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Variational quantum circuits (VQCs) built upon noisy intermediate-scale quantum (NISQ) hardware, in
conjunction with classical processing, constitute a promising architecture for quantum simulations,
classical optimization, and machine learning. However, the required VQC depth to demonstrate a quantum
advantage over classical schemes is beyond the reach of available NISQ devices. Supervised learning
assisted by an entangled sensor network (SLAEN) is a distinct paradigm that harnesses VQCs trained by
classical machine-learning algorithms to tailor multipartite entanglement shared by sensors for solving
practically useful data-processing problems. Here, we report the first experimental demonstration of
SLAEN and show an entanglement-enabled reduction in the error probability for classification of
multidimensional radio-frequency signals. Our work paves a new route for quantum-enhanced data
processing and its applications in the NISQ era.
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I. INTRODUCTION

The convergence of quantum information science and
machine learning (ML) has endowed radically new capa-
bilities for solving complex physical and data-processing
problems [1–9]. Many existing quantum ML schemes
hinge on large-scale fault-tolerant quantum circuits com-
posed of, e.g., quantum random access memories. At
present, however, the available noisy intermediate-scale
quantum (NISQ) devices [10,11] hinder these quantumML
schemes to achieve an advantage over classical ML
schemes. Recent developments in hybrid systems [9,12]
comprising classical processing and variational quantum
circuits (VQCs) open an alternative avenue for quantum
ML. In this regard, a variety of hybrid schemes have been
proposed, including quantum approximate optimization
[13], variational quantum eigensolvers [14], quantum
multiparameter estimation [15], and quantum kernel
estimators and variational quantum models [4,5]. On the
experimental front, hybrid schemes have been implemented
to seek the ground state of quantum systems [14,16], to
perform data classification [4], to unsample a quantum
circuit [17], and to solve the MAXCUT problem [18,19].
The finite quantum coherence time and circuit depths of

state-of-the-art NISQ platforms, however, hold back a near-
term quantum advantage over classical ML schemes. An
imperative objective for quantum ML is to harness NISQ
hardware to benefit practically useful applications [2].

II. SUPERVISED LEARNING ASSISTED BY AN
ENTANGLED SENSOR NETWORK

A multitude of data-processing scenarios, such as clas-
sification of images captured by cameras [20], target
detection through a phased array [21], and identification
of molecules [22], encompass sensors for data acquisition.
Recent theoretical [23–29] and experimental [30–32]
advances in distributed quantum sensing have unleashed
the potential for a network of entangled sensors to outper-
form classical separable sensors in capturing global fea-
tures of an interrogated object. Such a capability endowed
by distributed quantum sensing creates an opportunity to
further utilize VQCs to configure the entangled probe state
shared by the sensors to enable a quantum advantage in
data-processing problems.
Supervised learning assisted by an entangled sensor

network (SLAEN) [33] is such a hybrid quantum-classical
framework empowered by entangled sensors configured by
a classical support-vector machine (SVM) for quantum-
enhanced high-dimensional data classification, as sketched
in Fig. 1(a). SLAEN employs a VQC parametrized by v to
create an entangled probe state ρ̂E shared by M quantum
sensors. The sensing attempt at the mth sensor is modeled
by running the probe state through a quantum channel,
ΦðαmÞ, where the information about the object is embedded
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in the parameter αm. A measurement Mm on the output
quantum state from the channel then yields α̃m as the
measurement data. To label the interrogated object, a
classical SVM chooses a hyperplane parametrized by w
to separate the measurement data into two classes in an
M-dimensional space. To learn the optimum hyperplane
and the configuration of the VQC that produces the
optimum entangled probe state under a given classification
task, the sensors first probe training objects with known
labels, and the measurement data and the true labels are
used to optimize the hyperplane w of the SVM. Then, the
VQC parameter optimizer maps w → v, which in turn
configures the VQC to generate an entangled probe state
ρ̂E ¼ ÛðvÞρ̂0Û†ðvÞ that minimizes the measurement noise
subject to the chosen hyperplane. As a comparison, Fig. 1
(b) sketches a conventional classical classifier that solely
relies on a classical SVM trained by the measurement data
obtained by separable sensors to seek the optimum hyper-
plane for classification. By virtue of the entanglement-
enabled noise reduction, SLAENyields a substantially lower
error probability than that achieved by the classical classifier,
which is illustrated and compared in Figs. 1(c)–1(f) for two
classification problems in, respectively, a 2Ddata space and a
3D data space.

III. EXPERIMENT

We demonstrate SLAEN in a quantum optics platform
based on continuous-variable (CV) entanglement. The
experiment endeavors to classify a feature embedded in
a set of rf signals: fEmðtÞ ¼ Em cosðωctþ φmÞgMm¼1, where
E≡ fEmgMm¼1 and φ≡ fφmgMm¼1 are, respectively, the rf
amplitudes and phases at the M ¼ 3 sensors, and ωc is the
rf carrier frequency. The class label y is determined by a
joint function of amplitudes and phases: y ¼ FðE;φÞ.

The experimental setup is sketched in Fig. 2. An optical
parametric amplifier source emits a single-mode squeezed
state represented by the annihilation operator b̂. To acquire
data, a VQC prepares an entangled probe state, described
by fb̂mgMm¼1, by applying a unitary operation ÛðvÞ on b̂.
The VQC setting is entailed in v≡ fvm;ϕmgMm¼1, where vm
is the power ratio of the squeezed state sent to the mth
sensor, satisfying

P
M
m¼1 vm ¼ 1, and ϕm is a phase shift

imparted on the quantum state at the mth sensor. The VQC
is composed of two variable beam splitters (VBSs) and three
phase shifters. AVBS comprises two half-wave plates (H), a
quarter-wave plate (Q), a phase modulator (PM), and a
polarizing beam splitter (PBS). The PMcontrols the splitting
ratio of the VBS and thus determines vm, while the phase
shiftϕm is controlled by a rf signal delay (see theAppendixB
for details). At the mth sensor, an electro-optic modulator
(EOM) converts the rf signal into a displacement αm ∝
Em sinφm on the phase quadrature p̂m ≡ ðb̂m − b̂†mÞ=2i.
Three homodyne detectors then measure the quadrature
displacements, and the measurement data are diverted to a
classical processing unit for training, classification, andVQC
setting optimization.
SLAEN consists of a training stage and a utilization

stage. The training stage is aimed at using N training data
points fEðnÞ;φðnÞ; yðnÞgNn¼1 supplied to the sensors to
optimize the hyperplane used by the SVM and the
entangled probe state. Note that yðnÞ ∈ f−1;þ1g is the
true label for the nth training data point. The training data
point leads to the homodyne measurement data α̃ðnÞ from
the sensors. Here, α̃ðnÞ and yðnÞ ∈ f−1;þ1g are the only
information available to the classical processing unit. For a
hyperplane specified by fw≡ fwmgMm¼1; bg, we define a
cost function

p p

q
p p

s s

(a) (b) (c)

(e) (f)

(d)

