
 

Quench Dynamics of a Fermi Gas with Strong Nonlocal Interactions

Elmer Guardado-Sanchez ,1 Benjamin M. Spar,1 Peter Schauss ,2 Ron Belyansky,3,4 Jeremy T. Young,3,5,6

Przemyslaw Bienias,3,4 Alexey V. Gorshkov ,3,4 Thomas Iadecola ,7 and Waseem S. Bakr 1,*

1Department of Physics, Princeton University, Princeton, New Jersey 08544 USA
2Department of Physics, University of Virginia, Charlottesville, Virginia 22904 USA

3Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
4Joint Center for Quantum Information and Computer Science, NIST/University of Maryland,

College Park, Maryland 20742 USA
5JILA, NIST, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
6Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA

7Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

(Received 12 October 2020; revised 12 March 2021; accepted 14 April 2021; published 17 May 2021)

We induce strong nonlocal interactions in a 2D Fermi gas in an optical lattice using Rydberg dressing.
The system is approximately described by a t − V model on a square lattice where the fermions experience
isotropic nearest-neighbor interactions and are free to hop only along one direction. We measure the
interactions using many-body Ramsey interferometry and study the lifetime of the gas in the presence of
tunneling, finding that tunneling does not reduce the lifetime. To probe the interplay of nonlocal
interactions with tunneling, we investigate the short-time-relaxation dynamics of charge-density waves in
the gas. We find that strong nearest-neighbor interactions slow down the relaxation. Our work opens the
door for quantum simulations of systems with strong nonlocal interactions such as extended Fermi-
Hubbard models.
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I. INTRODUCTION

Ultracold gases are a versatile platform for studying
quantum many-body physics [1]. The ability to engineer
and control the interactions in these systems has played an
important role in observing novel phases of matter includ-
ing crossover fermionic superfluids [2] and dipolar super-
solids [3–5] and in studying out-of-equilibrium dynamical
processes such as thermalization [6]. Recent efforts have
focused on degenerate quantum gases with long-range
interactions including those of magnetic atoms [3,6–8]
and polar molecules [9,10]. These systems may be dis-
tinguished from other quantum platforms with long-range
interactions including ions [11,12], Rydberg atoms [13],
polar molecules in optical tweezers [14,15], and atoms in
optical cavities [16], in that the particles are itinerant. This
motion can lead to an interesting interplay between
interactions, kinetic energy, and quantum statistics.

Rydberg dressing has been proposed as an alternative route
to realize quantum gases with tunable long-range inter-
actions [17–19]. Experimental demonstrations of Rydberg
dressing [20–29] have been performed with localized atoms
or quantum gases of heavy atoms where observation of
motional effects has been elusive. However, the combina-
tion of motion and Rydberg dressing can lead to novel
phenomena and shed new light on the many-body physics
of spinless and spinful fermionic systems with power-law
interactions. In 1D, Rydberg dressing leads to quantum
liquids with qualitatively new features relative to the
Tomonaga-Luttinger liquid paradigm [30]. In 2D, topo-
logical Mott insulators can be emulated by placing atoms
on a Lieb lattice [31]. Compared to contact or on-site
interactions, the long-range interactions between Rydberg-
dressed atoms makes it easier to achieve the low filling
factors required for quantum Hall states [32,33]. The
interplay between hole motion and antiferromagnetism—
believed to be at the heart of high-temperature super-
conductivity—can be studied in Rydberg-dressed atomic
lattices emulating the t − Jz model [34]. In 3D, one can
achieve exotic topological density waves [35], topological
superfluids [36], and metallic quantum solid phases [37].
Here we investigate Rydberg dressing of lithium-6, a

light fermionic atom. Its fast tunneling in an optical lattice
allows us to study the quench dynamics of itinerant
fermions with strong, purely off-site interactions.
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Atoms in a quantum gas resonantly coupled to a Rydberg
state experience strong van der Waals interactions many
orders of magnitude larger than their kinetic energy for
typical interatomic spacings, hindering access to the
interesting regime where the two energy scales compete.
At the same time, the population of atoms in the Rydberg
state decays on a timescale of tens of microseconds, short
compared to millisecond motional timescales. Rydberg
dressing addresses both of these issues. Using an off-
resonant coupling, the atoms are prepared in a laser-dressed
eigenstate jgdri ≈ jgi þ βjri of predominant ground-state
(jgi) character and a small Rydberg (jri) admixture, where
β ¼ ðΩ=2ΔÞ ≪ 1, Ω is the coupling strength, and Δ is the
laser detuning from the transition frequency. This admix-
ture enhances the lifetime of the dressed atom by a factor of
1=β2 relative to the bare Rydberg state lifetime. On the
other hand, the interaction between two atoms a distance r
apart is reduced in strength and can be approximately
described by a tunable softcore potential VðrÞ ¼
Vmax=ðr6 þ r6cÞ with strength Vmax ∼ β3Ω and range
rc ∼ ðjC6=2ΔjÞ1=6, where C6 is the van der Waals coef-
ficient for the Rydberg-Rydberg interaction. Early experi-
ments with 3D quantum gases were limited by rapid
collective atom loss attributed to a blackbody-induced
avalanche dephasing effect [20–22,26]. Nevertheless,
Rydberg dressing has been successfully used to entangle
atoms in optical tweezers [23], perform electrometry in
bulk gases [28], and study spin dynamics [24,27,29].
In this work, we report on the single-photon Rydberg

