is now close to the single-atom one. These simulations
confirm the interpretation of our experimental findings.
Finally, as shown in Fig. 5, we observe that the enhance-

ment of the emission is stronger along the cloud axis. We
have further observed, by changing polarization and the
internal structure of the atoms, that no significant difference
arises in the released pulse shape, Fig. 5. We leave for
future work the investigation of how to control the
directionality of the pulse, which could allow for the
tailoring of the angular emission pattern of the excitation
stored in subradiance.

VI. CONCLUSION

In this work, we investigated the subradiant decay of
excitations stored in a dense cloud of atoms trapped in an
optical tweezer, approaching the Dicke limit of a large
number of atoms in a volume smaller than λ3. We confirm
that the cooperativity parameter is the atom number rather
than the optical depth or the density. Moreover, by tuning

the intensity of the excitation laser, we studied the nature of
multiply excited subradiant states and experimentally
found that all the information is contained in the response
of the system at low intensity, where only singly excited
modes are populated. A quantitative theoretical description
in our regime is, however, extremely challenging, and new
models describing this interacting dissipative many-body
system need to be developed. Finally, by applying an
inhomogeneous broadening, we were able to release the
subradiant excitation stored in the cloud in the form of a
pulse of light. Our experiment thus represents a proof of
principle of the temporal control of subradiance in an
atomic medium, a prerequisite for its use as a light storage
medium. It was made possible by the small size of the
cloud, which permitted the use of relatively low power of
the control light to apply a significant detuning between
atoms. In the future, it could be applied to systems featuring
tailored subradiant modes, such as structured atomic
systems [19,42–44], in which these modes could be
selectively excited by a local addressing.
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APPENDIX A: NONLINEAR
COUPLED-DIPOLE MODEL

In this section, we provide some details about the mean-
field, nonlinear, coupled-dipole model used in the main
text. A derivation of the main equations can be found
elsewhere [31,34]. We consider an ensemble ofN two-level
atoms at position rn coupled to light by a transition with
dipole element d0, detuning Δ, and natural broadening Γ0.
Assuming that the density matrix can be factorized,
ρ ¼ ⊗n ρn, the dynamics is governed by a system of
coupled OBEs:

dρee;n
dt

¼ −Γ0ρee;n þ iρge;n
Ωn

2
− iρeg;n

Ω�
n

2
; ðA1Þ

dρeg;n
dt

¼
�
iΔ −

Γ0

2

�
ρeg;n − iΩnðρee;n − ρgg;nÞ; ðA2Þ

where ραβ;n represents the elements of the density matrix of
the nth atom. The driving Rabi frequency Ωn experienced
by atom n is the sum of the laser driving and the field
scattered by other dipoles:

FIG. 5. Directionality of the emitted light pulse. Release of the
subradiant excitation, observed with light collected axially
(APD//) (bottom curves) and radially (APD⊥) (top curves).
The experiment is performed with a linear polarization of the
excitation light, either parallel (dotted lines) or perpendicular
(dashed lines) to the cloud, and with a circular polarization in the
presence of a 50-G magnetic field aligned along the excitation
direction (solid lines).
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Ωn ¼ ΩlaserðrnÞ þ i
X
m≠n

ρeg;mVðrn − rmÞ;

VðrÞ ¼ 3

2i
eikr

kr

�
pðr̂Þ þ qðr̂Þ

�
i
kr

−
1

ðkrÞ2
��

; ðA3Þ

where pðr̂Þ and qðr̂Þ depend on the polarization of the
driving field [25].
In the strong driving limit, ρeg;n vanishes. Moreover,

when the driving is turned off (Ωlaser ¼ 0), at any sub-
sequent time, ρeg;n ¼ 0, and the equations are decoupled,
leading to the single-atom decay.

APPENDIX B: DEPENDENCE OF SUBRADIANCE
ON DETUNING

All the measurements reported in the main text have been
performed on resonance. To demonstrate that our obser-
vations cannot be explained by radiation trapping, which
depends strongly on detuning [11], we have also acquired
three different data sets at three different detunings of the
driving laser. In Fig. 6, we report these measurements
performed at resonance Δ=Γ0 ¼ 0, Δ=Γ0 ¼ 1, and
Δ=Γ0 ¼ 3. At Δ=Γ0 ¼ 3, we observe a small reduction
in fluorescence at large detunings even at this intensity.
However, the tail of each distribution behaves very sim-
ilarly, independently of the detuning.