FIG. 1. Schematics of SLAEN and classical classifier with sample data sets. (a) In SLAEN, a VQC is configured to generate an
entangled probe state. In classical processing, measurement data are utilized to train a classical SVM, whose hyperplane w is mapped to
the VQC setting v by the VQC parameter optimizer. (b) Classical classifier using only a classical SVM. (c,d) 2D data acquired by two
sensors, applicable to rf-field direction classification. (e,f) 3D data acquired by three sensors, applicable to rf-field mean-amplitude
classification. Circle or sphere: data point with radius representing standard deviation of estimation uncertainty. (c,e) Entangled sensors
with a clear error-probability reduction over (d,f) classical separable sensors.
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Eλðw; bÞ ¼
XN
n¼1

j1 − yðnÞðw · α̃ðnÞ þ bÞjþ þ λkwk2; ð1Þ

where jxjþ equals x for x ≥ 0 and zero otherwise, k · k is
the usual two-norm, and λkwk2 is used to avoid overfitting.
The w · α̃ðnÞ term represents a weighted average over the
measurement data acquired by different sensors. It is the
weighted average that benefits from using multipartite
entanglement to reduce the measurement noise [31,33].
Only the support vectors, i.e., points close to the hyperplane
with yðnÞðw · α̃ðnÞ þ bÞ ≤ 1, contribute nontrivially to the
cost function. The rationale behind constructing such a cost
function is that errors primarily occur on support vectors in
a classification task; thus, accounting for the deviations of
all data points from the hyperplane in the cost function is
nonideal.
To enable efficient minimization of the cost function, we

adopt a stochastic optimization approach in which the
hyperplane and the VQC setting are updated in each
training step consuming a single data point. Suppose the
optimized hyperplane is fwðn−1Þ; bðn−1Þg after (n − 1)
training steps. Prior to updating the hyperplane in the
nth training step, the inferred label is derived by

ỹðnÞ ¼ signðwðn−1Þ · α̃ðnÞ þ bðn−1ÞÞ. Using a simultaneous
perturbation stochastic approximation (SPSA) algorithm,
the hyperplane is updated to fwðnÞ; bðnÞg (see Appendix A
for algorithm details). Once an updated hyperplane is
found, the VQC optimizer performs the mapping wðnÞ →
vðnÞ to configure the VQC so that its generated entangled
probe state minimizes the measurement noise subject to the
current hyperplane. Specifically, one desires that the virtual

mode b̂v ≡P
M
m¼1 w

ðnÞ
m b̂m, whose phase-quadrature meas-

urement outcome constitutes the wðnÞ · α̃ðnþ1Þ term in
ỹðnþ1Þ, is identical to the original squeezed-light mode b̂
so that the overall uncertainty in labeling is minimized. This

goal is accomplished by setting
ffiffiffiffiffiffiffiffi
vðnÞm

q
exp ðiϕðnÞ

m Þ ∝ wðnÞ
m in

the VQC parameter optimizer. Physically, this is the noise-
reduction mechanism, stemming from the quantum correla-
tions between the measurement noise at different sensors,
that gives rise to SLAEN’s quantum advantage over the
classical classifier in which the measurement noise at differ-
ent sensors is independently subject to the standard quantum
limit. After N training steps, the cost function is near its
minimumwith the hyperplane fw⋆; b⋆g≡ fwðNÞ; bðNÞg, and
the VQC setting v⋆ ≡ vðNÞ. Then, in the utilization stage,
SLAEN configures the VQC using v⋆ and classifies the

VBS 2

VBS 1

Sensor 1

Sensor 2

Sensor 3

Classical processing

P
B

S H

H
Q

H

H Q

PBS

EOM

EOM

EOM BS
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I/O 
Device

Squeezed-light source

FIG. 2. Experimental diagram. Squeezed light processed by two VBSs, each composed of two H plates, a Q plate, a PM, and a PBS,
generating a three-partite entangled probe state. Each sensor comprises an EOM and a balanced homodyne measurement setup.
Measurement data were acquired by an I/O device and processed on a classical computer for training and data classification. During
training, classical processing controls VBSs and EOMs through the I/O device.

QUANTUM-ENHANCED DATA CLASSIFICATION WITH A … PHYS. REV. X 11, 021047 (2021)

021047-3



measurement data α̃ with an unknown label using the
optimized hyperplane w⋆:

ỹ ¼ signðw⋆ · α̃þ b⋆Þ: ð2Þ

SLAEN is a versatile framework capable of tailoring the
entangled probe state and the classical SVM to enhance the
performance of multidimensional data-classification tasks.
In our experiment, SLAEN first copes with 2D data
acquired by two entangled sensors, as illustrated in
Fig. 1(c). As an example and useful application for 2D
data classification, we demonstrate the classification of the
incident direction of an emulated rf field. To this end, the
training commences with an initial hyperplane specified by
fwð0Þ ¼ ð ffiffiffiffiffiffiffiffiffi

0.50
p

;
ffiffiffiffiffiffiffiffiffi
0.50

p Þ; bð0Þ ¼ 0.70g, which is mapped to
an initial VQC setting vð0Þ ¼ fv1 ¼ 0.5; v2 ¼ 0.5; v3 ¼ 0;
ϕ1 ¼ 0;ϕ2 ¼ 0;ϕ3 ¼ 0g. The training stage comprises
200 steps each, using a training data point with
randomly generated rf-field phases and an associated label
fφðnÞ; yðnÞg200n¼1, while the rf-field amplitudes are fixed equal
at all sensors. Applying the training data φðnÞ on the EOMs
at the two sensors leads to quadrature displacements

αðnÞ ¼ fαðnÞ1 ; αðnÞ2 g, whose components are each chosen
to follow a uniform distribution in ½−4; 4� (in shot-noise
units). The signal-to-noise ratio of the data set is tuned by
excluding the data points within a margin of ϵ from the
hyperplane, while the total number of training data points is
fixed at 200. In doing so, the signal-to-noise ratio increases
as ϵ increases. The true labels for the rf-field directions are

derived by the rf-phase gradient: yðnÞ¼signðφðnÞ
1 −φðnÞ

2 Þ¼
signðwt ·αðnÞÞ, where fwt ¼ ð ffiffiffiffiffiffiffiffi

1=2
p

;−
ffiffiffiffiffiffiffiffi
1=2

p Þ; bt ¼ 0g par-
ametrize the true hyperplane. The true labels are disclosed
while fwt; btg and αðnÞ are kept unknown to SLAEN. The
optimization for the SVM hyperplane and the VQC setting
then follows.
As a performance benchmark, we train the classical

classifier, using the identical training data in training
SLAEN, to undertake the 2D data-classification task.
Unlike SLAEN, the classical classifier uses a separable
probe state ρ̂S to acquire the measurement data, which are
then used to train the classical SVM to seek a hyperplane
that minimizes the classification error probability. In the
experiment, the squeezed-light source is turned off while
applying the same training data as those used for SLAEN,
thereby ensuring an equitable performance comparison.
The initial hyperplane prior to the training is randomly
picked as fwð0Þ ¼ ð0.67;0.74Þ;bð0Þ ¼ 0.39g. In the absence
of entanglement-enabled noise reduction, a higher error
probability is anticipated for the classical classifier, as
illustrated in Fig. 1(d).
The effectiveness of the training for SLAEN and the

classical classifier is demonstrated by the converging error
probabilities measured at different training steps, as plotted
in Fig. 3(a). The inset describes the VQC parameters being

optimized. The convergence of the error probabilities
beyond 100 training steps indicates that near-optimum
settings for the hyperplanes and the VQC have been found.
With such optimized parameters, SLAEN is able to generate
an entangled probe state that minimizes the measurement
noise, as illustrated in Fig. 1(c) and compared to Fig. 1(d) for
the case of the classical classifier by a set of sample data
points represented by the circles, whose radii correspond to
the standard deviation of estimation uncertainty.
SLAEN and the classical classifier are next trained to