dressing of a 2D 6Li Fermi gas in an optical lattice in the
presence of tunneling. This results in a lattice gas of
fermions with strong, nonlocal interactions. We character-
ize the interaction potential using many-body Ramsey
interferometry [24]. A careful study of the lifetime of
spin-polarized gases shows different behavior compared to
previous Rydberg-dressing realizations, with the lifetime
depending strongly on the density but not on the atom
number at fixed density. We also observe that the presence
of tunneling in the system has no effect on the lifetime.
Finally, we use this platform to realize a 2D coupled-chain
t − V model consisting of interaction-coupled chains and
study the short-time-quench dynamics of charge-density
wave states, finding that the strong attractive interactions
inhibit the motion of the atoms.
Theoretical studies of the 1D t − V model [38,39] have

shown that it can exhibit Hilbert-space fragmentation
(HSF) [40,41], in which dynamical constraints “shatter”
the Hilbert space into exponentially many disconnected
subspaces. Like many-body localization (MBL) [42,43]
and quantum many-body scars [44,45], HSF is a mecha-
nism whereby isolated quantum systems can fail to reach
thermal equilibrium after a quantum quench [46]. In the
t − V model, HSF arises in the limit of strong interactions,

where the number of “bond” excitations, i.e., nearest-
neighbor pairs of fermions, joins the total fermion number
as a conserved quantity. Our mixed-dimensional t − V
model inherits properties of the 1D version, including
the HSF in the limit t=V → 0. Our quench results demon-
strate experimentally how HSF impacts the short-time-
relaxation dynamics for nonzero t=V.

II. EXPERIMENTAL SYSTEM AND
THEORETICAL MODEL

Our system consists of a degenerate Fermi gas of 6Li
atoms in a square optical lattice of spacing alatt ¼ 752 nm
[Fig. 1(a)] [47]. We apply a 591.8(3)-G [48] magnetic field
perpendicular to the 2D system. We load spin-polarized
gases prepared in a state that may be labeled at high fields
as jnl; ml; ms;mIi ¼ j2S; 0;−1=2; 1i ¼ j1i, or alterna-
tively, j2S; 0;−1=2;−1i ¼ j3i depending on the measure-
ment. We have control over the initial density profile by
employing a spatial light modulator. Using a 231-nm laser
beam with linear polarization parallel to the magnetic field
and propagating along the lattice x direction, we couple the
ground-state atoms to the j28P; 0;−1=2i Rydberg state
(Appendix A). By tuning the intensity and the detuning of
the dressing light [49], we have real-time control over the
isotropic soft-core interaction potential between the atoms
in the gas [Fig. 1(b)].
The lattice system is described by a single-band spinless

fermion Hamiltonian

Ĥ ¼ −t
X
hi;ji

ðĉ†i ĉj þ H:c:Þ þ
X
i≠j

Vij

2
n̂in̂j þ

X
i

δin̂i; ð1Þ

where t is a tunneling matrix element, Vij is the off-site
interaction [Eq. (B3) and Fig. 1(b) (inset)], and δi is the
potential due to single-particle lightshifts contributed by the
lattice and Rydberg-dressing beams. Since our dressing
beam is tightly focused with a waist of 16.1ð4Þ μm, the
change in δ between rows in the y direction, which is
orthogonal to the beam propagation axis, is much larger
than t (for typical experiments presented in Sec. IV, the
minimum change in δ between rows is >3t near the
intensity maximum of the Rydberg-dressing beam). On
the other hand, because of the large Rayleigh range of the
beam (approximately 3.5 mm), the variation of δ along the
beam propagation direction (x direction) is negligible. To
first approximation, we drop the lightshift term and the
hopping along the y direction. Thus, we can rewrite our
Hamiltonian as a coupled-chain t − V model of the form

Ĥ ¼ −t
X
hi;jix

ðĉ†i ĉj þ H:c:Þ þ
X
i≠j

Vij

2
n̂in̂j: ð2Þ
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III. CHARACTERIZATION OF THE SYSTEM

A. Rydberg-dressed interaction potentials

In order to characterize the Rydberg-dressed interaction
potentials, we perform many-body Ramsey interferometry
between states j1i and j2i ¼ j2S; 0;−1=2; 0i following the
procedure introduced in Ref. [24]. Starting from a spin-
polarized band insulator of atoms prepared in state j1i in a
deep lattice that suppresses tunneling, a π=2 radio-fre-
quency pulse prepares a superposition of state j1i and j2i,
which acquires a differential phase during a subsequent
evolution for time T in the presence of the dressing light.

