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We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by
means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals
the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymptotic
structure, reassessing the instability of the fundamental QNM discussed by Nollert [H. P. Nollert, About the
Significance of Quasinormal Modes of Black Holes, Phys. Rev. D 53, 4397 (1996)] as an “infrared” effect;
(ii) the instability of all overtones under small-scale (“ultraviolet”) perturbations of sufficiently high
frequency, which migrate towards universal QNM branches along pseudospectra boundaries, shedding
light on Nollert’s pioneer work and Nollert and Price’s analysis [H. P. Nollert and R. H. Price, Quantifying
Excitations of Quasinormal Mode Systems, J. Math. Phys. (N.Y.) 40, 980 (1999)]. Methodologically, a
compactified hyperboloidal approach to QNMs is adopted to cast QNMs in terms of the spectral problem of
a non-self-adjoint operator. In this setting, spectral (in)stability is naturally addressed through the
pseudospectrum notion that we construct numerically via Chebyshev spectral methods and foster in
gravitational physics. After illustrating the approach with the Pöschl-Teller potential, we address the
Schwarzschild black hole case, where QNM (in)stabilities are physically relevant in the context of black
hole spectroscopy in gravitational-wave physics and, conceivably, as probes into fundamental high-
frequency spacetime fluctuations at the Planck scale.
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I. INTRODUCTION: QNMS AND (IN)STABILITY

A. Black hole QNM stability problem
and the pseudospectrum

Structural stability is essential in the modeling and
understanding of physical phenomena. In the context of
spectral problems pervading physics, often related to wave
phenomena in both classical and quantum theories, this
concerns, in particular, the basic question about the stability
of the physical spectrum of the system. Thereupon, one
needs to assess the following questions: How does the
spectrum react to small changes of the underlying system?
Is the spectrum stable; i.e., do small perturbations lead to
tiny deviations? Or is it unstable, with small changes in the
system leading to drastic modifications of the spectrum? In
the present work, we study such spectral stability questions

in the setting of black hole (BH) spacetimes. Specifically,
the problem we address here is the spectral robustness of
BHQNMs, namely, the stability of the resonant frequencies
of BHs under perturbations. From a methodological per-
spective, our spectral (in)stability analysis is built upon the
notion of the so-called pseudospectrum.

1. Spectral instability and pseudospectrum

The physical status of spectral stability depends crucially
on whether the underlying system is conservative or not. In
particular, conservative systems have stable spectra, and
therefore, the spectral instability question, being solved
from scratch, is not relevant. Such spectral stability is
familiar in (standard) quantum mechanics, where (time-
independent) perturbation theory precisely relies on it. It is
the self-adjoint nature of the relevant operators (namely,
“Hermitian matrices” in the finite-dimensional case) that
accounts for such spectral stability. More systematically, it
is a consequence of the so-called “spectral theorem” for
self-adjoint operators: Eigenvectors form an orthogonal and
complete set, whereas eigenvalues are real and stable. This
theorem provides the mathematical background for the key

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 11, 031003 (2021)
Featured in Physics

2160-3308=21=11(3)=031003(44) 031003-1 Published by the American Physical Society

https://orcid.org/0000-0002-9966-7600
https://orcid.org/0000-0003-2942-5080
https://orcid.org/0000-0002-1224-4972
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.11.031003&domain=pdf&date_stamp=2021-07-06
https://doi.org/10.1103/PhysRevD.53.4397
https://doi.org/10.1063/1.532698
https://doi.org/10.1103/PhysRevX.11.031003
https://doi.org/10.1103/PhysRevX.11.031003
https://doi.org/10.1103/PhysRevX.11.031003
https://doi.org/10.1103/PhysRevX.11.031003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


physical notion of normal mode, associated with the
characteristic (real) vibrating frequencies of a conservative
system and its natural oscillation modes.
The situation is more delicate for nonconservative

systems, modeled in terms of non-self-adjoint operators
(non-Hermitian matrices). Such systems occur naturally
whenever there exist flows (e.g., energy, particle, informa-
tion) into external degrees of freedom that are out of the
(Hilbert) space under consideration (see Ref. [1] for a
recent and extensive review on non-Hermitian physics;
cf. e.g., Table 1 in that work for a list of several classical
and quantum systems described by non-Hermitian oper-
ators). In this setting, the spectral theorem is lost:
Eigenvectors are, in general, neither complete nor orthogo-
nal, and eigenvalues (now, in general, complex) are
potentially unstable. Here, we focus on this latter point,
namely, the potential spectral instability of a class of non-
self-adjoint operators associated with the nonconservative
system defined by the scattering of fields by BHs where,
critically, the field leaks away from the system at far
distances and through the BH horizon.
The notion of pseudospectrum [2–10] provides a power-

ful tool for the analysis of the properties of non-self-adjoint
operators. In particular, its use is widespread whenever
stability issues of nonconservative systems are addressed,
from pioneering applications in hydrodynamics [2] to
recent advances [11] covering a wide range in physics.
Broadly speaking, in order to gain some first intuition, the
pseudospectrum provides a visualization (and actually a
characterization) of the spectral instability of our operator
in terms of a kind of topographic map on the complex
plane, where the peaks (actually end points of infinitely
high throats) are at the complex eigenvalues of the non-
perturbed operator. With this picture in mind, spectral
stability is assessed in terms of the “thickness” of the
throats: Very thin throats quickly decreasing from the
eigenvalues correspond to spectral stability, whereas broad,
slowly decreasing throats indicate spectral instability. In
terms of level sets, contour lines corresponding to heights
1=ϵ define a family of nested sets around eigenvalues,
referred to as ϵ-pseudospectra, which determine the regions
in which eigenvalues can potentially “migrate” under a
system perturbation of size ϵ. The (nonperturbed) spectrum
corresponds to the set defined by ϵ → 0. Therefore, tightly
packed contour lines around eigenvalues corresponding to
strong gradients indicate spectral stability, whereas contour
lines with low gradients extending far from the eigenvalues
signal spectral instability.

2. Black hole QNMs in gravitational physics

BH QNMs encode the resonant response to (linear)
perturbations of the BH spacetime. In spite of being
triggered by perturbations, QNMs constitute an intrinsic
property of the background, and therefore, QNM frequen-
cies encode crucial geometric information about BHs and

their environment. Thus, they have become a fundamental
tool in astrophysics, fundamental gravitational physics, and
mathematical relativity in their attempts to probe spacetime
geometry through perturbation theory and scattering meth-
ods (see, e.g., Refs. [12–16] for systematic presentations
and reviews).
Upon perturbation, and after an initial transient, the

perturbative field propagating on the background spacetime
shows an exponentially damped, oscillatory behavior.
QNM frequencies are the set of complex numbers encoding
the oscillatory frequencies and decaying timescales of the
propagating linear (scattered) field. To fix ideas, this picture
is illustrated by the BH formed after the merger of a
compact binary, in the emerging setting of gravitational-
wave (GW) astronomy. After the transient merger phase,
the resulting perturbed BH evolves towards stationarity in a
linear ringdown phase dominated by QNMs. In particular,
the late-time behavior of the GW signal is controlled by the
fundamental or slowest-decaying QNM mode, namely,
the QNM frequency with the smallest (in absolute value)
imaginary part, which is, therefore, closest to the real axis.
Nonetheless, QNMs with larger imaginary parts, referred to
as overtones—with different oscillatory frequencies and
faster decaying time scales than the fundamental QNM—are
also present in the GW signal, its analysis being at the basis
of the BH spectroscopy research program [17–23]. Beyond
GW physics, QNMs play a key role in gravitational physics
as a crossroads among different limits and regimes of the
theory, encompassing problems in the referred GW astro-
physical setting, in semiclassical gravity (e.g., Ref. [24]) and
gravity-fluid (AdS/CFT) dualities (e.g., Ref. [25]), in
analogue gravity [26] or in foundational questions in
mathematical relativity (e.g., Refs. [27–29]), among other
problems ranging from the classical to the quantum regime.
In this latter setting, and given the importance theywill have
in our present discussion, it is worthwhile to signal that
QNMovertones have been proposed as a possible probe into
the quantum aspects of spacetime [16,30–43].
To be more specific, the discussion of BH QNMs is set in