tackle 3D data-classification problems. As an example,
we demonstrate the classification of the sign for the rf-field
mean amplitude across three sensors. The training in
either scenario uses 390 data points fEðnÞ; yðnÞg390n¼1 with
randomly generated rf-field amplitudes, while the rf phases
are fixed atφðnÞ ¼ 0. The true labels are then given by yðnÞ ¼
signðP3

m¼1 E
ðnÞ
m Þ ¼ signðwt · αðnÞÞ, where fwt ¼ ð ffiffiffiffiffiffiffiffi

1=3
p

;ffiffiffiffiffiffiffiffi
1=3

p
;

ffiffiffiffiffiffiffiffi
1=3

p Þ; bt ¼ 0g specify the true hyperplane, which
is unknown to SLAEN and the classical classifier. The error
probabilities during training for both scenarios are plotted in
Fig. 3(d), with its inset describing theVQC parameters being
optimized. The error probabilities converge after 250 training
steps, indicating that near-optimum settings for the hyper-
planes and the VQC have been found. Once both are trained,
SLAEN shows a clear error-probability advantage over that
of the classical classifier, as observed in Fig. 3(d) and
intuitively illustrated in Figs. 1(e) and 1(f).
The trajectories of the evolving hyperplane fwðnÞ; bðnÞg

during training are plotted in Figs. 3(b) and 3(c) for 2D data
classification and in Figs. 3(e) and 3(f) for 3D data
classification. The hexagrams entail the optimum hyper-
plane parameters. The hyperplane parameters approach the
optimumwith a decreasing error probability during training,
as anticipated. Notably, the optimized hyperplanes obtained
by SLAEN are considerably closer to the true hyperplanes,
i.e., the optimum solutions, than those attained by the
classical classifier, thanks to SLAEN’s reduced measure-
ment noise. To further investigate SLAEN’s improved
accuracy to problem solutions, we randomly generate 50
sets of initial hyperplanes for SLAEN and the classical
classifier and plot in Figs. 3(g)–3(i) the simulated distribu-
tions of the hyperplanes at different steps of training for 3D
data classification. The simulation shows that SLAEN’s
optimized hyperplanes (red circles) have a distance of dS ¼
0.135� 0.056 to the true hyperplane, i.e., the optimum
solutions (hexagrams), as compared to a distance of dC ¼
0.167� 0.073 for the optimized hyperplanes attained by the
classical classifier (red circles) (see Appendix C for simu-
lation results and comparison with experiment).
To investigate the performance of SLAEN and the

classical classifier with respect to the signal-to-noise ratio
of the data, the error probabilities, under the optimum
settings for the VQC and the classical SVMs in the 2D data-
classification problem, are measured as the margin ϵ varies
in f0.2; 0.4; 0.6; 0.8; 1g. The results plotted in Fig. 4 show
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that SLAEN enjoys an error-probability scaling advantage
over that of the classical classifier, as manifested in the
disparity between the slopes for the two error-probability
curves. At ϵ ¼ 1, SLAEN’s error probability is more than
threefold less than that of the classical classifier.

IV. DISCUSSIONS

The SLAEN theory paper [33] reported an error-proba-
bility advantage achieved by an entangled sensor network
over that of a sensor network based on separable squeezed
states with the same total number of photons, which is
verified by the current SLAEN experiment (see Appendix D
for details). However, SLAEN’s performance has been

primarily benchmarked against classical classifiers that do
not use any quantum resources (see Ref. [34] for an in-depth
discussion about different types of resources used in distrib-
uted quantum sensing). Such a choice is motivated by two
main considerations. First, the compared classical classifier
represents a common configuration for sensing and data
processing. Introducing quantum resources yields a perfor-
mance enhancement over the existing classical schemes. In
the SLAEN experiment, the power of the coherent-state
portion is orders of magnitude stronger than that of either the
squeezed or the entangled light, similar to the case in the
squeezed-light-enhanced Laser Interferometer Gravitational
Wave Observatory (LIGO) [35]. In both cases, the squeezed-
light power is limited due to experimental capabilities, so it

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. Experimental results for training SLAEN and classical classifier. Convergence of error probabilities during training for 2D data
classification (a) and 3D data classification (d). Blue curves: SLAEN. Red curves: classical classifier. Horizontal dashed lines: expected
error probabilities based on true hyperplanes and measurement-noise levels. Error bars: 1 standard deviation of uncertainty derived from
five measurements, each with 1000 data points. Insets: VQC parameters being optimized. VBS: variable beam splitter. History of
hyperplane fðwðnÞ

1 ; wðnÞ
2 Þ; bðnÞg during training for 2D data classification (b,c) and 3D data classification (e,f). (b,e) SLAEN; (c,f)

classical classifier. Red squares: initial hyperplane parameters prior to training. Blue triangles: hyperplane parameters after training.
Hexagrams: optimum hyperplane parameters. Color gradients: evolution of error probabilities during training. Green circles: samples of
hyperplane parameters at every 20 (30) training steps for 2D (3D) data classification. Curves are obtained from a cubic spline data fitting.
Simulated distributions of hyperplane parameters prior to training (g), at Step 100 (h), and at Step 390 (i). Blue filled circles: SLAEN
hyperplanes. Red filled circles: classical-classifier hyperplanes. Hexagrams: optimum hyperplanes. Open circles: projected hyperplane
parameters onto ðw1; w2Þ plane (grey). SLAEN’s optimized hyperplanes distribute statistically closer to optimum solutions.
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barely affects the total optical power employed in sensing.As
such, like LIGO, we choose to quantify the quantum
advantage as the performance gain over the classical system
using the same amount of laser power but not taking
advantage of any quantum resources. Second, a complete
experimental demonstration of supervised learning based on
separable squeezed states requires three independent
squeezed-light sources, which places significantly more
resource overhead than SLAEN’s single squeezed-light
source. Hence, SLAEN also enjoys a practical advantage
over classical classifiers based on separable squeezed states.
It is worth noting that such a practical advantage would be
more pronounced when sensors are nearby so that the
entanglement distribution loss is low.
Our experiment has implemented an entanglement source

trained by supervised learning. The original SLAEN pro-
posal [33], however, also entails reconfigurable measure-
ments. Since homodyne measurements commute with a
linear quantum circuit, SLAEN’s performance under three
homodyne detectors equals that obtained by the variational
measurement apparatus considered by Ref. [33]. The current
SLAEN protocol only leverages Gaussian sources and
measurements, but non-Gaussian resources would poten-
tially improve its performance. Indeed, non-Gaussian mea-
surements have been shown to benefit quantum metrology
[36], quantum illumination [37], and entanglement-assisted
communication [38]. Avariational circuit approach for non-
Gaussian entanglement generation andmeasurements would
open a promising route to further enhance the performance.