Unlike Ref. [24], the splitting between the hyperfine
ground states of 6Li is comparable to the detuning Δ of
the dressing laser [Fig. 2(a)], and both states are signifi-
cantly dressed by the light (Appendix B). First, we obtain
the spatial profile of the Rabi coupling strength Ωði; jÞ by
measuring the population of j2i after a π=2 − T − π=2
pulse sequence using a detuning Δ ¼ 2π × 100 MHz.
The large detuning is chosen so that the interactions,
whose strength scales as 1=Δ3, are negligible, while the
single-particle lightshifts that scale as 1=Δ lead to a large
differential phase during the evolution. From these mea-
surements, we extract the waist of the beam [16.1ð4Þ μm]
and measure Rabi couplings up to Ω ¼ 2π × 9.48ð8Þ MHz
[Fig. 2(b)]. The measured spatial profile of the Ramsey
fringe frequency confirms the rapid variation of δi along the
y direction, while no variation of δi is observed along the x
direction within the statistical uncertainty of the measure-
ment (approximately 1 kHz).
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FIG. 2. Measuring Rydberg-dressed interactions with many-
body Ramsey interferometry. (a) Energy level diagram for 6Li
showing that the dressing of the other hyperfine ground state
cannot be ignored. Here, Δ=2π is varied between 30 and
100 MHz, while Δ0=2π ¼ 75.806ð1Þ MHz. (b) Ramsey fringe
frequency measured at a detuning of Δ ¼ 2π × 100 MHz at
different positions in the cloud. The frequency is almost constant
along the propagation direction of the beam (purple). In the
transverse direction (yellow), it varies rapidly as expected for a
tightly focused Gaussian beam. Insets: (i) Ramsey oscillations at
two representative positions in the cloud. (ii) Sample image of
one spin state in the cloud at T ¼ 20 μs. (c) Spin correlations for
different spin-echo pulse times at Ω ¼ 2π × 7.66ð7Þ MHz and
Δ ¼ 2π × 35 MHz. Measurement (top) and theoretical expect-
ation (bottom). (d) Nearest- (green) and next-nearest- (orange)
neighbor correlations after subtracting Cð∞Þ. Lines correspond
to the expected correlations. Experimental error bars correspond
to standard error of the mean.
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FIG. 1. Realization of a t − V model with Rydberg dressing.
(a) The Rydberg-dressing beam propagates along the x direction
of the lattice, effectively decoupling 1D chains in the y direction
due to a differential lightshift. Hopping of fermions (red dots)
along the x direction is unaffected. Interactions are isotropic.
(b) 6Li pair potentials for dressing to the state j28P;
ml ¼ 0; ms ¼ −1=2i calculated using Ref. [50]. The color of
the lines represents the overlap with the target pair state
(j28P; 0;−1=2i ⊗ j28P; 0;−1=2i) coupled via the laser with
Rabi coupling Ω and detuning Δ from the target state. Inset:
calculated dressed potential for Ω ¼ 2π × 7.66 MHz and Δ ¼
2π × 35 MHz taking into account the overlaps to all pair
potentials (orange solid line). The dashed green line represents
the expected dressed potential for a simple van der Waals
potential with C6 ¼ h × 90.19 MHz a6latt. Pink points are the
interaction at each lattice distance taking into account the wave-
function spread of the atoms.
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To probe interactions in the system, we switch
to a smaller detuning Δ ¼ 2π × 35 MHz. We measure
density correlations of state j1i [CðrÞ ¼ hn1ðrÞn1ð0Þi−
hn1ðrÞihn1ð0Þi] after a spin-echo pulse sequence
(π=2 − T − π − T − π=2) which eliminates differential
phases due to the lightshift. Figure 2(c) shows the measured
correlations after different evolution times T compared to
the theoretical expectation (Appendix C). Figure 2(d)
depicts the evolution of the nearest-neighbor and next-
nearest-neighbor correlations with the correlation offset
Cð∞Þ subtracted. This offset is attributed to correlated
atom number fluctuations in the images [24]. We find good
agreement with the theoretical model, which predicts a
nearest-neighbor (next-nearest-neighbor) attractive interac-
tion jV10j ¼ h × 4.2ð2Þ kHz [jV11j ¼ h × 1.37ð6Þ kHz]
[Fig. 1(b)].

B. Lifetime

To probe coherent many-body physics in our system, the
lifetime τ of the sample has to be larger than the interaction
and tunneling times. Atoms resonantly excited to a
Rydberg state are lost from our system on a timescale of
tens of microseconds for several reasons: photon recoils
due to spontaneous emission and large forces due to
antitrapping optical potentials and due to interactions with
other Rydberg atoms. Because of its Rydberg admixture, an
isolated dressed atom decays with a lifetime τeff ¼ τ0=β2,
where τ0 is the lifetime of the Rydberg state determined by
radiative and blackbody-driven transitions to other states.
Previous experiments with frozen 2D and 3D systems have
observed much shorter lifetimes than τeff [20–22,24,26]. A
simplified model used to explain these experiments con-
siders a blackbody-driven decay of the dressed state to a
pure Rydberg state of opposite parity. The first such
contaminant appears in the system on a timescale τc ¼
τBB=ðNβ2Þ where τBB is the blackbody lifetime of the
Rydberg state and N is the number of atoms in the system.
This atom interacts with other dressed atoms through
resonant state exchange characterized by a C3 coefficient
broadening the Rydberg line. In particular, other atoms at a
certain facilitation radius ðjC3=ΔjÞ1=3 will be resonantly
excited, leading to avalanche loss of all the atoms from the
trap. Experiments in 2D have indeed observed a collective
lifetime close to τc and a bimodal atom number distribution
in lifetime measurements [24]. We do not observe such a
bimodality in our 2D systems, and the lifetime does not
depend strongly onN at fixed density (Appendix D). In this
regard, our 2D 6Li experiments are closer to 87Rb experi-
ments with 1D chains where the avalanche mechanism is
suppressed to some extent [27].
The atom number decay in a frozen system of (7 × 7) sites