terms of the wave equations arising when general relativity
is considered at linear order for fields propagating over a
fixed BH background. In this work, we focus on the
asymptotically flat case, where geometry approaches
Minkowski spacetime (in an appropriate sense) at large
distances. One must then impose appropriate boundary
conditions on the underlying wave equations: As one
moves far away from the source, the waves must propagate
out to infinity, whereas they must propagate to the interior
of the black hole at the horizon. The resulting outgoing
boundary conditions define a leaky system. QNMs are
obtained from the spectral problem associated with this
system. A crucial point in the present discussion is that such
a spectral problem can be cast as a proper “eigenvalue
problem” for a certain non-self-adjoint operator. At this
point, we make contact with the potential spectral

JARAMILLO, MACEDO, and SHEIKH PHYS. REV. X 11, 031003 (2021)

031003-2



instability that we have discussed above, associated with
non-self-adjoint operators. The ultimate significance of
QNM frequencies depends directly on the understanding
and control of their spectral stability.

B. BH QNM instability: Nollert and
Price’s pioneering work

Nollert’s groundbreaking work on BH QNM spectral
stability [44], complemented by the analysis in Nollert and
Price’s work [45], shows evidence of an overall instability
of the Schwarzschild QNM spectrum—affecting both the
fundamental QNM and the overtones—under a class of
small-scale perturbations (see also the recent works
Refs. [46,47]). The analysis by Nollert and Price, both
numerical and analytic in an asymptotic treatment, dem-
onstrates the robustness of such QNM instability. However,
it remains to be elucidated if such an instability corresponds
to the specific form of the considered perturbations and,
therefore, whether it could be an artifact of the employed
approach or if it, rather, responds to a structural feature
within the theory with actual implications on the physics of
BH QNMs.
More specifically, these works consider a family of

steplike approximations to the Schwarzschild curvature
potential. In a first step, the authors calculated the QNMs
corresponding to the steplike approximation for the poten-
tial (perturbed QNMs), finding a strong deviation from the
original values (nonperturbed QNMs), with a clear and
systematic pattern: Perturbed QNMs distribute along new
QNM branches with a qualitative structure dramatically
distinct from that of nonperturbed QNMs. In a second step,
they performed time evolutions of the wave equation under
the steplike approximated potential in a bid to identify and
extract the perturbed QNMs from the wave signal. In
contrast to the spectral problem, time evolutions presented
an overall stable behavior under perturbations of the
potential. Specifically, Nollert and Price’s work demon-
strates the following for the class of perturbations studied:

(i) QNM overtones are strongly unstable, with their
instability increasing with their damping.

(ii) The fundamental, slowest-decayingQNMis unstable.
(iii) The black hole rings down, at intermediate late times,

according to the nonperturbed fundamental mode.
Only at very late times is the ringdown frequency
controlled by the perturbed fundamentalQNMmode.

These results have been confirmed and expanded in
Refs. [46,47] to perturbations of the scattering potential,
extending the steplike approximation but still sharing the
feature of presenting a discontinuity at the potential or
some of its derivatives.
Beyond Nollert and Price’s works, research in BH QNM

spectral (in)stability has been further pursued in different
gravitational physics settings. In astrophysics, the under-
standing of possible environmental observational signatures
in “dirty”BH scenarios has prompted a research line [48,49]

that has been significantly intensified recently [46,47,
50–52]. On the other hand, regarding investigations on
the fundamental structure of spacetime, the perspective of
accessing quantum scales through high-frequency instabil-
ities of QNM overtones has also brought about systematic
research [16,30–43].
In spite of these efforts, a comprehensive picture of BH

QNM (in)stability seems to be lacking. At this point, it is
worthwhile to explicitly distinguish between the instability
in QNM frequencies and the instability in late ringdown
frequencies. The former refers to the spectral instability in
the “frequency domain” approach, when solving the
spectral problem associated with the wave equation. The
latter refers to a dynamical instability in the “time domain”
approach, when solving the initial data dynamical problem.
Both problems are intimately related but are indeed differ-
ent. In particular, it is known that the two sets of frequencies
can indeed decouple (e.g., Refs. [44–47,53–56] in the
gravitational context). Still, the separation between QNM
and ringdown frequencies signals an “anomaly” and,
therefore, pinpoints a structural feature in the physical
system, requiring a specific study. In the present work, we
focus on QNM instability in the spectral sense.
In this context, the stability status of the slowest-

decaying QNM—presenting precisely the tension
described above between calculated spectral instability
and observed robustness in the ringdown signal—remains
unclear, whereas the elucidation of the lowest overtone
subject to high-frequency instability is an open problem. In
light of the discussion above on the fundamental role of BH
QNMs in different settings of gravitational physics, the
clarification of these two points is a first-order problem
from a strictly physical perspective. Moreover, if establish-
ing the stability status of BH QNMs is key in general BH
physics, the problem is actually urgent in gravitational-
wave astrophysics. Indeed, in the era of gravitational-wave
astronomy, the stability of the fundamental QNM and the
overtones is paramount for BH spectroscopy.
The implementation of an analysis based on the pseudo-

spectrum allows us to address these questions systematically
and to provide sound answers to points (i) and (ii) above. In
short, and anticipating the results discussed later in detail,
such an analysis confirms the instability behavior of QNM
overtones—point (i)—and provides a framework for its
systematic study, whereas it disproves the instability of
the fundamental QNM—point (ii)—if asymptotic properties
of the spacetime are respected, with its unstable behavior in
Ref. [44] resulting in an artifact as a consequence of “cutting”
the effective potential at a finite distance. Regarding point
(iii), from the stability of the fundamental QNM, we
conclude that the late-time ringdown is indeed dominated
by the unperturbed slowest-decaying QNM (without any
very late transition to a “perturbed ringdown” frequency), but
the systematic analysis of the detailed relation betweenQNM
frequencies and BH ringdown frequencies is beyond the
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scope of the present work and will be the subject of a
specifically targeted research focused on the potential
implications of BH QNM instability on GW astrophys-
ics [57].

C. Present approach

1. Basic ingredients: Hyperboloidal approach
and pseudospectrum

The calculation of BH QNMs has been the subject of
systematic study in gravitational physics, and there exists a
variety of standard approaches to address this problem
(cf. e.g., Refs. [13–16]). From a methodological perspec-
tive, our discussion relies on two main ingredients at a
conceptual level:

(i) A hyperboloidal approach to QNMs: This geometric
approach casts the QNM calculation as a proper
eigenvalue problem of a particular non-self-adjoint
operator.

(ii) Pseudospectrum: Together with related spectral
tools, this notion provides the key instrument to
study the potential spectral instability of the relevant
non-self-adjoint operator.

The combination of these two elements allows us to
develop a systematic treatment of the problem. To the best
of our knowledge, no systematic treatment of BHQNM (in)
stability based on the pseudospectrum exists in the liter-
ature. At a first exploratory stage, prior to a full analytical
study, the present work addresses pseudospectra using a
numerical approach. This sets a challenging numerical
problem demanding high accuracy, which is addressed here
by introducing a third key ingredient in our approach: the
use of spectral numerical methods.