V. CONCLUSIONS

In conclusion, we have experimentally demonstrated
the SLAEN framework for quantum-enhanced data

classification. Our work opens a new route for exploiting
NISQ hardware to enhance the performance of real-world
data-processing tasks. Our current experiment verified
SLAEN’s quantum advantage in classifying features
embedded in rf signals, but SLAEN by itself is a general
framework applicable to data-processing problems in other
physical domains by appropriately engineering entangled
probe states and quantum transducers. The present experi-
ment only demonstrated data classification with linear
hyperplanes. To accommodate nonlinear hyperplanes,
non-Gaussian entangled probe states [39] and joint quan-
tum measurements [40] would be needed, and the VQC
parameter optimizer would also need to be trained to
conduct an effective mapping from the SVM hyperplane
to the VQC parameters. With these developments, we
envisage that SLAEN would create new near-term oppor-
tunities in a variety of realms, including distributed big-data
processing, navigation, chemical sensing, and biological
imaging.
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APPENDIX A: OPTIMIZATION ALGORITHM

The simultaneous perturbation stochastic approximation
(SPSA) algorithm is used by the classical support-vector
machine (SVM) to update the hyperplane in each training
step. The SPSA algorithm calculates an approximation of the
gradient with only twomeasurements,wþ andw−, of the loss
function. This simplicity leads to a significant complexity
reduction in the cost optimization. See Algorithm 1 for
details.
In the algorithm, d is the dimension of the data set. Here,

d ¼ 2 for classification problems in a 2D data space, while
d ¼ 3 for classification problems in a 3D data space. The
choices of a, c,A, and γ determine the gain sequences ak and
ck, which in turn set the learning rates and have a significant
impact on the performance of the SPSA algorithm. The
parameters used by the classical SVM in our experiment are
a ¼ 1; c ¼ 1; A ¼ 200; α ¼ 0.602, and γ ¼ 0.1.
The SPSA algorithm calls a loss function that is in line

with the form of the cost function [Eq. (1) of the main
text] but allows for an iterative optimization, as defined
below:

lossðw; bÞ ¼ j1 − yðnÞðw · α̃ðnÞ þ bÞjþ þ λkwk2: ðA1Þ

0.2 0.4 0.6 0.8 1

10-2

10-1

E
rr

or
 p

ro
ba

bi
lit

y

Margin  (shot-noise unit)

FIG. 4. Scaling of error probability vs margin of the data set.
Blue: SLAEN. Red: classical classifier. Circle: estimated error
probability based on five sets of 1000 experimental data points.
Solid lines: error probabilities obtained from Monte Carlo
simulations. Shades: estimated uncertainty with 1000 samples.
SLAEN shows an error-probability scaling advantage over the
classical classifier.
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APPENDIX B: EXPERIMENTAL DETAILS

1. Experimental setup

A detailed experimental setup is shown in Fig. 5.
Squeezed light at 1550 nm is generated from an optical
parametric amplifier (OPA) cavity where a type-0 periodi-
cally poled KTiOPO4 (PPKTP) crystal is pumped by light
at 775 nm produced from a second harmonic generation
(SHG) cavity. The cavities are locked by the Pound-Drever-
Hall technique using 24-MHz sidebands created by phase
modulating the 1550-nm pump light prior to the SHG. A
small portion of light at 1550 nm modulated at 20 MHz is
injected into the OPA cavity and phase locked to the pump
light to operate in a parametric amplification regime. In
doing so, the squeezed light emitted from the OPA cavity is
composed of an effective single-mode squeezed vacuum
state residing in the 11-MHz sidebands and a displaced

phase squeezed state at the central spectral mode. Because
of the large quadrature displacement at the central spectral
mode, it can be well approximated by a classical coherent
state. More details about the characterization of our
squeezed-light source are enclosed in the Supplemental
Material of Ref. [31].
The squeezed light is directed to a VQC composed

of two VBSs and three phase shifters, parametrized by
v≡ fv1; v2; v3;ϕ1;ϕ2;ϕ3g. Here, vm is the portion of the
power diverted to the mth sensor, satisfying

P
3
m¼1 vm ¼ 1,

and ϕm is the phase shift on the quantum state at the mth
sensor. Each VBS comprises a first half-wave plate, a
quarter-wave plate, a PM, a second half-wave plate, and a
polarizing beam splitter. The power splitting ratio is con-
trolled by applying a dc voltage generated from a computer-
controlled data acquisition board (NI PCI 6115). The dc
voltage is further amplified by a high-voltage amplifier
(Thorlabs HVA 200) with a gain of 20 prior to being applied
on the PM. The power portions are determined by

v1 ¼
1

2

�
sin

�
Es1

Vπ
π

�
þ 1

�
;

v2 ¼ 1 − v1 − v3;

v3 ¼
1

2

�
sin

�
Es2

Vπ
π

�
þ 1

�
ð1 − v1Þ; ðB1Þ

whereEs1 andEs2 are dc voltages applied onPM1 andPM2.
After the VBSs, the three-mode entangled probe state,

represented by the annihilation operators fb̂1; b̂2; b̂3g, is
diverted to three rf-photonic sensors, each equipped with an
EOM driven by a rf signal at a 11-MHz carrier frequency.
Because of the phase modulation, a small portion of the
coherent state at the central spectral mode is transferred to
the 11-MHz sidebands, inducing a phase quadrature
displacement. The quadrature displacement at each
rf-photonic sensor is equal to [31]

Algorithm 1. Simultaneous perturbation stochastic approxima-
tion (SPSA) [41].

Initialization a; c;A; α; γ; d;N; wð0Þ; bð0Þ
for n ¼ 1∶N do

an ¼ a=ðnþ AÞα
cn ¼ c=nγ

Δw ¼ 2 � roundðrandðd; 1ÞÞ − 1
wþ ¼ wðn−1Þ þ cn � Δw
w− ¼ wðn−1Þ − cn � Δw
Δb ¼ 2 � roundðrandð1; 1ÞÞ − 1
bþ ¼ bðn−1Þ þ cn � Δb
b− ¼ bðn−1Þ − cn � Δb
lþ ¼ lossðwþ; bþÞ
l− ¼ lossðw−; b−Þ
gw ¼ ðlþ − l−Þ=ð2 � cn � ΔwÞ
wðnÞ ¼ wðn−1Þ − an � gw
gb ¼ ðlþ − l−Þ=ð2 � cn � ΔbÞ
bðnÞ ¼ bðn−1Þ − an � gb

end
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hb̂mi ¼ αm ≃ i
ffiffiffi
2

p
πgmacm

γEm

2Vπ
sinðφmÞ; ðB2Þ

where gm ¼ �1 is set by a rf signal delay that controls the
sign of the displacement. Choosing gm ¼ −1 is equivalent
to introducing a π-phase shift on the quantum state at the
mth sensor [31], i.e., setting ϕm ¼ π in the VQC param-
eters. In Eq. (B2), acm is the amplitude of the baseband
coherent state at the mth sensor. Specifically, acm ¼ ffiffiffiffiffiffi

vm
p

β,
where β is the amplitude of the baseband coherent state at
the squeezed-light source. Here, Vπ is the half-wave
voltage of the EOM, and γ describes the conversion from
an external electric field Em to the internal voltage. A more
detailed theoretical model for the setup was presented
in Ref. [31].
Subsequently, phase-quadrature displacements carried

on the quantum light at the three sensors are measured
in three balanced homodyne detectors. At each homodyne
detector, the quantum light and the local oscillator (LO)
first interfere on a 50=50 beam splitter with a characterized
interference visibility of 97% and then detected by two
photodiodes, each with about 88% quantum efficiency. The
difference photocurrent is amplified by a transimpedance
amplifier with a gain of 20 × 103 V/A. The dc component
of the output voltage signal locks the phase between the LO
and the quantum light. The 11-MHz ac component of the
voltage signal is demodulated by an electronicmixer, filtered
by a 240-kHz low pass filter, and then amplified by a low-
noise voltage preamplifier (Stanford Research Systems
SR560). The data are acquired by a multifunction I/O device
(NIUSB-6363) and further processed by a desktop computer
in real time. Summing up the measurement data from the
three sensors appropriately by