is shown in Fig. 3(a). The decay is not exponential, indicating
a density-dependent lifetime which we extract by fitting
different sections of the decay curve. For dressing to j28Pi,
τ0 ¼ 30.5 μs [51]. We measure the density-dependent

lifetime forΩ ¼ 2π × 9.25ð8Þ MHz at three different detun-
ings, Δ ¼ 2π × ð30; 40; 60Þ MHz [Fig. 3(b)]. Around half
filling, the collective lifetime is approximately 0.3τeff for
Δ ¼ 2π × 30 MHz and approaches τeff for the smallest
densities (n ∼ 0.1). For comparison, perfect avalanche loss
would predict τc ¼ 0.08τeff .
Next, we measure the lifetime of the dressed gas in the

presence of tunneling, which has been a topic of theoretical
debate [52,53]. We measure the density-dependent lifetime
for different lattice depths spanning the frozen-gas regime
to a tunneling of 1.7 kHz [Fig. 3(c)]. We do not observe any
change of the lifetime with tunneling. A potential concern
in this measurement is that the tunneling along the x
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FIG. 3. Lifetime of itinerant Rydberg-dressed fermions.
(a) Atom number vs dressing time for a frozen gas. The red
circles correspond to measurements on a system of (7 × 7) sites.
Dashed-dotted line corresponds to an exponential fit to the first
five data points, and dashed line corresponds to the expected
single-particle dressed lifetime τeff . (b) Measured lifetime in a
frozen gas in units of τeff vs the initial density for
Ω ¼ 2π × 9.25ð8Þ MHz and Δ ¼ 2π × ½30ðgreenÞ; 40ðpurpleÞ;
60ðorangeÞ� MHz. Inset: same measurements in units of ms.
(c) Lifetime vs initial density for different tunnelings: 0.01 kHz
(green), 0.25 kHz (purple), 1.0 kHz (orange), and 1.7 kHz (pink).
The data are taken with Ω ¼ 2π × 6.04ð8Þ MHz, Δ ¼
2π × 30 MHz. Insets: (i) Tunneling dynamics of atoms sparsely
initialized on a strip along the y direction with no dressing light.
From these data, we extract a tunneling rate t ¼ h × 1.7 kHz.
(ii) Same measurement in the presence of the dressing light.
(iii) Same measurement in the presence of the dressing light but
with the strip along the x direction. Experimental error bars
correspond to the standard error of the mean.
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direction may be suppressed by uncontrolled disorder in δi.
We rule this out by preparing a sparse strip of atoms and
observing its tunneling dynamics. As expected for a clean
dressed system, the tunneling dynamics along the x
direction is almost identical to the case without the dressing
light, while the dynamics is frozen along the y direction
[Fig. 3(c) inset]. Combining the results of our interferom-
etry and lifetime measurements, we achieve a lifetime of
several interaction times measured by the figure of merit
V10τ=ℏ ∼ 20 [27] for a mobile system with n ¼ 0.5.

IV. QUENCH DYNAMICS

To probe the interplay of interactions and tunneling in
our system, we use light patterned with a spatial light
modulator to initialize the system in a charge-density wave
state of atoms in state j3i. The initial density pattern
approximates a square wave with period λ ¼ 4alatt and
width w ¼ 7alatt, with the average density oscillating
between n ∼ 0 and n ∼ 0.7 [see Figs. 4(a) and 4(b)].

Dynamics in a lattice with t ¼ h × 1.7 kHz is initiated
by suddenly turning off the patterning potential while
keeping walls in the y direction as in Ref. [54]. We average
the density profiles over the nonhopping direction and
observe a qualitative change in the dynamics as we increase
V=t (here V ≡ jV10j) from 0 to 2.9(2) [Fig. 4(c)]. To
emphasize the evolution of the pattern, we scale the data to
account for atom loss during the evolution (Appendix E). In
the noninteracting quench, we observe that the phase of the
charge-density wave inverts at a time approximately ℏ=t as
is expected for a coherent evolution [55]. For strong
interactions, the decay of the charge-density wave slows
down, and the system retains a memory of its initial state
for longer times.
This slowdown can be understood as an interplay

between two conservation laws: the intrinsic U(1) particle
number (N̂ ¼ P

x n̂x) conservation as well as an emergent
conservation of the number of bonds N̂b ¼

P
x n̂xn̂xþ1.