2. Beyond gravity: QNMs, pseudospectrum,
and interdisciplinary physics

Before entering into the detailed discussion of BH QNM
stability, let us stress that both QNMs and the pseudospec-
trum provide independent, but indeed complementary,
arenas for interdisciplinary research in physics and related
disciplines.
Regarding QNMs, beyond the present gravitational

context, the notion of QNM spreads in physics, e.g., in
electromagnetism and optics, acoustics, or—under the
related notion of resonance in quantum mechanics—in
atomic, nuclear, and molecular physics. Beyond physics,
QNMs enter into the discussion of scattering problems in
geometry [58] and chaotic dynamics (see Refs. [59,60] for
a systematic review of scattering resonances or QNMs from
a mathematical perspective). Together with the extent of the
applicability of the QNM notion, an important aspect
concerns timing. Indeed, the synergy observed in this
sense in recent years among different subdisciplines in
the gravitational setting (namely, GW astrophysics, AdS/
CFT dualities, and mathematical relativity) remarkably

extends to other fields in physics, as perfectly illustrated
by recent breakthroughs in optical nanoresonator QNMs,
namely, photonic and plasmonic resonances [61,62].
Regarding the pseudospectrum, its use in physics nat-

urally occurs in the study of stability and spectral problems
in nonconservative systems, from which we highlight its
applications in hydrodynamics [2] and in non-Hermitian
quantum mechanics [8]. Beyond physics, systematic appli-
cations are found in numerical analysis, the original context
where the notion was formulated. This wide range of
applications becomes intertwined methodologically by the
pseudospectrum. The present approach to BH QNM
stability, which introduces (to the best of our knowledge)
the pseudospectrum to gravity, incorporates gravitational
physics into this multifaceted research scheme. When
combined with the large range of applicability of the
QNM notion in physics, it outlines a robust and potentially
rich frame for interdisciplinary research in physics. The last
section of this article, Sec. VII B 4, expands on this
perspective.
The article is structured as follows. Section II presents a

qualitative description of the hyperboloidal approach to
scattering problems and reviews the literature on this
geometrical framework. Beyond reviewing the main con-
cepts, with a focus on QNMs, this section identifies and
constructs the appropriate scalar product in the problem.
Section III introduces the basic elements to study spectral
instability of non-self-adjoint operators, in particular, the
notion of pseudospectrum. Section IVpresents the numerical
spectral tools that will be employed in the present approach.
Then, Sec. V illustrates all the previous elements in the toy
model provided by the Pöschl-Teller potential, which also
anticipates some of the main results in the BH setting.
Section VI contains the main contribution in the present
work, namely, the construction of the Schwarzschild QNM
pseudospectrum and the consequent analysis of BH QNM
(in)stability. Finally, conclusions and perspectives are pre-
sented in Sec.VII. FourAppendixes complete some points in
the technical discussion of the main text. Throughout this
work, we adopt units in which the speed of light and the
gravitational constant are c ¼ G ¼ 1.

II. HYPERBOLOIDAL APPROACH TO QNMs

A. Hyperboloidal approach: Heuristic introduction

Our approach to QNMs strongly relies on casting the
discussion in terms of the spectral problem of a (non-self-
adjoint) operator. In our scheme, this is achieved by means
of a so-called hyperboloidal approach to wave propagation,
which provides a systematic framework exploiting the
geometric asymptotics of the spacetime, in particular,
enforcing the relevant outgoing boundary conditions in a
geometric way. We start with a heuristic discussion of the
basics, aiming at providing an intuitive picture and explic-
itly sacrificing rigor.
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The notion of wave zone is a familiar concept in physics.
It describes a region far away from a source where the
degrees of freedom of a given field (not necessarily linear)
propagate as a free wave, independently of their interior
sources and obeying the superposition principle. Roughly
speaking, this region is characterized by r=R ≫ 1, where r
is the location of a distant observer and R is a typical length
scale of the source. This concept is addressed formally by
taking the appropriate limit r → ∞ or 1=r → 0. From a
spacetime perspective, however, such a limit must be
carefully understood.
To fix ideas, let us consider a physical scenario in

spherical symmetry, where a wave propagating at finite
speed is described in a standard spherical coordinate system
ðt; r; θ;φÞ (for simplicity, let us momentarily consider a flat
spacetime where we ignore the effects of gravity). The
retarded time coordinateu ¼ t − r corresponds to the time at
which an outgoingwave, passing by the observer at r at time
t, was emitted by a source located at the origin. Crucially,
“light rays” propagate along (characteristic) curves satisfy-
ing u ¼ const. In this setting, and as illustrated in Fig. 1,
taking the limit r → ∞ corresponds to completely different
geometric statements depending on whether one stays at the
hypersurface t ¼ const or rather on u ¼ const. The limit
attained by “spacelike” (geodesic) curves satisfying the

former condition (t ¼ const) is referred to as “spacelike
infinity” and denoted i0, whereas lightlike or null (future
geodesic) curves satisfying the latter condition (u ¼ const)
attain a limit referred to as future null infinity, denoted asIþ.
It is future null infinity Iþ that formally captures the
intuitive notion of outgoing wave zone.
Other alternatives to the t ¼ const and u ¼ const hyper-

surfaces are possible, which is natural in a general
relativistic context implementing freedom of coordinate
choice. A particularly convenient possibility in our present
problem consists in choosing a third alternative: to keep
spacelike hypersurfaces defined as level sets of an appro-
priate time function τ while reaching future null infinity as
r → ∞ so as to enforce the outgoing character of the
radiation. Such a third option is displayed in Fig. 1 as a
τ ¼ const hypersurface. The asymptotic geometry of such
hypersurfaces is that of a hyperboloid, a feature that gives
the resulting hyperboloidal approach its name.
The previous heuristic picture of spacetime asymptotics

is formalized in the geometric notion of conformal infinity
[63–69], which provides a rigorous and geometrically well-
defined strategy to deal with radiation problems of compact
isolated bodies. A conformal compactification maps the
infinities of the physical spacetime into a finite region
delimited by the boundaries of a conformal manifold.
Specifically, Iþ corresponds to the future endpoints of
null geodesics, whereas a time function τ will be referred to
as hyperboloidal if hypersurfaces τ ¼ const intersect Iþ,
therefore being adapted to the geometrical structure at the
infinitely far-away wave zone.
The hyperboloidal formulation has proved to be a

powerful tool in mathematical and numerical relativity,
allowing to obtain existence results in the nonlinear treat-
ment of Einstein equations, as illustrated in the semiglobal
result in Ref. [70], or providing a natural framework for the
extraction of the GW waveform in numerical dynamical
evolutions of GW sources. Together with those fully
nonlinear studies, over the last decade, the hyperboloidal
approach has been successfully applied to problems
defined on fixed spacetime backgrounds (see, e.g.,
Ref. [71] and references therein). In particular, Ref. [72]
proposed a hyperboloidal approach to BH perturbation
theory.
This is our setting for QNMs, where the hyperboloidal

framework allows us to geometrically implement the out-
going boundary conditions at Iþ, in a strategy first proposed
by Schmidt in Ref. [73]. The adopted (compactified) hyper-
boloidal approach provides a geometric framework to study
QNMs that characterizes resonant frequencies in terms of an
eigenvalue problem [28,71–81]. As explained above, the
scheme geometrically imposes QNM outgoing boundary
conditions by adopting a spacetime slicing that intersects
future null infinity Iþ and, in the BH setting, penetrates the
horizon. Since light cones point outwards at the boundary of
the domain, outgoing boundary conditions are automatically

FIG. 1. Schematic representation of the different “r → ∞”
limits along curves within different types of spacetime hyper-
surfaces. Cauchy hypersurfaces, of spacelike character and
represented by the “t ¼ const” condition in the figure, are such
that this limit attains the so-called spatial infinity i0, whereas in
null hypersurfaces satisfying “u ¼ const” (with u ¼ t − r a null
“retarded time”) the limit attains the outgoing wave zone modeled
by future null infinity Iþ. The hyperboloidal approach offers an
intermediate possibility, where the limit is taken along spacelike
hypersurfaces, formally represented by the “τ ¼ const” but still
reaching Iþ asymptotics.
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imposed for propagating physical degrees of freedom.
Along these lines, our scheme to address the BH QNM
(in)stability problem strongly relies on the hyperboloidal
approach since it provides the rationale to define the non-
self-adjoint operator on which a pseudospectrum analysis is
then performed.