APPENDIX C: FITTING PROCEDURE TO
EXTRACT THE SUBRADIANT LIFETIME

In this section, we provide more details about the fitting
procedure used to analyze the experimental data. In Fig. 7(a),
we report an example of a fluorescence trace acquired in the
small-atom-number regime together with a fit that makes use
of a single exponential decay. We fit all the data in this way,
and for every measurement, we evaluate the reduced χ2:

χ2 ¼ 1

Kbin

XKbin

i¼1

(Nexp
i − NtheðtiÞ)2
NtheðtiÞ

; ðC1Þ

where Kbin is the number of time bins in the data set (500 ps
bins), Nexp

i is the recorded number of counts in the bin
centered on time ti, and NtheðtiÞ is the value of the fitting
function. This definition of χ2 assumes Poissonian statistics
for the recorded counts in each bin.
In Fig. 7(c), we report the values of χ2 as a function of the

atom number, for the shallowest trapping geometry
described in the main text (blue points in Fig. 2). As the
atom number in the cloud becomes larger, the system
exhibits super- and subradiance, and the fit with a single
exponential decay is no longer able to describe the entire
observed dynamics as revealed by an increase in χ2. When

FIG. 6. Photon-count traces acquired as a function of the
excitation frequency. The experimental data have been acquired
in the shallowest trapping geometry described in the main text
with N ≃ 4500. The temporal traces have been divided by the
number of pulses of light used; thus, they represent the mean
number of photons collected during one pulse of resonant light.

(a)

(b)

(c)

FIG. 7. (a) Solid line: example of decay in the small-atom-
number regime (N ≃ 300) shown with the fit using a single
exponential decay (dashed line). (b) Solid line: decay in the large-
atom-number regime (N ≃ 4000), dashed line: phenomenological
fit with the sum of two exponential decays. The dotted lines
represent the two different decay rates, i.e., super- and subra-
diance. The traces in panels (a) and (b) have been normalized to
the steady state. (c) Values of χ2 obtained with the double-
exponential (filled circles) or a single-exponential decay (empty
markers) versus atom number.
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it becomes larger than 1, we use a different phenomeno-
logical model to describe the decay, fitting with the sum of
two exponential decays [see Fig. 7(b)]. The agreement
between this second model and the experimental data is
much better in the large-atom-number regime, and con-
sequently, χ2 is smaller, as highlighted by the filled points
in Fig. 7(c). The very small values of χ2 come from the
large uncertainties resulting from the small number of
counts in the tail.

APPENDIX D: THE THREE DIFFERENT
TRAPPING GEOMETRIES

In Sec. III, we employ three different trapping geom-
etries that allow us to obtain three different cloud dimen-
sions. In the first one, the trap is used to load the atoms from
the MOT (Gaussian sizes lr ≃ 0.7λ, lx ≃ 7.7λ, blue circles).
In the second one, we increase the power of the trapping
beam by about 60%, gaining a factor 2 in density without
losing atoms (lr ≃ 0.5λ, lx ≃ 6.0λ, purple diamonds). In the
third case, we reduce the beam waist down to 1.8 μm. The
atom number after the compression is lower (N ≃ 1500),
but we reach a high density, ρ0=k3 ≃ 1.5, owing to the
reduced trapping volume (lr ≃ 0.4λ, lx ≃ 2.9λ, black
squares) [45]. A complete set of time traces can be found
below. For every point, we measure the atom number and
the temperature.

APPENDIX E: EFFECT OF POLARIZATION AND
OPTICAL PUMPING

Unless otherwise specified, the measurements reported
in this work are performed with a linearly polarized
excitation light without any direct optical pumping (OP).
We did not observe that the polarization direction impacts
the observed subradiance. However, there could be an

effect due to the fact that the linear polarization configu-
ration does not correspond to a two-level configuration.
It was recently shown [46] that on a J ¼ 0 → J ¼ 1

transition, subradiance can be modified at high density with
respect to the two-level scalar model predictions. In our
case, in order to check if the level structure strongly
modifies the collective behavior hosted in the tail of the
fluorescence signal, we perform one experiment in a
situation much closer to a two-level configuration: a
circularly polarized (σ−) excitation, together with a 20-G
magnetic field along the excitation propagation axis. We
perform hyperfine and Zeeman optical pumping with the
same polarization as the excitation light to place ourselves
in a closed two-level system (between F ¼ 2, mF ¼ −2,
F0 ¼ 3, andmF ¼ −3). The light scattered by an atom onto
a nearby atom might contain other polarization components
and drive other transitions out of the two-level system.
However, the detuning between the σ− and π polarization
transitions (closest in detuning) is about 5Γ0, preventing the
rescattering of this polarization by nearby atoms.