P
m

ffiffiffiffiffiffi
vm

p
exp ðiϕmÞα̃m ena-

bles the maximal noise reduction, which is equivalent to the

noise of the squeezed quadrature of the single-mode
squeezed state b̂ at the source [31]:

varðb̂Þ ¼ var

�XM
m

ffiffiffiffiffiffi
vm

p
expðiϕmÞb̂m

�

¼ 1

4

�
η

ð ffiffiffiffiffiffi
Ns

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ns þ 1

p Þ2 þ ð1 − ηÞ
�
; ðB3Þ

where η is the quantumefficiency at each sensor andNs is the
total photon number of the single-mode squeezed light at the
source. In our experiment, η ∼ 53% and Ns ≃ 3.3. In
comparing the summation in Eq. (B3) with that in Eq. (1),
it becomes clear that choosing the mapping from the hyper-
plane parameter w to the VQC setting v to be wm ¼ffiffiffiffiffiffi
vm

p
expðiϕmÞ minimizes the measurement noise. In the

current setup, we measured a 2.9 (3.2) dB noise reduction
with the three- (two-) mode entangled state. The characteri-
zation of our sensor networks has been reported in
Ref. [31].

2. Calibration

a. Calibration of variational quantum circuit

To ensure accurate configuration of the VQC, we first
calibrate the power splitting ratio of both VBSs. In
calibrating VBS 1, we scan the voltage Es1 applied on
PM 1 and measure the transmitted optical power, as plotted
in Fig. 6(a). The data are fitted to a sinusoidal function in
Eq. (B1), which derives Vπ ¼ 606 V for PM 1. An
identical calibration procedure is applied on VBS 2, and
we obtain Vπ ¼ 606 V for PM 2.
We then measure the quadrature displacements under

different VBS splitting ratios, as a means to test the locking
stability between the quantum signal and the LO. To do so,
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FIG. 6. Calibration of the variable beam splitter. (a) Light power delivered to Sensor 1 from VBS 1 (blue crosses) with respect to the
input voltage to the high-voltage amplifier, which is proportional to ES1 in Eq. (B1). Red line: a sinusoidal fit to v1 in Eq. (B1), up to a
scaling factor. (b) Calibration of quadrature displacement introduced by Sensor 1 vs input voltage to the high-voltage amplifier. Blue
crosses: homodyne measurement data at Sensor 1. Red solid line: a fit to

ffiffiffiffiffi
v1

p
in Eq. (B1), up to a scaling factor. Error bars represent the

standard deviations of the measurement results, which are determined by the shot-noise level. SNU: shot-noise unit.
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while the quantum signal and LO are phase locked, the
VBS transmissivity is randomly set to one of 17 values at
30 Hz, subject to the limited bandwidth of the control
system. Note that 100 homodyne measurements of quad-
rature displacement are taken at each transmissivity
at a 500-kHz sampling rate. The fitted data are plotted
in Fig. 6(b), showing excellent signal stability and agree-
ment with theory in Eq. (B1). The value of the extrapolated
Vπ is around 612 V, in good agreement with the specifi-
cation of the EOM. The tunable range for the VBS
transmissivity is between 0.07 and 0.93, limited by the
maximum output voltage of the high-voltage amplifier
(�200 V). VBS 2 is calibrated in an identical way, deriving
a Vπ consistent with that of VBS 1. During training, the
transmissivity of the VBS is restricted within 0.125 to
0.875 to ensure sufficient light power for phase locking
between the quantum signal and the LO.

b. Calibration of rf-photonic transduction

The training data of the rf-field direction (mean-
amplitude) classification are prepared by applying phase
(amplitude) modulation on the rf signals. Modulations on rf
signals are converted to different quadrature displacements
by three EOMs. To ensure linearity in the transduction from
the amplitude and phase of the rf signals to quadrature
displacements, we calibrate the quadrature displacements at
each sensor with respect to the modulation voltages that
determine the amplitude and phase for the rf signals applied
on the EOMs. In the calibration of phase modulation at
Sensor 1 shown in Fig. 7(a), as we sweep the modulation
voltage on the function generator for the rf signal from
−0.5 V to 0.5 V with an increment of 0.1 V, 100 homodyne
measurements of the quadrature displacement are recorded

for eachmodulation voltage at a 500-kHz sampling rate. The
distribution of the experimental data on the vertical axis at a
given modulation voltage arises from the quantum measure-
ment noise. The fit shows an excellent linear dependence of
quadrature displacement vs the modulation voltage. To
calibrate the amplitude modulation on the rf signal, we first
set the modulation depth to 120% to allow for a sign flip on
the rf signal to enable both positive and negative quadrature
displacements. We then take 100 homodyne measurements
at each modulation voltage at a 500-kHz sampling rate. The
experimental data and fit are plotted in Fig. 7(b), showing
excellent linear dependence of the measured quadrature
displacement with respect to the amplitude of the rf signal.
The other two EOMs are calibrated in the same way.

3. Implementation of data classification

a. Training stage for SLAEN

The training stage consists of N steps using randomly
produced training data fEðnÞ;φðnÞ; yðnÞgNn¼1. In the nth

training data point, EðnÞ≡fEðnÞ
m gMm¼1 and φðnÞ≡fφðnÞ

m gMm¼1

entail, respectively, the probed rf-field amplitudes and phases
at theM ¼ 2 orM ¼ 3 sensors, and yðnÞ ∈ f−1;þ1g is the
true label, which can be derived using the true hyperplane
fwt; btg for the data-classification problem at hand. Each
sensor then converts the probed rf field into an internal
voltage signal, which in turn drives the EOM to induce a
quadrature displacement on the quantum signal,

αðnÞm ≃ i
ffiffiffi
2

p
πgðnÞm aðnÞcm

γEðnÞ
m

2Vπ
sinðφðnÞ

m Þ; ðB4Þ

which is similar to Eq. (B2).
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FIG. 7. Calibration of rf-photonic transduction. (a) Calibration of the linearity between the quadrature displacement and the phase of
the rf signal proportional to the phase-modulation voltage applied on the function generator. (b) Calibration of the linearity between the
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A technicality associated with the quadrature displace-
ment at the mth sensor is that it depends on both EðnÞ

m

and the amplitude of the baseband coherent light,

aðnÞcm ¼
ffiffiffiffiffiffiffiffi
vðnÞm

q
β, as shown by Eq. (B4) (see also Ref. [31]

for a more detailed description). Our experiment focuses on
demonstrating the principle of SLAEN, so, without loss of
generality, the displacement’s dependence on the baseband

light is eliminated by scaling γ by a factor of 1=
ffiffiffiffiffiffiffiffi
vðnÞm

q
such

that the amount of induced displacement is solely deter-
mined by the training data. In our experiment, this is
accomplished by applying an extra amplitude modulation

that introduces a gain of 1=
ffiffiffiffiffiffiffiffi
vðnÞm

q
on the rf signal before it

goes to the EOM.
We properly choose γ such that the training data point

fEðnÞ;φðnÞ; yðnÞg leads to random quadrature displacements
αðnÞ at the involved sensors with each displacement value
initially following a uniform distribution within ½−4; 4� in
the shot-noise unit. The signal-to-noise ratio of the training
data set is tuned by excluding points within a margin of ϵ to
the hyperplane. In doing so, the signal-to-noise ratio is
increases as ϵ increases. In the training experiments, ϵ ¼
0.6 is chosen, comparable to one shot-noise unit.
In the 3D data-classification experiment, amplitude

modulations on the rf signals from three function gener-
ators prepare the training data. Two dc voltages produced
by a multifunction I/O device (NI PCI-6115) are used to
configure the two VBSs in the VQC. In the 2D data-
classification experiment, phase modulations on the rf
signals from two function generators prepare the training
data, and one dc voltage generated by the same multi-
function I/O device is used to configure VBS 1.
The flowchart of the training process is sketched in