B. Wave equation in the compactified
hyperboloidal approach

We focus on the propagation and, more generally, the
scattering problem of (massless) linear fields on stationary,
spherically symmetric, BH backgrounds. For concreteness,
let us first consider a scalar field Φ, satisfying the wave
equation

□Φ ¼ ∇a∇aΦ ¼ 0: ð1Þ

We adopt standard Schwarzschild coordinates

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdφ2Þ ð2Þ

and emphasize that t ¼ const slices correspond to Cauchy
hypersurfaces intersecting both the horizon bifurcation
sphere and spatial infinity i0. If we consider the rescaling

Φ ¼ 1

r
ϕ; ð3Þ

then Eq. (1) is rewritten, expanding ϕ in spherical har-
monics with ϕlm modes and using the tortoise coordinate
defined by ðdr=dr�Þ ¼ fðrÞ (with the appropriate integra-
tion constant), as

� ∂2

∂t2 −
∂2

∂r2� þ Vl

�
ϕlm ¼ 0; ð4Þ

where now r� ∈� −∞;∞½. Remarkably, when considering
electromagnetic and (linearized) gravitational fields, the
respective geometric wave equations corresponding to
Eq. (1) can be cast in the form of Eq. (4) for appropriate
effective scalar potentials. Specifically, two scalar fields
with different parity can be introduced, satisfying Eq. (4)
with suitable potentials Vl. In the gravitational case, the
axial parity is subject to the so-called Regge-Wheeler
potential, whereas the polar one is controlled by the
Zerilli potential (cf. e.g., Refs. [12,13,82]).
The BH event horizon and (spatial) infinity correspond,

respectively, to r� → −∞ and r� → þ∞. We extend the
domain of r� to ½−∞;∞� and introduce the dimensionless
quantities

t̄ ¼ t
λ
; x̄ ¼ r�

λ
; V̂l ¼ λ2Vl; ð5Þ

for an appropriate length scale λ to be chosen in each
specific setting. More importantly, we consider coordinates

ðτ; xÞ that implement the compactified hyperboloidal
approach

�
t̄ ¼ τ − hðxÞ
x̄ ¼ gðxÞ: ð6Þ

Specifically (see Fig. 2), we consider the following:
(i) The height function hðxÞ implements the hyperbol-

oidal slicing; i.e., τ ¼ const is a horizon-penetrating
hyperboloidal slice Στ intersecting future Iþ.

(ii) The function gðxÞ introduces a spatial compactifica-
tion from x̄ ∈ ½−∞;∞� to a compact interval ½a; b�.

We note that the compactification is performed only in the
spatial direction along the hyperboloidal slice, and not in
time, so the latter can be Fourier transformed in an
unbounded domain. The relevant compactification here is
a partial one and not the total spacetime compactification
leading to Carter-Penrose diagrams. The choice of hðxÞ and
gðxÞ is, as we comment below, subject to certain restrictions.
Under transformation (6), the wave equation (4) is written

��
1 −

�
h0

g0

�
2
�
∂2
τ −

2

g0

�
h0

g0

�
∂τ∂x −

1

g0

�
h0

g0

�0∂τ

−
1

g0
∂x

�
1

g0
∂x

�
þ V̂l

�
ϕlm ¼ 0; ð7Þ

FIG. 2. Schematic representation of the hyperboloidal coordi-
nate transformation in Eq. (6). Top panel: Dimensionless
Schwarzschild time and tortoise coordinates ðt̄; x̄Þ. The height
function hðxÞ bends the time slices so that future null infinity
(and/or the black hole horizon) is reached in the limit x̄ → �∞.
Bottom panel: Spatially compactified hyperboloidal coordinates
ðτ; xÞ. The compactification function gðxÞ maps the infinite
domain x̄ ∈� −∞;∞½ onto the finite interval x ∈�a; b½. Points
b and a are added at the boundary, representing null infinity Iþ
and/or the BH horizon. The blue stripe shows the domain of
integration of the wave equation in Eq. (7) in these compactified
hyperboloidal coordinates, namely, ðτ; xÞ ∈� −∞;þ∞½×½a; b�,
corresponding to the full original domain ðt̄; x̄Þ ∈ R2 of Eq. (4).
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where the prime denotes the derivative with respect to x.
Admittedly, expression (7) appears to be more intricate than
Eq. (4). However, this change encodes a neat geometric
structure, and, as we shall argue, it plays a crucial role in our
construction and discussion of the relevant spectral problem.

C. First-order reduction in time
and spectral problem

The structure in Eq. (7) is made more apparent by
performing a first-order reduction in time, by introducing

ψlm ¼ ∂τϕlm; ulm ¼
�
ϕlm

ψlm

�
: ð8Þ

Then, Eq. (7) becomes

∂τulm ¼ iLulm; ð9Þ

where the operator L is defined as

L ¼ 1

i

�
0 1

L1 L2

�
; ð10Þ

with

L1 ¼
1

wðxÞ (∂xðpðxÞ∂xÞ − qlðxÞ);

L2 ¼
1

wðxÞ (2γðxÞ∂x þ ∂xγðxÞ); ð11Þ

and

wðxÞ ¼ g02 − h02

jg0j ; pðxÞ ¼ 1

jg0j ; qlðxÞ ¼ jg0jV̂l;

γðxÞ ¼ h0

jg0j : ð12Þ

The structure of L1 is that of a Sturm-Liouville operator. In
particular, functions hðxÞ and gðxÞ are chosen such that
they guarantee the positivity of the weight function wðxÞ,
namely, wðxÞ > 0. The operator L2 also has a neat geo-
metric and analytic structure adapted to the integration
by parts, being symmetric in the following form:
L2 ¼ 1

wðxÞ fγðxÞ∂x þ ∂x½γðxÞ ⋅ �g.
A key property of coordinate transformation (6) is that it

preserves, up to the overall constant λ, the timelike Killing
vector ta controlling stationarity,

ta ¼ ∂t ¼
1

λ
∂ t̄ ¼

1

λ
∂τ: ð13Þ

In this sense, functions t and λτ “tick” at the same pace;
namely, they are natural parameters of ta, i.e., taðtÞ ¼
taðλτÞ ¼ 1 (the role of the constant λ being just that of

keeping proper dimensions). This property is crucial for the
consistent definition of QNM frequencies by Fourier (or
Laplace) transformation from Eqs. (4) and (7) since the
corresponding variables ω respectively conjugate to t and τ
then coincide (up to the constant 1=λ). In other words, the
change of time coordinate in Eq. (6) does not affect the
values of the obtained QNM frequencies.
Then, performing the Fourier transform in τ in the first-

order (in time) form (9) of the wave equation [with standard
sign convention for the Fourier modes, ulmðτ; xÞ∼
ulmðxÞeiωτ], we arrive at the spectral problem for the
operator L,