FIG. 8. Photon-count decay with a linear polarization, no
magnetic field, and no optical pumping, i.e., multilevel situation
(blue). The same is shown for the two-level case: 20-G magnetic
field, σ− polarization, and prior optical pumping (purple). The
two traces have been normalized to the steady state, with
measurements for N ≃ 4500 in the first trapping geometry (see
Appendix D).

(a)

(b)

(c)

FIG. 9. Tail ratio as defined by Eq. (F) for the same data sets as
used to extract the decay times in Fig. 2 (s ≃ 27).
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In Fig. 8, we show in blue an acquisition from linear
polarization and without optical pumping, and in purple
that with optical pumping, circular polarization, and mag-
netic field. We observe that the tails of the two traces are
similar, within our dynamic range of observation. We
conclude that the internal structure does not seem to
strongly affect the results on subradiance reported in this
work or our conclusions.

APPENDIX F: RELATIVE POPULATION OF THE
LONG-LIVED STATES

Another parameter that we use to quantify subradiance is
the relative fluorescence observed in the long-lived tail with
respect to the total fluorescence recorded after switching off
the drive. We refer to this quantity as the tail ratio. It is
defined as TR ¼ ½R∞

4
Γ0
IðtÞdt=R∞

0 IðtÞdt�, where IðtÞ repre-

sents the time-resolved fluorescence emitted by the atomic
cloud, with t ¼ 0 the switch-off time of the excitation laser.
This parameter estimates the fraction of excitation still
hosted in the system 4=Γ0 ≃ 100 ns after switching off the
excitation, compared to the whole decay. In the single-atom
limit, this parameter is equal to e−4 ≃ 2% by definition.
We analyze the behavior of this tail ratio as a function of

atom number on the same data as used for Fig. 2. In Fig. 9,
we indeed see the collapse as a function of atom number,
similarly to what was found for the decay time (see
discussion in Sec. III).

APPENDIX G: MEASUREMENTS AT LARGE
SATURATION INTENSITY

In this section, we report the data acquired at very high
values of the drive intensity, reaching s ¼ I=Isat ≃ 250. The
measurements have been performed with a larger atom
number, N ≃ 6000. For this reason, this data set and the one
used for Fig. 3 of the main text cannot be directly
compared. In Fig. 10(a), we report the temporal traces
acquired in this way, normalized to the steady-state value of
the trace taken with the largest excitation intensity. In

Fig. 10(b), we instead report the results of numerical
simulations performed using the nonlinear coupled-dipole
model, with 100 atoms distributed in a Gaussian cloud with
a peak density ρ0 ¼ 0.3=k3. The reported lines are the
results of ten realizations of the same numerical experi-
ment. As one can see, according to the mean-field model,
the subradiance is expected to disappear as the excitation
strength is increased. The fact that, experimentally, the
system still hosts a subradiant excitation even at very large
intensity shows that the density matrix of the system cannot
be factorized throughout the decay.

(a)

(b)

FIG. 10. (a) Photon-count decays acquired for different ex-
citation intensities. (b) Numerical simulations performed with a
nonlinear coupled-dipole model, using 100 atoms at a density
ρ0=k3 ¼ 0.3. The traces have been normalized to the steady-state
value of the measurement at largest intensity. Here, we define the
origin of the time (t ¼ 0) 30 ns after switching off the excitation.

FIG. 11. Left panel: photon-count decays acquired for different drive intensities. Right panel: photon-count decays acquired as a
function of the atom number for the first trapping geometry (circles in Figs. 2 and 9).
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APPENDIX H: FLUORESCENCE
DECAY CURVES

For completeness, in Fig. 11, we report the experimental
photon-count decay curves used in the analysis described in
the main text. In the left panel, we show the ones measured
as a function of atom number, and in the right panel, for
different drive intensities.
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