Fig. 8. The training starts with an initial hyperplane
fwð0Þ; bð0Þg and its corresponding VQC setting vð0Þ.
Here, bð0Þ is a number stored in the classical SVM
algorithm and will be updated during training.
The measurement data at each sensor are collected by a

multifunction I/O device (NI USB-6363) operating in an
on-demand mode and are then transmitted to a desktop
computer on which the classical SVM algorithm runs. In
the nth training step, the measurement data α̃ðnÞ from all
sensors, the true label yðnÞ, and the current hyperplane
fwðn−1Þ; bðn−1Þg are fed to the SPSA algorithm, which then
updates the hyperplane to fwðnÞ; bðnÞg, as elaborated in
Appendix A. The VQC setting is subsequently updated to
vðnÞ. The next training step starts by adjusting the power
splitting ratios of the VBSs by applying two voltages on the
PMs based on Eq. (B1) and the calibrated Vπ . The new
training data are then applied through the EOMs.
During training, a phase shift φðnÞ

m ¼ π needs to be

applied to the quantum state b̂m when signðwðnÞ
m Þ ¼ −1.

Experimentally, this is done by flipping the sign of the

emulated rf-signal amplitude. If the sign of the initial

hyperplane, signðwð0Þ
m Þ, is different from that of the true

hyperplane, wðnÞ
m will move across zero, which will cause

zero optical power to be delivered to the mth sensor such
that the phase locking between the quantum signal and the
LO breaks down. To avoid this, we restrict the minimum

power splitting ratio to minðvðnÞm Þ ¼ 0.125 so that a sign flip

on wðnÞ
m will be applied whenever vðnÞm hits this boundary.

The training iterates 200 steps for the 2D data-classification
experiment and 390 steps for the 3D data-classification
experiment. The loss function converges to its minimum
with the hyperplane fw⋆; b⋆g when training is completed.

b. Utilization stage for SLAEN

In the utilization stage, SLAEN performs data classi-
fication on new measurement data α̃ðnÞ, each with an
unknown label. The new data follow the same statistical
distribution as the training data. To verify the convergence
in the training process, we first measure the error proba-
bilities at different training steps with the hyperplane
fwðkÞ; bðkÞg, where k ∈ f0; 20; 40;…; 160; 180; 200g in
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FIG. 8. Flowchart of the training process for SLAEN.

XIA, LI, ZHUANG, and ZHANG PHYS. REV. X 11, 021047 (2021)

021047-10



the 2D data-classification experiment and k ∈
f0; 30; 60;…; 330; 360; 390g in the 3D data-classification
experiment. The classical SVM is set to use the hyperplane
fwðkÞ; bðkÞg, and the VQC is configured by the correspond-
ing setting vðkÞ. For each error-probability measurement,
1000 testing data points are applied on the EOMs at a 500-
kHz rate by a multifunction I/O device (NI USB-6363), and
the measurement data α̃ðnÞ are synchronously recorded by
the same device. A decision is made based on

ỹðnÞ ¼ signðwðkÞ · α̃ðnÞ þ bðkÞÞ: ðB5Þ

We then estimate the error probability via PE ¼P
N¼1000
n¼1 jðỹðnÞ − yðnÞÞj=N.
To verify the scaling of error probabilitywith respect to the

signal-to-noise ratio of the data set, the hyperplane param-
eters and the VQC setting are configured to fw⋆; b⋆g and v⋆.
The error probabilities for the 2D example are measured
using data sets with margins ϵ ∈ f0.2; 0.4; 0.6; 0.8; 1g.

c. Training and utilization stages for classical classifier

Themeasurement noise at different sensors in the classical
classifier is independent. As such, the classical classifier can
solely be trained in postprocessing carried out by the classical
SVM. To perform a direct performance comparison, the
training data sets for SLAEN are used to train the classical
classifier. The hyperplane fwðnÞ; bðnÞg is updated in each
training step.The error probabilities at different training steps
are measured to validate the convergence. As a comparison,
the scaling of the error probabilities for the classical classifier
in the 2D example is also measured using the same testing
data sets as SLAEN employs.

4. Experiment for general 3D data classification

To show that SLAEN can be trained to tackle general
data-classification problems, we randomly choose a true

hyperplane and experimentally train SLAEN and the
classical classifier to undertake the classification task.
In the experiment, the initial hyperplane is randomly
set to fw0 ¼ ð0.60; 0.566; 0.566Þ; b0 ¼ 0.45g, and the true
hyperplane is fwt ¼ ð0.8165; 0.4082; 0.4082Þ; bt ¼ 0g. A
training data point is supplied to SLAEN at each of the 390
steps, during which the evolving hyperplane parameters are
recorded. As anticipated, the experimental result depicted
in Fig. 9(a) shows that the hyperplane parameters move
toward the optimum during training, indicating SLAEN’s
capability of solving general data-classification problems
as long as training data are provided. As a comparison, we
train the classical classifier over 390 steps with the same
training data set used for SLAEN. The evolving hyperplane
parameters during training are plotted in Fig. 9(b), showing
that the classical classifier can also shift the hyperplane
toward the optimum.
With the experimentally measured hyperplane parame-

ters during training, the error probabilities for SLAEN and
the classical classifier are derived and plotted in Fig. 9(c).
SLAEN possesses a clear error-probability advantage over
the classical classifier. Specifically, the error probability of
SLAEN is twofold less than that of the classical classifier
when both are trained.