Lun;lm ¼ ωn;lmun;lm; ð14Þ

or, more explicitly,

�
0 1

L1 L2

��
ϕlm

ψlm

�
¼ iωn;lm

�
ϕn;lm

ψn;lm

�
: ð15Þ

1. Regularity and outgoing boundary conditions

As emphasized at the beginning of this section, a major
motivation for the adopted hyperboloidal approach is the
geometric imposition of outgoing boundary conditions at
future null infinity and at the event horizon: Being null
hypersurfaces with light cones pointing outwards from the
integration domain, the physical, causally propagating
degrees of freedom (such as the scalar fields we consider
here) should not admit boundary conditions, as long as they
satisfy the appropriate regularity conditions. How does this
translate into the analytic scheme resulting from the change
of variables in Eq. (6)?
The key point is that transformation (6) must be such that

pðxÞ in the Sturm-Liouville operator L1 in Eq. (11)
vanishes at the boundaries of the compactified spatial
domain ½a; b�,

pðaÞ ¼ pðbÞ ¼ 0: ð16Þ

This point will be illustrated explicitly in the cases
discussed later. Then, the elliptic operator L1 is a “singular”
Sturm-Liouville operator, which impacts directly on the
boundary conditions it admits. Specifically, if (appropriate)
regularity is enforced on eigenfunctions, then L1 does not
admit boundary conditions. Moreover, such absence of
boundary conditions extends to the full operator L in the
hyperbolic problem. In brief, if sufficient regularity is
imposed on the space of functions un;lm, then wave
equations (7) and (9) and the spectral problem (14) do
not admit boundary conditions, as a consequence of the
vanishing of pðxÞ at the boundaries of ½a; b�.
This feature is the analytic counterpart of the geometric

structure implemented in the compactified hyperboloidal
approach. QNM boundary conditions are built into the
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“bulk” of the operator L as regularity conditions in
Eqs. (14) and (15).

D. Scalar product: QNMs as a non-self-adjoint
spectral problem

The outgoing boundary conditions in the present setting
define a leaky system, with a loss of energy through the
boundaries—null infinity and the black hole horizon—so
the system is not conservative, which suggests that the
infinitesimal generator of the evolution in Eq. (7), namely,
the operator L, should be non-self-adjoint. Thus, we need to
introduce an appropriate scalar product in the problem.
Moreover, such identification of the appropriate Hilbert
space for solutions is also key for the regularity conditions
evoked above.
Equation (7) describes the evolution of each mode ϕlm in

a background 1þ 1-Minkowski spacetime with a scattering
potential Vl. A natural scalar product in this reduced
problem (cf. Ref. [83] for an extended discussion in terms
of the full problem), both from the physical and the
analytical point of view, is given in terms of the energy
associated with such a scalar field mode. In the context of
the spectral problem (14), we must generically consider a
complex scalar field ϕlm, for which the associated stress-
energy tensor [dropping ðl; mÞ indices] is

Tab ¼
1

2

�
∇aϕ̄∇bϕ−

1

2
ηab

�
∇cϕ̄∇cϕþVlϕ̄ϕ

�
þ c:c:

�
;

ð17Þ
where ηab denotes the Minkowski metric in arbitrary
coordinates and “c.c.” indicates “complex conjugate.” In a
stationary situation, the “total energy” contained in the
spatial slice Στ and associated with the mode ϕ is given
[67] by

E ¼
Z
Στ

Tabðϕ;∇ϕÞtanbdΣτ; ð18Þ

where ta is, again, the timelikeKilling vector associated with
stationarity and na denotes the unit timelike normal to the
spacelike slice Στ. Explicitly writing the (dimensionless)
energy in the compactified hyperboloidal coordinates ðτ; xÞ
in Eq. (6), we get

Eðϕ;∂τϕÞ¼
Z
Στ

Tabðϕ;∂τϕÞtanbdΣτ

¼ 1

2

Z
b

a
½ðg02−h02Þ∂τϕ̄∂τϕþ∂xϕ̄∂xϕþg02V̂lϕ̄ϕ�

×
1

jg0jdx; ð19Þ

wherewe identify the functions appearing in the definition of
the L1 operator in Eqs. (11) and (12). In particular,
if g02 − h02 > 0 (as we have required above) and V̂l > 0

(this is required for positivity of the norm), then, identifying
∂τϕ ¼ ψ as in Eq. (8), we can write the following norm for
the vector u in Eq. (8):

kuk2E¼
����
�
ϕ

ψ

�����
2

E
≔Eðϕ;ψÞ

¼1

2

Z
b

a
ðwðxÞjψ j2þpðxÞj∂xϕj2þqlðxÞjϕj2Þdx: ð20Þ

In the following, we refer to this norm as the “energy norm.”
We notice that γðxÞ in Eq. (12), associated with L2, does not
enter in the norm, that is, in the energy. This norm indeed
comes from a scalar product. Tomake its rolemore apparent,
we rewrite the qlðxÞ function as the rescaled potential Ṽl,

Ṽl ≔ qlðxÞ ¼ jg0ðxÞjV̂l ¼ V̂l

pðxÞ ; ð21Þ

and under the assumption above, Ṽl > 0, we can introduce
the “energy scalar product” for vector functions u in
Eq. (8) as

hu1; u2iE ¼
��

ϕ1

ψ1

�
;
�
ϕ2

ψ2

�	
E

¼ 1

2

Z
b

a
ðwðxÞψ̄1ψ2 þ pðxÞ∂xϕ̄1∂xϕ2

þ Ṽlϕ̄1ϕ2Þdx: ð22Þ
By construction, it holds that kuk2E ¼ hu; uiE. This scalar
product will be the relevant one in our discussion.
The full operator L in Eq. (14) is not self-adjoint in the

scalar product (22). In fact, the first-order operator L2

stands for a dissipative term encoding the energy leaking at
Iþ and the BH horizon [83]. At first glance, one could
consider that this is related to the first-order character of L2,
which makes it antisymmetric when integrating by parts
with an L2ð½a; b�; wðxÞdxÞ scalar product on ψ , in contrast
with the self-adjoint character of the Sturm-Liouville
operator L1 in L2ð½a; b�; wðxÞdxÞ for ϕ functions.
However, this is misleading and actually suggests a wrong
bulk dissipation mechanism. When calculating the formal
adjoint L† of the full operator L with the scalar product
(22), one gets

L† ¼ Lþ L∂ ; ð23Þ

where L∂ is an operator with support only on the bounda-
ries of the interval ½a; b�, which we can formally write as

L∂ ¼ 1

i

�
0 0

0 L∂
2

�
; ð24Þ

with L∂
2 given by the expression
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L∂
2 ¼ 2

γðxÞ
wðxÞ (δðx − aÞ − δðx − bÞ); ð25Þ

where δðxÞ formally denotes a Dirac-delta distribution.
This formal expression precisely underlines the need for a
more careful treatment of the involved functional spaces,
but it has the virtue of making it apparent that the
obstruction to self-adjointness lies at the boundaries, as
one expects in our QNM problem, and not in the bulk, as
one could naively conclude from the presence of a first-
order operator L2 (cf. discussion above): L∂

2 explicitly
entails a boundary dissipation mechanism. In particular, we
note that L is self-adjoint in the nondissipative L2 ¼ 0 case,
as expected, but this requires the introduction of a quite
nontrivial scalar product.
As a bottom line, in this section we have cast the QNM

problem as the eigenvalue problem of a non-self-adjoint
operator. In the following section, we discuss the implica-
tions of this approach.