The number of bonds becomes a conserved quantity when
the longer-range interactions are ignored, and in the limit of
infinite V=t. States of the form j…0011001100…i along
the hopping direction, which the imprinted density pattern
attempts to approximate, would be completely frozen in the
limit of infinite V=t [38]. For a large but finite V, moving a
single atom (and hence, breaking a bond) costs an energy of
up to 3V, which is energetically unfavorable, and hence
leads to reduced relaxation dynamics.
To quantify the difference in the dynamics of the

different quenches, we employ two different methods.
The first is to fit a sinusoid of the form nðx; tÞ ¼
A sin ð2πx=λþ ϕÞ þ B to determine the amplitude of the
wave relative to its mean, A=B [Fig. 4(d)]. The fit is
restricted to jxj ≤ 6alatt, and ϕ is fixed by the initial pattern.
The second method is to calculate the autocorrelation
function

ρðtÞ ¼ covxðnðx; 0Þ; nðx; tÞÞ
σxðnðx; 0ÞÞσxðnðx; tÞÞ

; ð3Þ

where covx and σx are the covariance and the standard
deviation, respectively [Fig. 4(e)].
Further confirmation that the slower decay of the charge-

density waves is an interaction effect obtained by varying
the average density in the initial state. Figure 5 shows these
initial states and their time evolution for V=t ¼ 2.9ð2Þ. As
the average density of the initial state is decreased, it
approaches a “sparse” limit where the probability of having
two neighboring atoms is negligible. In this regime, the
system is effectively noninteracting, and we recover the
phase inversion during the evolution. Since these measure-
ments are done at fixed power of the dressing light, they
rule out disorder-induced localization as a mechanism for
arresting the dynamics.
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V. NUMERICAL SIMULATIONS

We use exact diagonalization to simulate the quench
dynamics of our experiment. As the simulation for the full
experimental 2D system (approximately 7 × 21) is com-
putationally intractable, we compare instead to numerics on
a 2 × 11 t − V model with only nearest-neighbor inter-
actions and no tunneling along the y direction and find
qualitative agreement with the measurements.
We account for atom loss during the experiment via

a Lindblad master equation ∂tρ̂ ¼ −iðĤeff ρ̂ − ρ̂Ĥ†
effÞþ

Γ
P

i âiρ̂â
†
i . Here, Ĥeff ¼ Ĥ − iðΓ=2ÞN̂ is the effective

non-Hermitian Hamiltonian [Ĥ is the t − V Hamiltonian
from Eq. (2)], and the second term describes quantum jumps
corresponding to atom loss with rate Γ. We solve the master
equation using the quantum trajectory approach [56]. Note
that the anti-Hermitian term in Ĥeff is a constant due to the
particle number conservation, and hence, it can be neglected
since Ĥeff and Ĥ generate the same dynamics (up to the
normalization, which serves only to determine the timings of
the quantum jumps).
The initial state for each trajectory is sampled directly

from the experimental data taken at t ¼ 0. We pick a 2 × 9
region centered on two of the four density peaks from the
experimental images [Fig. 4(a)]. In order to reduce

boundary effects, we add empty sites on each end of the
chain. We average the resulting dynamics over the different
trajectories, whose number is comparable to the number of
experimental snapshots. Next, we analyze the averaged
simulated dynamics using the same methods we use for the
experimental data. Figure 4 shows the comparison of the
experiments with these numerical simulations. We find
good qualitative agreement with this small 2D coupled-
chain numerical model.
The 2D nature of the system is important for fully

understanding the relaxation timescales in our system. In
particular, in a one-dimensional system, moving a single
atom from the initial “…00110011…” pattern (and hence,
breaking a bond) costs an energy V. However, in the
coupled-chain t − V model with isotropic interaction,
breaking a bond now costs up to 3V for the idealized
initial charge-density wave state. We thus expect the 2D
system to have a slower relaxation rate compared to a 1D
system with the same interaction strength.
To verify this, we perform additional numerical simu-

lations on a single chain of 21 atoms. Similar to our 2D
simulation, we sample 1 × 19 arrays from the experimental
snapshots at t ¼ 0 and add empty sites at the ends. We find
that the atoms spread quicker than they do in the ladder
geometry and have worse agreement with the experimental
results. Figure 6 shows a comparison between the 1D and
2D coupled-chain numerical simulations on the one hand
and the experimental data on the other. This comparison
highlights the importance of the interchain interactions in
order to fully understand our system.
The remaining discrepancy between some of the numeri-