APPENDIX C: SIMULATIONS

We have performed Monte Carlo simulations for the
training processes of SLAEN and the classical classifier on
a classical computer, as a means to verify the qualitative
behaviors of the evolving hyperplane parameters and error
probabilities during the training experiments. Note that
such a training simulation is merely a testing tool and
cannot replace the physical training of SLAEN or the
classical classifier in their practical applications because the
original data fEðnÞ;φðnÞg probed by the sensors are, in
general, unavailable.
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FIG. 9. Experimental optimization of hyperplane parameters for a general data-classification problem. Trajectories of hyperplane
parameters for SLAEN (a) and for the classical classifier (b). Red squares: initial hyperplane parameters prior to training. Blue triangles:
hyperplane parameters after training. Magenta hexagrams: optimum hyperplane parameters. Color gradients: evolution of the error
probabilities during training. Green circles: samples of hyperplane parameters at every 30 training steps. Curves are obtained by a cubic
spline data fitting. (c) Error probabilities derived under the hyperplane parameters during training. Blue curve: error probabilities for
SLAEN. Red curve: error probabilities for classical classifier.
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1. Simulation for two-dimensional data classification

The simulation of the training for 2D data classification
undergoes 200 steps, each of which consumes a randomly
generated data point. The measurement noise for SLAEN
and the classifier is also randomly generated, with the
correlation between the measurement noise at SLAEN’s
different sensors accounted for. To facilitate the comparison
between the experimental data and the simulation
results, Figs. 3(a)–3(c) in the main text are replicated as
Figs. 10(a)–10(c) here. Figure 10(d) depicts the simulated
convergence of error probabilities for SLAEN (blue) and

the classical classifier (red). In addition, we simulate the
evolving hyperplane fwðnÞ

1 ; wðnÞ
2 ; bðnÞg during training and

plot the results for SLAEN in Fig. 10(e) and for the
classical classifier in Fig. 10(f). In comparing the top and
middle panels of Fig. 10, excellent qualitative agreement
between the experimental data and simulation results is
found. Note that since the experimental and simulated
measurement results are random, and the SPSA algorithm
is stochastic, we only expect a qualitative agreement.
The simulation, in analogy to the experiment, shows

that SLAEN’s optimized hyperplane (blue triangle) resides

(a) (b) (c)

(d)

(g) (h) (i)

(e) (f)

FIG. 10. Comparison between experimental data and simulations in training for 2D data classification. (a,d) Convergence of the error
probabilities during training. Red curve: classical classifier. Blue curve: SLAEN. Horizontal dashed lines: expected error probabilities
based on true hyperplanes and measurement-noise levels. Error bars represent 1 standard deviation of the uncertainty derived from five
measurements or simulations, each with 1000 data points. (b,e) History of hyperplane parameters for SLAEN during training. (d,f)
History of hyperplane parameters for classical classifier. Red squares: initial hyperplane parameters prior to training. Blue triangles:
hyperplane parameters after training. Magenta hexagrams: true hyperplane parameters, representing the optimum. Color gradients:
evolution of the error probabilities during training. Green circles: samples of hyperplane parameters at every 20 training steps. Curves
obtained by cubic spline data fitting. Simulated distribution of hyperplane parameters prior to training (g), at Step 50 (h), and at Step 200
(i). Blue filled circles: SLAEN hyperplanes. Red filled circles: classical-classifier hyperplanes. Hexagrams: optimum hyperplanes. Open
circles: projected hyperplane parameters onto the ðw1; w2Þ face drawn in grey. SLAEN’s optimized hyperplanes are distributed
statistically closer to the optimum solutions.
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closer to the optimum hyperplane (hexagram) than the
classical classifier’s optimized hyperplane. To investigate
whether this is a universal feature for SLAEN, we performed
200 training simulations for both SLAEN and the classical
classifier. The initial hyperplane for each training simulation
is randomly drawn and is defined as random variables

fWð0Þ
S ; Bð0Þ

S g for SLAEN and fWð0Þ
C ; Bð0Þ

C g for the classical
classifier. Figure 10(g) plots the distributions for 50 initial
hyperplane parameters in filled circles for bothSLAEN(blue)
and the classical classifier (red) prior to training.Theoptimum
hyperplane fwt; btg is represented by the hexagram. The
open circles are the projected hyperplane parameters onto
the ðw1; w2Þ plane in grey. After 50 training steps, the

distributions of the hyperplane fWð50Þ
S ; Bð50Þ

S g and fWð50Þ
C ;

Bð50Þ
C g are drawn in Fig. 10(h), showing that the hyperplane

parameters are migrating toward the optimum. The distribu-
tions of the hyperplane parameters after 200 training steps are
depicted in Fig. 10(i), which shows, qualitatively, that
SLAEN’s optimized hyperplanes (blue circles) are almost
enclosed by the classical classifier’s optimized hyperplanes
(red circles). This is evidence for SLAEN’s enhanced
accuracy in seeking the optimum solutions.
To conduct a more quantitative assessment on the

convergent behaviors for the hyperplane parameters, we
define the distance between SLAEN’s hyperplanes and the
optimum hyperplane after n training steps as

dðnÞS ≡
D ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðWðnÞ
S − wtÞ2 þ ðBðnÞ

S − btÞ2
q E

: ðC1Þ

The standard deviation of the distance is then defined as

ΔdðnÞS ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiDh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðWðnÞ
S −wtÞ2þðBðnÞ

S −btÞ2
q

−dðnÞS

i2Er
: ðC2Þ

Likewise, the distance between the classical classifier’s
hyperplanes and the optimum hyperplane is defined as

dðnÞC ≡
D ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðWðnÞ
C − wtÞ2 þ ðBðnÞ

C − btÞ2
q E

: ðC3Þ

The standard deviation for the classical classifier’s distance
is then defined as

ΔdðnÞC ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiDh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðWðnÞ
C −wtÞ2þðBðnÞ

C −btÞ2
q

−dðnÞC

i2Er
: ðC4Þ

The distances at different training steps are plotted in
Fig. 11 for SLAEN’s hyperplanes (red) and the classical
classifier’s hyperplanes (blue). The distance for SLAEN’s
hyperplanes after 200 training steps is dð200ÞS ¼ 0.129�
0.07, as compared to the classical classifier’s dð200ÞC ¼
0.154� 0.073. The disparity between the distances at the
end of training is highlighted via a zoomed-in view between
Step 150 and Step 200 in the inset of Fig. 11.

2. Simulation for three-dimensional data classification

We next simulate the training processes of SLAEN and
the classical classifier for 3D data classification. The
training for each case takes 390 steps, identical to the
number of training steps in the experiment. To facilitate
the comparison between experimental data and the simu-
lation results, the plots in Figs. 3(d)–3(f) of the main text
are replicated as Figs. 12(a)–12(c) here. The simulated
convergence of error probabilities is plotted in Fig. 12(d).
Figures 12(e) and 12(f) draw, respectively, the simulated
histories of the hyperplane parameters for SLAEN and the
classical classifier during training. The qualitative behav-
iors for the experimental data agree very nicely with those
of the simulation results, thereby supporting the validity of
the experimental approach.
In addition, we conducted a statistical study of the

distances between the hyperplanes and the optimum hyper-
plane during training for 3D data classification. The
distributions of the hyperplane parameters for SLAEN
and the classical classifier are plotted in Figs. 3(g)–3(i)
of the main text for, respectively, the initial hyperplanes, the
hyperplanes after 100 training steps, and the hyperplanes
when training is completed. It can be visually observed that
SLAEN’s optimized hyperplanes are located closer to the
optimum hyperplane than the classical classifier’s opti-
mized hyperplanes. As a quantitative analysis, the distances
vs training step curves for SLAEN and the classical
classifier are plotted in Fig. 13. Akin to Fig. 11, SLAEN
enables a reduced distance between its optimized hyper-
planes and the optimum hyperplane. This is a consequence
of the entanglement-enabled measurement-noise reduction
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FIG. 11. Distance between the true hyperplane and the opti-
mized hyperplanes at different steps under training for 2D data
classification. Solid lines: distance averaged over 200 trajectories
for the hyperplane parameters, each with a randomly generated
initial hyperplane. Shaded area: standard deviation of the dis-
tances of 200 trajectories. Inset: zoom-in view of the distances
between training Step 150 and Step 200. Blue: SLAEN.
Red: classical classifier.
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mechanism that SLAEN harnesses. The inset of Fig. 13 is a
zoomed-in view of the distances for SLAEN and the
classical classifier near the end of training. After 390
training steps, we define SLAEN’s optimized distance as

dS ≡ dð390ÞS ¼ 0.135� 0.056 and the classical classifier’s

optimized distance as dC ≡ dð390ÞC ¼ 0.167� 0.073. Both
dS and dC are reported in the main text.