III. SPECTRAL STABILITY
AND PSEUDOSPECTRUM

The spectrum of a non-self-adjoint operator is potentially
unstable under small perturbations of the operator. Let us
consider a linear operator A on a Hilbert space with scalar
product h·; ·i, and denote its adjoint by A†, satisfying
hA†u; vi ¼ hu; Avi. The operator A is called normal if
and only if ½A; A†� ¼ 0. In particular, a self-adjoint operator
A† ¼ A is normal. In this setting, the “spectral theorem”
(under the appropriate functional space assumptions) states
that a normal operator is characterized as being unitarily
diagonalizable. The eigenfunctions of A form an ortho-
normal basis, and crucially in the present discussion, the
eigenvalues are stable under perturbations of A. The lack of
such a spectral theorem for non-normal operators entails a
severe loss of control on eigenfunction completeness and
the potential instability of the spectrum of the operator A.
Here, we focus on this second aspect.

A. Spectral instability: Eigenvalue condition number

Let us consider an operator A and an eigenvalue λi. Left
wi and right vi eigenvectors are characterized as [84]

A†wi ¼ λ̄iwi; Avi ¼ λivi; ð26Þ

with λ̄i the complex conjugate of λi. Let us consider, for
ϵ > 0, the perturbation of A by a (bounded) operator δA,

AðϵÞ ¼ Aþ ϵδA; kδAk ¼ 1: ð27Þ

The eigenvalues [85] in the perturbed spectral problem

AðϵÞviðϵÞ ¼ λiðϵÞviðϵÞ ð28Þ

satisfy

jλiðϵÞ − λij ¼ ϵ
jhwi; δAviðϵÞij

jhwi; viij
¼ ϵ

jhwi; δAviij
jhwi; viij

þOðϵ2Þ

≤ ϵ
kwikkδAvik
jhwi; viij

þOðϵ2Þ

≤ ϵ
kwikkvik
jhwi; viij

þOðϵ2Þ; ð29Þ

where the first line generalizes [6,86] the expression
employed (for self-adjoint operators, where wi ¼ vi) in
quantum mechanics first-order perturbation theory, the first
inequality in the second line is the Cauchy-Schwartz
inequality, and in the second inequality we make explicit
use of an operator norm k · k induced from that of the vector
Hilbert space so that kδAvk ≤ kδAkkvk and kδAk ¼ 1 in
Eq. (27). Then, defining the condition number κi associated
with the eigenvalue λi, we can write the bound for the
perturbation of the eigenvalue λi,

jλiðϵÞ − λij ≤ ϵκi; κi ¼ κðλiÞ ≔
kwikkvik
jhwi; viij

: ð30Þ

In the normal operator case, wi and vi are proportional
(namely, since A and A† commute, they can be diagonalized
in the same basis). Then, again by the Cauchy-Schwartz
inequality, κi ¼ 1, and we encounter spectral stability: A
small perturbation of order ϵ of the operator A entails a
perturbation of the same order ϵ in the spectrum. In contrast,
in the non-normal case, wi and vi are not necessarily
collinear. In the absence of a spectral theorem, nothing
prevents wi and vi from becoming close to orthogonality,
and κi can become very large: Small perturbations of A can
produce large deviations in the eigenvalues. The relative
values of κi control the corresponding instability sensitivity
of different λi’s to an operator perturbation [87].

B. Pseudospectrum

A complementary approach to the study of the spectral
(in)stability of the operator A under perturbations consists
in considering the following questions:
Given the operator A and its spectrum σðAÞ, which is the

set formed by complex numbers λ ∈ C that are actual
eigenvalues of “some” small perturbation Aþ δA, with
kδAk < ϵ? Does this set extend in C far from the spectrum
of A?
In this setting, if we are dealing with an operator that is

spectrally stable, we expect that the spectrum of Aþ δA
will not change strongly with respect to that of A, so the set
of λ ∈ C corresponding to the first question above will not
be far from σðAÞ, staying in its vicinity at a maximum
distance of order ϵ. On the contrary, if we find a tiny
perturbation δA of order kδAk < ϵ such that the corre-
sponding eigenvalues of Aþ δA actually reach regions inC
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at distances far from σðAÞ, namely, orders of magnitude
above ϵ, we conclude that our operator suffers from an
actual spectral instability.

1. Pseudospectrum and operator perturbations

The previous discussion is formalized in the notion
of pseudospectrum, leading to the following (first)
definition [88].
Definition 1: (Pseudospectrum: perturbative approach).

Given A ∈ MnðCÞ and ϵ > 0, the ϵ-pseudospectrum σϵðAÞ
of A is

σϵðAÞ
¼fλ∈C; ∃δA∈MnðCÞ;kδAk< ϵ∶λ∈σðAþδAÞg: ð31Þ

This notion of the ϵ-pseudospectrum σϵðAÞ is a crucial
one in our study of eigenvalue instability since it implies
that points in σϵðAÞ are actual eigenvalues of some
perturbation of A of order ϵ: If σϵðAÞ extends far from
the spectrum σðAÞ for a small ϵ, then a small physical
perturbation δA of A can produce large actual deviations in
the perturbed physical spectrum. The pseudospectrum
becomes a systematic tool to assess spectral (in)stability,
as illustrated in the hydrodynamics context [2].
Although the characterization (31) of σϵðAÞ neatly cap-

tures the notion of (in)stability of A, from a pragmatic
perspective it suffers from the drawback of not providing
a constructive approach to build such sets σϵðAÞ for different
ϵ’s (see, however, Sec. III C below for a further qualification
of this question in terms of random perturbation probes).

2. Pseudospectrum and operator resolvent

To address the construction of pseudospectra, another
characterization of the set σϵðAÞ in Eq. (31) of Definition 1 is
very useful. Such a second characterization is based on the
notion of the resolventRAðλÞ¼ðλId−AÞ−1 of the operatorA.
An eigenvalue λ of A is a complex number that makes the

operator ðλId − AÞ singular. More generally, the spectrum
σðAÞ of A is the set fλ ∈ Cg for which the resolvent RAðλÞ
does not exist as a bounded operator (cf. details and
subtleties on this notion in, e.g., Refs. [9,86]). This
spectrum concept is a key notion for normal operators,
but because of the spectral instabilities discussed above,
σðAÞ is not necessarily a good object to consider for non-
normal operators, in our context. The notion of ϵ pseudo-
spectrum then enters the scene. Specifically, an equivalent
characterization of the ϵ-pseudospectrum set σϵðAÞ in
Definition 1 is given by the following definition [6,9].
Definition 2: (Pseudospectrum: resolvent norm

approach). Given A ∈ MnðCÞ, its resolvent RAðλÞ ¼
ðλId − AÞ−1 and ϵ > 0, the ϵ-pseudospectrum σϵðAÞ of A
is characterized as

σϵðAÞ ¼ fλ ∈ C∶kRAðλÞk ¼ kðλId − AÞ−1k > 1=ϵg: ð32Þ

This characterization captures the fact that, for non-
normal operators, the norm of the resolvent RAðλÞ can be
very large far from the spectrum σðAÞ, which is in contrast
with the normal-operator case, where (in the k · jj2 norm)

kRAðλÞjj2 ≤
1

dist(λ; σðAÞ) : ð33Þ

In the non-normal case, one can only guarantee (e.g.,
Ref. [6]) that

kRAðλÞjj2 ≤
κ

dist(λ; σðAÞ) ; ð34Þ

where κ is also a condition number, which is different from
but related to the eigenvalue condition numbers κi in
Eq. (30) (κ, associated with the matrix diagonalizing A,
provides an upper bound to the individual κi’s; see Ref. [6]
for details). In the non-normal case, κ can become very
large, and ϵ-pseudospectra sets can extend far from the
spectrum of A for small values of ϵ. The extension of σϵðAÞ
far from σðAÞ is therefore a signature of strong non-
normality, and it indicates poor analytic behavior of RAðλÞ.
The important point here is that the characterization of

the ϵ-pseudospectrum in Definition 2, namely, Eq. (32),
provides a practical way of calculating σϵðAÞ. If we
calculate the norm of the resolvent kRAðλÞk as a function
of λ ¼ ReðλÞ þ iImðλÞ ∈ C, this provides a real function of
two real variables ½ReðλÞ; ImðλÞ�: The boundaries of the
σϵðAÞ sets are just the “contour lines” of the plot of
this function kRAðλÞk. In particular, ϵ-pseudospectra are
nested sets in C around the spectrum σðAÞ, with ϵ
decreasing towards the “interior” of such sets, such that
limϵ→0 σ

ϵðAÞ ¼ σðAÞ.