cal and experimental results could be attributed to several
factors. First, we are only able to simulate a smaller system
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FIG. 5. Density dependence of quench dynamics. (a) (Top)
initial state density profiles; (bottom) corresponding time evolu-
tion of each initial state for V=t ¼ 2.9ð2Þ. Color bar is the same as
Fig. 4(a) with limits set by dotted lines on top panel. (b) Fitted
relative amplitude of density profiles vs time. Colors (green,
orange, purple, and pink) correspond to the initial states in
(a) from low to high density. (c) Autocorrelation function of the
density pattern. Colors are the same as in (b). Experimental error
bars correspond to the standard error of the mean.
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FIG. 6. Role of interchain couplings in slowing down charge-
density wave relaxation. Numerical simulations of a t − V
model with tunneling t along only one direction and isotropic
nearest-neighbor interactions V. (a) Fitted relative sinusoid am-
plitude to observed (circles) and calculated quench dynamics of
1 × 21 systems (shaded regions). The colors represent the dif-
ferent interaction strengths V=t ¼ ½0ðgreenÞ; 0.78ð7ÞðorangeÞ;
1.61ð8ÞðpurpleÞ; 2.9ð2ÞðpinkÞ� explored in the experiment.
(b) Same comparison as in (a) but for calculations done on 2 ×
11 systems. This plot is Fig. 4(d). Experimental error bars
correspond to the standard error of the mean.
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than in the experiment. We expect that adding chains could
further slow down the relaxation dynamics. Second, our
modeling of the atom loss via a Lindblad master equation
assumes that the decay rate is exponential. However, as we
show in Sec. III B, the decay rate is actually nonuniform in
space and time and depends on the density.

VI. CONCLUSIONS

Our results present a new frontier in quantum simula-
tions of itinerant lattice models with strong off-site inter-
actions. By working with larger rc=a, spinless fermion
models may be used to explore equilibrium phases such as
topological Mott states [57] or cluster Luttinger liquid
phases [30]. Moreover, the system we consider in this work
provides a platform for the experimental realization of
models prevalent in theoretical studies of nonequilibrium
dynamics. For example, the 1D t − V model can be mapped
to the XXZ spin chain, which has long been studied in the
context of many-body localization [58–60]. This model and
variants thereof have also been proposed to harbor dynami-
cal phases intermediate between full MBL and thermal-
ization [61–63]. Our work lays the foundation for future
studies of such phenomena, as well as other nonequilibrium
dynamical regimes including prethermalization [64].
Furthermore, the close spacing between the hyperfine
ground states of 6Li also opens the door for the simulta-
neous dressing of two spin states and the exploration of
extended Fermi-Hubbard models.
The present experiment allows us to start probing

coherent dynamics in t − V models, which we plan to
continue to explore especially upon improving the inter-
action-lifetime figure of merit. For example, for small but
finite t=jVj, it is possible to access a complex hierarchy of
timescales for quench dynamics that depends crucially on
the initial state [39].
Our work motivates further theoretical and experimental

exploration of the mixed-dimensional models in the context
of both the nonequilibrium dynamics and ground-state
physics [65] such as meson formation. Another promising
direction based on the interplay of Rydberg dressing and
atomic motion is vibrational dressing [66,67], nondestruc-
tive cooling [68], an exploration of multiband physics, as
well as the use of microwave-dressed Rydberg states,
allowing for both attractive and repulsive dressed 1=r3

dipole-dipole interactions [69].
There are several possible approaches to improve the

interaction-lifetime figure of merit. Enhancement of the
Rabi coupling by over an order of magnitude may be
achieved using a buildup cavity [70]. For a single-particle
system, the figure of merit scales with Ω at fixed β, while
further enhancement of the collective lifetime is expected in
this regime due to shrinking facilitation radii for increasing
Δ. Increasing Ω by a factor of 10 at fixed β leads to
facilitation radii that are a factor of 101=3 smaller. For
almost all states coupled to blackbody radiation, the

facilitation radii become less than one site. If collective
loss is completely inhibited, the combined effect is to
enhance the figure of merit by a factor of approximately 30.
The principal quantum number used in this experiment is
chosen to keep the range of the interaction on the order of
one site. Relaxing this constraint or alternatively using a
larger lattice spacing would allow using longer-lived
Rydberg states at higher principal quantum number.
Using electric fields to tune close to a Förster resonance
results in deep potential wells that may be exploited to
enhance the figure of merit by a factor of jΔj=Ω [71] and
potentially allow us to achieve repulsive interactions.
Finally, the single-particle lifetime can be improved and
the collective blackbody-induced atom loss may be com-
pletely eliminated by operating at cryogenic temperatures
(improving the figure of merit by a factor of approximately
6 for fixed dressing laser parameters).
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APPENDIX A: EXPERIMENTAL DETAILS

The experimental setup and basic parameters are
described in detail in the supplement of Ref. [72]. The
procedure for calibrating the spatial light modulator is
described in the supplement of Ref. [55]. The 231-nm UV
laser system for Rydberg excitation is described in the
supplement of Ref. [47].

1. Power stabilization of the Rydberg-dressing light

The UV light used for Rydberg dressing is generated
using a 923-nm amplified-diode-laser system followed by
two second-harmonic generation cavities in series. The
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fractional power stability of the UV light after the second
cavity is about 10%, which was sufficient for our previous
work with direct excitation to Rydberg states [47].
However, in the case of dressing, power stability is more
critical due to the interaction strength having a quartic
dependence on the Rabi frequency (V ∝ Ω4). Furthermore,
the stability of the power during the spin-echo sequence
used in the Ramsey interferometry is important to cancel
the phases accumulated due to the single-particle lightshift.
We improve the power stability to much better than 1% by
adding a noise eater. The noise eater consists of an electro-
optic polarization modulator (QuBig PCx2B-UV) and an α-
BBO Glan-Taylor polarizer (EKSMA 441-2108). By
measuring the laser power using a pickoff before the last
acousto-optic modulator [47] and feeding back on the noise
eater, we suppress intensity noise for frequencies up to
1MHz and eliminate shot-to-shot drifts in the dressing light
intensity that limited our previous experiments.