APPENDIX D: DATA CLASSIFICATION USING
SEPARABLE SQUEEZED STATES

The original SLAEN theory paper [33] showed that the
performance of data-processing tasks undertaken by an
entangled sensor network is superior to that of a sensor
network based on separable squeezed states that have the
same total photon number as the entangled state. In this
Appendix, we show, in simulation and by experimental
data, that our SLAEN experiment achieves an advantage
over a sensor network based on separable squeezed states in
data-classification tasks, subject to a photon-number con-
straint. Specifically, our simulation shows that data clas-
sification based on separable squeezed states has a larger
error probability than that of our SLAEN experiment. We
also experimentally show that the quantum noise of a
sensor network with separable squeezed states is higher

(a) (b) (c)

(d) (e) (f)

FIG. 12. Comparison between experimental data and simulation results of training for 3D data classification. (a,d) Convergence of the
error probabilities during training. Red curve: classical classifier. Blue curve: SLAEN. Horizontal dashed lines: expected error
probabilities based on true hyperplanes and measurement-noise levels. Error bars represent 1 standard deviation of the uncertainty
derived from five measurements or simulations, each with 1000 data points. (b,e) History of hyperplane parameters for SLAEN during
training. (d,f) History of hyperplane parameters for classical classifier during training. Red squares: initial hyperplane parameters prior
to training. Blue triangles: hyperplane parameters after training. Magenta hexagrams: optimum hyperplane parameters. Color gradients:
evolution of the error probabilities during training. Green circles: samples of hyperplane parameters at every 30 training steps. Curves
are obtained by cubic spline data fitting.

FIG. 13. Distance between the true hyperplane and the opti-
mized hyperplanes at different steps under training for 3D data
classification. Solid lines: distance averaged over 200 trajectories
for the hyperplane parameters, each with a randomly generated
initial hyperplane. Shaded area: standard deviation of the dis-
tances of 200 trajectories. Inset: zoomed-in view of the distances
between training Step 350 and 390. Blue: SLAEN. Red: classical
classifier.
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than that of SLAEN, thereby supporting the SLAEN’s
claimed advantage over supervised learning based on
separable squeezed states. Finally, we present the motiva-
tion behind the main text’s focus on a performance
comparison between SLAEN and classical classifiers based
on coherent states.

1. Simulation for 3D data classification using separable
squeezed states

We simulate the training process of average rf-field
amplitude classification undertaken by a three-node sensor
network basedon separable squeezed states. The total photon
number of the separable squeezed states is set to be the same
as that of the entangled states in the SLAEN experiment. The
evolution and convergence of the error probabilities during
the training process are plotted in Fig. 14. In the simula-
tion, the initial hyperplane is set to fw0 ¼ ð0.9044;
0.3152; 0.2876Þ; b0 ¼ 0.53g, identical to that of the training
in the SLAEN experiment. As a comparison, we exper-
imentally measure the error-probability evolution in SLAEN
by taking ten more measurements based on the same
experimental setting as what is used to produce Fig. 12(a).
Our SLAEN experiment shows an error-probability advan-
tage of about 13% over that of a simulated sensor network
based on separable squeezed states.

2. Experimental noise calibrations

A complete demonstration of a three-node sensor network
with separable squeezed states requires three independent

squeezed-light sources, which places a significant resource
overhead. Instead, we calibrate the quantumnoise of a sensor
network with separable squeezed states using a time-domain
multiplexing approach introduced by Ref. [30]. We first set
the mean photon number of our squeezed-light source to that
of a separable squeezed state at a single sensor. We then take
three samples in the time domain to emulate the independent
quantum noise at three sensor nodes. The histogram of the
averaged homodyne data is plotted in Fig. 15 and fittedwith a
normalized Gaussian probability density function. Since the
measured noise variance of the separable sensor network is
about 11.7% higher than that of SLAEN, it is anticipated that
the error probability of SLAENbeats that of a sensor network
based on separable squeezed states.

3. Performance comparison

Quantum metrology studies how nonclassical resources
such as squeezed light and entanglement can be utilized in a
measurement system to enable a performance advantage
over systems based on classical resources. Such a perfor-
mance gain in sensing underpins SLAEN’s error-probability
advantage over separable sensor networks. In many practical
optical sensing systems such as the LIGO, the usable power
of the classical laser light is limited due to, e.g., thermal
effects, photon radiation-pressure-induced torques, and
parametric instabilities that cause adverse effects on the
system performance [35]. Nonclassical squeezed light is
then injected into the system to further improve the
measurement sensitivity. In such a scenario, the measure-
ment sensitivity achieved by a classical laser at a given
power level is defined as the standard quantum limit (SQL).
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FIG. 14. Convergence of error probability. Blue curve: simu-
lation of training process based on separable squeezed states.
Error bars represent 1 standard deviation of the uncertainty
derived from 60 000 simulated data points. Red curve: SLAEN
experiment. Error bars represent 1 standard deviation of the
uncertainty derived from 10 measurements. Horizontal dashed
lines: expected error probabilities based on true hyperplanes and
measurement-noise levels.

FIG. 15. Histograms of homodyne data. Red bins: separable
squeezed states. Blue bins: entangled state. Histograms are
normalized to probability mass functions and fitted with Gaussian
probability density functions. Red curve: theory fit for separable
squeezed states. Blue curve: theory fit for entangled state. Black
curve: standard quantum limit.
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Surpassing the SQL using nonclassical resources demon-
strates a quantum advantage enabled by quantum metrology.
In our experiment, SLAEN’s performance is compared with
that of a classical classifier based on laser light, i.e., coherent
states. The error probabilities for a classical classifier are
measured at a given laser power level. SLAEN’s error
probabilities are then measured at the same laser power
level while entanglement is distributed and shared by the
sensors. In the SLAEN experiment, the calibration gives a
total photon number of the entangled state of NS ¼ 3.3 and
the quantum efficiency of η ¼ 0.53 at each sensor. In a
conceived three-node sensor network based on separable
squeezed states, the mean photon number of a separable
squeezed state at each sensor will be 1.1, so the total photon
number matches that of the entangled state. We can then
estimate a noise reduction of 2.57 dB below SQL at the same
quantum efficiency at each sensor as the SLAEN experi-
ment. The squeezed state residing at the 11-MHz sidebands
is at a power level of tens of picowatts, while in the
experiment, most photons at each sensor originate
from the strong (∼50 μW) coherent state at a central
wavelength of 1550 nm. Given the close to 6-orders-of-
magnitude power disparity between the strong coherent
state and the quantum states at the sidebands, a separable
sensor network based on either coherent states or sepa-
rable squeezed states employs nearly identical optical
power as an entangled sensor network. This situation is in
analogy to LIGO, in which the overall optical power
remains nearly unchanged despite the injection of
squeezed light into the interferometer.
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