3. Pseudospectrum and quasimodes

For completeness, we provide a third equivalent char-
acterization of the pseudospectrum in the spirit of charac-
terizing λ’s in the ϵ-pseudospectrum set σϵðAÞ as
“approximate eigenvalues” of A, “up to an error” ϵ, with
corresponding “approximate (right) eigenvectors” v.
Specifically, it holds [6,9] that σϵðAÞ can also be charac-
terized by the following (third) definition.
Definition 3 (Pseudospectrum: quasimode approach).

Given A ∈ MnðCÞ and ϵ > 0, the ϵ-pseudospectrum σϵðAÞ
of A and its associated ϵ-quasimode v ∈ Cn are charac-
terized by

σϵðAÞ ¼ fλ ∈ C; ∃ v ∈ Cn∶kAv − λvk < ϵg: ð35Þ

This characterization introduces the notion of ϵ-quasimode
v (referred to as a “pseudo-mode” in Ref. [6]), a key notion in
the semiclassical analysis approach to the spectral study of A
[9]. On the other hand, this third characterization also clearly
indicates the numerical difficulty that may occur when trying
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to determine the actual eigenvalues ofA since roundoff errors
are unavoidable. This signals the need for a careful treatment
when numerically addressing the spectral problem of a non-
normal operator A.

4. Pseudospectrum and choice of norm

In this subsection, we have presented the ϵ pseudospec-
trum as a notion that may be more adapted to the analysis of
non-normal operators than that of the spectrum. We must
emphasize, however, that the notion of spectrum σðAÞ is
intrinsic to the operator A, whereas the ϵ-pseudospectrum
σϵðAÞ is not since it also depends on the choice of an
operator norm. This fact is crucial since it determines what
we mean by big or small when referring to the perturbation
δA; therefore, it critically impacts the assessment of
stability: A small operator perturbation δA in a given norm
can be a large one when considering another norm. In the
first case, from a large variation δλ in the eigenvalues, we
can conclude instability, whereas, in the second case, such a
variation could be consistent with stability.
In this sense, from amathematical perspective, the study of

spectral (in)stability through pseudospectra amounts to the
identification of the proper scalar product determining the
norm, that is, to the identification of the proper Hilbert space
in which the operator A acts. However, from a physical
perspective, we might not have such freedom to choose the
norm—conveniently rescaled on mathematical grounds—
since what we mean by large and small may be fixed by the
physics of the problem, e.g., by the size of the involved
amplitudes or intensities or the energy contained in the
perturbations. Then, the choice of an appropriate norm, both
from a mathematical and a physical perspective, is a
fundamental step in the analysis (cf. discussion in
Ref. [83]). This is the rationale behind the choice of the
energy norm k · kE in Eq. (20). Once the norm is chosen, the
equivalent characterizations in Definitions 1–3, respectively,
Eqs. (31), (32), and (35), emphasize the complementary
aspects of the ϵ-pseudospectrum notion and the σϵðAÞ sets.

C. Pseudospectrum and random perturbations

When considering the construction of pseudospectra, we
have presented the characterization of σϵðAÞ in terms of the
resolvent RAðλÞ in Definition 2, Eq. (32), as better suited
than the one in terms of spectra of perturbed operators in
Definition 1, Eq. (31). The reason for this choice is that the
former involves only the unperturbed operator A, whereas
the latter demands a study of the spectral problem for any
perturbed operator Aþ δA with small δA: A priori, the
difficulty to explicitly control such space of possible δA
perturbations hinders an approach based on such charac-
terization in Definition 1.
However, the very nature of the obstacle suggests a

possible solution, namely, to consider the systematic study
of the perturbed spectral problem under random perturba-
tions δA as an avenue to explore ϵ-pseudospectra sets.

This heuristic expectation actuallywithstands amore careful
analysis and constitutes the basis of a rigorous approach to
the analysis of pseudospectra [9]. From a practical perspec-
tive, the systematic study of the spectral problem of Aþ δA
with (bounded) random δA, with kδAk ≤ ϵ, has proven to be
an efficient tool to explore the “migration” of eigenvalues
through the complex plane (inside the ϵ-pseudospectra) [6].
This is complementary to (and technically independent
from) the evaluation of σϵðAÞ from the contour lines of
the norm kRAðλÞk of the resolvent. Such complementarity of
approaches will be key later in our analysis of Nollert and
Price’s high-frequency perturbations of the Schwarzschild
potential and the related QNMs.
Two important by-products of this random perturbation

approach to the pseudospectrum are the following:
(i) Random perturbations help identify instability-

triggering perturbations: ϵ-pseudospectra and con-
dition numbers κi are efficient in identifying the
instability of the spectrum and/or of a particular
eigenvalue λi, respectively. However, they do not
inform on the specific kind of perturbation actually
triggering the instability, which can be crucial to
assess the physical nature of the instability found.
The use of families of random operators adapted to
specific types of perturbations sheds light on this
precise point. We will make critical use of this in our
assessment of Schwarzschild’s QNM (in)stability.

(ii) Random perturbations improve analyticity: A re-
markable and apparently counterintuitive effect of
random perturbations is the improvement of the
analytic behavior ofRAðλÞ in λ ∈ C [9]. In particular,
the norm kRAðλÞk is reduced away from σðAÞ, as for
normal operators [cf. Eq. (33)], so the ϵ-pseudospec-
tra sets pattern becomes “flattened” (a signature of
good analytic behavior) below the random perturba-
tion scale ϵ.

To complement this perspective on the relation between the
two given approaches to spectral (in)stability, namely,
perturbation theory and ϵ-pseudospectra (respectively,
Secs. III A and III B), let us connect eigenvalue condition
numbers κðλiÞ with ϵ-pseudospectra σϵðAÞ. The question
we address is as follows: How far away can the ϵ-
pseudospectrum σϵðAÞ get from the spectrum σðAÞ? The
κi’s provide the answer.
Let us define the “tubular neighborhood” ΔϵðAÞ of

radius ϵ around the spectrum σðAÞ as

ΔϵðAÞ ¼ fλ ∈ C∶distðλ; σðAÞÞ < ϵg; ð36Þ

which is always contained in the ϵ-pseudospectrum
σϵðAÞ [6],

ΔϵðAÞ ⊆ σϵðAÞ: ð37Þ
The key question is about the inclusion in the other
direction. Normal operators indeed satisfy [6]
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σϵ2ðAÞ ¼ ΔϵðAÞ; ð38Þ

where σϵ2ðAÞ indicates the use of a k·k2 norm. In other
words, a (kδAk < ϵ) perturbed eigenvalue of a normal
operator can move up to a distance ϵ from σðAÞ. This is
precisely what we mean by spectral stability, namely, that
an operator perturbation of order ϵ induces an eigenvalue
perturbation also of order ϵ. However, in the non-normal
case, where κðλiÞ > 1, it holds (for small ϵ) [6] that

σϵðAÞ ⊆ ΔϵκðAÞ ≔ ⋃
λi∈σðAÞ

ΔϵκðλiÞþOðϵ2ÞðfλigÞ; ð39Þ

so σϵðAÞ can extend into a much larger tubular neighbor-
hood of radius about ϵκðλiÞ around each eigenvalue,
signaling spectral instability if κðλiÞ ≫ 1. This bound is
the essential content of the Bauer-Fike theorem relating
pseudospectra and eigenvalue perturbations (cf. Ref. [6] for
a precise formulation).