2. Ground and Rydberg states used in the experiments

We work at a magnetic field of 592-G pointing in the
direction perpendicular to the 2D lattice plane. At this field,
both the ground and Rydberg states are in the Paschen-
Back regime such that we can approximately label them
using the jnl; ml; ms;mIi basis [Fig. 7(a)]. As we explain in
the text, the hyperfine ground states we use are j1i; j2i, and
j3i numbered from lowest to highest in energy and having
mI ¼ 1; 0;−1, respectively. For the Rydberg states, the
nuclear spin splitting is negligible, so states with different
mI can be considered degenerate. This approximation
means that two atoms in different hyperfine ground states
will couple to Rydberg states at the same energy (both
labeled as jri) and interact with each other via a van der
Waals potential [Fig. 7(b)].

In our quenches and lifetime measurements, we always
start with a spin-polarized gas of either state j1i or j3i
atoms (both states are essentially equivalent, and we
happen to take some of our data in this paper using one
or the other). However, for the interferometry measure-
ments, we need to take into account the dressed interaction
potential between two atoms in different hyperfine ground
states which couple to jri.

APPENDIX B: INTERACTION POTENTIAL FOR
TWO RYDBERG-DRESSED ATOMS IN

DIFFERENT GROUND STATES

To obtain the dressed potential for two atoms in different
ground states, we start by writing down the single-particle
Hamiltonians for each atom in the fjii; jrig basis in the
rotating frame (where i ∈ f1; 2g labels the ground states):

Ĥ1¼
�

0 Ω=2
Ω=2 −Δ

�
and Ĥ2¼

�
0 Ω=2

Ω=2 −ðΔþΔ0Þ

�
: ðB1Þ

Using these and the interaction potential between two
atoms in the Rydberg state separated by a distance R,
VðRÞ ¼ −C6=R6, we write down the two-particle dressing
Hamiltonian as

ĤdrðRÞ ¼ Ĥ1 ⊗ Î þ Î ⊗ Ĥ2 þ VðRÞðjrihrj ⊗ jrihrjÞ:
ðB2Þ

We calculate the dressed potential by solving for the
eigenenergy of the eigenstate with maximum overlap with
the bare ground state j1; 2i. This can be done numerically
or using perturbation theory up to fourth order in Ω
assuming Ω ≪ Δ. In this limit, we find that the relevant
eigenenergy has the form

EðRÞ ¼ −
Ω4ð2Δþ Δ0Þ
16Δ2ðΔþ Δ0Þ2

�
1

1þ ð2ΔþΔ0ÞR6

jC6j

�

þ δðΩ;ΔÞ þ δðΩ;Δþ Δ0Þ; ðB3Þ

where δðΩ;ΔÞ ¼ ð−Δþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ Ω2

p
Þ=2 is the single-par-

ticle lightshift, and the first term is the desired interaction
potential.

APPENDIX C: MANY-BODY RAMSEY
INTERFEROMETRY

We use the same many-body Ramsey interferometry
technique as Ref. [24] to characterize the interaction
potentials of the Rydberg-dressed atoms. However, because
the splitting between the ground states we use in the
Ramsey interferometry is only 75.806(3) MHz and the
detunings we use are between 30 and 100 MHz, we need to
take into account the dressing of both states. Since the

(a) (b)

FIG. 7. Rydberg dressing of 6Li. (a) Level diagram showing the
hyperfine ground states of 6Li directly coupled to the 28P
Rydberg state using linearly (π) polarized light at a field of
592-G. The basis we use is jml;msi. (b) Rydberg-dressing
scheme for two atoms in different hyperfine ground states j1i
and j2i coupled to the Rydberg state jri.Ω is the Rabi coupling of
the laser, Δ is the detuning from the resonant transition between
j1i and jri, Δ0 is the hyperfine splitting between j1i and j2i, and
VðRÞ ¼ −C6=R6 is the van der Waals interaction potential
between two Rydberg states jri.
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experiments are performed in the frozen-gas regime, we
rewrite the dressing Hamiltonian as a spin Hamiltonian.
For our interferometer, we use hyperfine ground states
j1i≡ j↑i and j2i≡ j↓i. The many-body dressing
Hamiltonian is

Ĥdr ¼
X
i

ðδ↑i σ̂ðiÞ↑↑ þ δ↓i σ̂
ðiÞ
↓↓Þ

þ 1

2

X
i≠j

ðV↑↑
ij σ̂

ðiÞ
↑↑σ̂

ðjÞ
↑↑ þ V↓↓

ij σ̂
ðiÞ
↓↓σ̂

ðjÞ
↓↓

þ V↑↓
ij σ̂

ðiÞ
↑↑σ̂

ðjÞ
↓↓ þ V↓↑

ij σ̂
ðiÞ
↓↓σ̂

ðjÞ
↑↑Þ; ðC1Þ

where δαi is the single-particle lightshift for spin α at site i,
Vαβ
ij is the Rydberg-dressed potential between spins α and β

at sites i and j, and V↑↓
ij ¼ V↓↑

ij . Using the relations σ̂ðiÞ↑↑ ¼
1
2
ðÎ þ σ̂ðiÞz Þ and σ̂ðiÞ↓↓ ¼ 1

2
ðÎ − σ̂ðiÞz Þ, we can rewrite the

Hamiltonian as

Ĥdr ¼ H0

þ 1

2

X
i

�
δ↑i − δ↓i þ

1

2

X
j≠i

ðV↑↑
ij − V↓↓

ij Þ
�
σ̂ðiÞz

þ 1

8

X
i≠j

ðV↑↑
ij þ V↓↓

ij − 2V↑↓
ij Þσ̂ðiÞz σ̂ðjÞz ; ðC2Þ

Ĥdr ¼ H0 þ
1

2

X
i

δ�i σ̂
ðiÞ
z þ 1

8

X
i≠j

V�
ijσ̂

ðiÞ
z σ̂ðjÞz ; ðC3Þ

where H0 is an energy offset, the second term is a
longitudinal field of strength δ�i dominated by the single-
particle lightshifts, and the third term is an effective
interaction term with strength V�

ij. Similar to what is done
in the supplement of Ref. [24], we can calculate various
observables for different pulse sequences in terms of the
accumulated phases ϕi ¼

R
τ
0 δ

�
i ðtÞdt and Φij ¼

R
τ
0 V

�
ijðtÞdt

over the length τ of the dressing pulse.
For a π=2 − τ − π=2 pulse sequence, the observable is

the expected single-component density σ̂i↑↑ ¼ j↑ih↑j,
which can be calculated to be

hσ̂i↑↑i ¼
1

2
−
1

2
cosðϕiÞ

Y
j≠i

cos

�
Φij

2

�
: ðC4Þ

For a spin-echo π=2 − τ − π − τ − π=2 pulse sequence,
the observable is the single-component density correlation,
which can be calculated to be

hσ̂i↑↑σ̂j↑↑iC ¼ 1

8

�Y
k≠i;j

cosΦðþÞ
k;ij þ

Y
k≠i;j

cosΦð−Þ
k;ij

�

−
1

4
cosΦ2

ij

Y
k≠i;j

cosΦik cosΦjk; ðC5Þ

where Φð�Þ
k;ij ¼ Φik �Φjk and Φii ¼ 0.

APPENDIX D: DEPENDENCE OF LIFETIME ON
ATOM NUMBER AT FIXED DENSITY

In our search for a suitable Rydberg state to use for our
dressing experiments, we explore many different principal
quantum numbers. We eventually choose 28P because it
gives us a good ratio between the measured collective
lifetime and the theoretical single-particle lifetime, while
also having a large enough C6 to achieve strong nearest-
neighbor interactions in the lattice. We explore larger
principal quantum numbers but find much shorter lifetimes
than the expected values. One possible reason is the
coupling to neighboring pair potentials that have nonzero
overlaps with the target state at close distances [Fig. 1(b)].
However, the general behavior of the many-body lifetimes
with atom number and geometry of the cloud remain the
same over significantly different principal quantum num-
bers. In particular, the lifetime shows no strong dependence
on the atom number at fixed density over the range we
explore in the experiment. Figure 8 shows the initial
lifetime vs the initial atom number for 2D systems 4alatt
wide and of variable length along the direction parallel to
the dressing beam for the 31P and 40P Rydberg states.

(a) (b)

FIG. 8. Dependence of lifetime on atom number at fixed density.
(a) Initial lifetime for 2D systemswith different initial atomnumber
dressed to 31P.Measurements aremade in a 2D rectangular system
of small width approximately 4alatt and variable length along the
dressing beam direction. We observe no strong dependence on the
atom number. The Rabi frequency is approximately constant over
the entire system. For these data, Ω ¼ 2π × 7.02ð5Þ MHz,
Δ ¼ 2π × 60 MHz, andn ¼ 0.8. (b) Same as in (a) but for systems
dressed to 40P. For these data, Ω ¼ 2π × 5.6ð2Þ MHz,
Δ ¼ 2π × 40 MHz, and n ¼ 0.55. Insets: raw data with exponen-
tial fit to extract the initial decay rate. Experimental error bars
correspond to the standard error of the mean.
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APPENDIX E: ATOM LOSS DURING
CHARGE-DENSITY WAVE DYNAMICS

We observe an atom loss of approximately 30% for the
longest evolution times for the dataset with the maximum
initial density and interaction strength. For the dataset
where interaction is varied by changing the dressing laser
intensity, the lifetime gets longer for smaller interactions
due to the reduction of the Rydberg-dressing parameter
β ¼ ðΩ=2ΔÞ. For the dataset where the initial density is
varied at fixed interaction strength, the lifetime increases
for lower initial densities (Fig. 9). These measurements are
in accordance with our observed density-dependent lifetime
measurements shown in Fig. 3.
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the charge-density wave as extracted from the data in (a). This
behavior is in agreement with our observations shown in
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