IV. NUMERICAL APPROACH: CHEBYSHEV’S
SPECTRAL METHODS

The present work is meant as a first assessment of BH
QNM (in)stability by using pseudospectra. At this explor-
atory stage, we address the construction of pseudospectra in
a numerical approach. As indicated in Sec. III B 3, the
study of the spectral stability of non-normal operators is a
challenging problem that demands high accuracy. Spectral
methods provide well-adapted tools for these calcula-
tions [6,89,90].
We discretize the differential operator L in Eqs. (9)–(14)

via Chebyshev differentiation matrices, built on
Chebyshev-Lobatto n-point grids, producing LN matrix
approximates (we note, systematically, n ¼ N þ 1 in spec-
tral grids, cf. Appendix C). Once the operator is discretized,
the construction of the pseudospectrum requires the evalu-
ation of matrix norms. A standard practical choice [6,89]
involves the matrix norm induced from the Euclidean L2

norm in the vector space Cn that, starting from Eq. (32) in
Definition 2 of the pseudospectrum, leads to the following
rewriting [6,89]:

σϵ2ðAÞ ¼ fλ ∈ C∶σminðλId − AÞ < ϵg; ð40Þ

where σminðMÞ denotes the smallest singular value of M,
that is, σminðMÞ ¼ minf ffiffiffi

λ
p

∶λ ∈ σðM�MÞg, with M ∈
MnðCÞ and M� its conjugate transpose M� ¼ M̄t.
Although Eq. (40) captures the spectral instability

structure of A, the involved L2 scalar product in Cn is
neither faithful to the structure of the operator L in Eq. (9)
nor to the physics of the BH QNM problem (cf. discussion
in Sec. III B 4). Instead, we use the natural norm in the
problem, specifically, the Chebyshev-discretrized version
of the “energy norm” (20), following from the Chebyshev-
discretized version of the scalar product (22). Specifically,

we write the discretized scalar product in an appropriate
basis as [we abuse the notation since we use h·; ·iE as in
Eq. (22), although this is now a scalar product in a finite-
dimensional space Cn]

hu; viE ¼ ðu�ÞiGE
ijv

j ¼ u� · GE · v; u; v ∈ Cn; ð41Þ

where GE
ij is the Gram matrix corresponding to Eq. (22)

(cf. Appendix C for its construction) and we note u� ¼ ūt.
The adjoint A† of A with respect to h·; ·iE is then written

A† ¼ ðGEÞ−1 · A� ·GE: ð42Þ

The vector norm k·kE in Cn associated with h·; ·iE in
Eq. (41) induces a matrix norm k·kE in MnðCÞ [again, we
abuse notation by using the same symbol for the norm inCn

and in MnðCÞ]. Then (cf. Appendix B), the ϵ pseudospec-
trum σϵEðAÞ of A ∈ MnðCÞ in the norm k·kE is written

σϵEðAÞ ¼ fλ ∈ C∶smin
E ðλId − AÞ < ϵg; ð43Þ

where smin
E is the smallest of the generalized singular

values,

smin
E ðMÞ ¼ minf

ffiffiffi
λ

p
∶λ ∈ σðM†MÞg; ð44Þ

with M ∈ MnðCÞ and its adjoint M† given by Eq. (42).

V. TOY MODEL: PÖSCHL-TELLER POTENTIAL

As presented in the previous sections, in our study of BH
QNMs and their (in)stabilities, we exploit the geometrical
framework of the hyperboloidal approach to analytically
impose the physical boundary conditions at the BH horizon
and at the radiation zone (future null infinity). As discussed
in Sec. II, a crucial feature of such a strategy is that it allows
us to cast the calculation of the QNM spectrum explicitly as
the spectral problem of a non-self-adjoint differential
operator, which is then the starting point for the tools used
to assess spectral instabilities as presented in Sec. III,
namely, the construction of the pseudospectrum and the
analysis of random perturbations. Finally, spectral methods
discussed in Sec. IV are employed to study these spectral
issues through a discretization for the derivative operators.
Prior to the study of the BH case, the goal of this section is
to illustrate this strategy in a toy model, namely, the one
given by the Pöschl-Teller potential.

A. Hyperboloidal approach for the Pöschl-Teller
potential

The Pöschl-Teller potential [91], given by the expression

Vðx̄Þ ¼ Vo

cosh2ðx̄Þ ¼ Vosech2ðx̄Þ; x̄ ∈� −∞;∞½; ð45Þ
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has been widely used as a benchmark for the study of
QNMs in the context of BH perturbation theory (e.g.,
Refs. [93–95]). Interestingly, QNMs of this potential have
very recently been revisited, on the one hand, to illustrate
the hyperboloidal approach to QNMs in a discussion much
akin to the present one (cf. Ref. [81], cast in the setting of
de Sitter spacetime) or, on the other hand, to illustrate
functional analysis key issues related to the self-adjointness
of the relevant operator [96]. Our interest in the Pöschl-
Teller potential stems from the fact that it shares the
fundamental behavior regarding QNM (in)stability to be
encountered later in the BH context but in a mathematically
much simpler setting. In particular, the Pöschl-Teller
potential presents weaker singularities than the Regge-
Wheeler and Zerilli potentials in Schwarzschild spacetime,
which translates to the absence of a continuous part of the
spectrum of the relevant operator L (corresponding to the
“branch cut” in standard approaches to QNMs).
Let us consider the compactified hyperboloids given by

Bizoń-Mach coordinates [97,98] mapping R to � − 1; 1½,
�
τ ¼ t̄ − ln ðcosh x̄Þ
x ¼ tanh x̄;

ð46Þ

or, equivalently,

�
t̄ ¼ τ − 1

2
lnð1 − x2Þ

x̄ ¼ arctanhðxÞ: ð47Þ

In the spirit of the conformal compactification along the
hyperboloids described in Sec. II B, we add the two points
at (null) infinity (no BH horizon here), namely, x ¼ �1;
thus, we work with the compact interval ½a; b� ¼ ½−1; 1�.
Under this transformation, the wave equation (4) reads

(ð1−x2Þð∂2
τ þ2x∂τ∂xþ∂τþ2x∂x−ð1−x2Þ∂2

xÞþV)ϕ¼0;

ð48Þ

namely, the version of Eq. (7) corresponding to the trans-
formation (46). We notice that angular labels ðl; mÞ are not
relevant in the one-dimensional Pöschl-Teller problem. If
x ≠ 1, we can divide by ð1 − x2Þ, and, defining

ṼðxÞ ¼ V
ð1 − x2Þ ; ð49Þ

we can write

(∂2
τ þ2x∂τ∂xþ∂τþ2x∂x− ð1−x2Þ∂2

xþ Ṽ)ϕ¼ 0: ð50Þ

This expression is formally valid for any given potential
Vðx̄Þ (although analyticity issues may appear if the asymp-
totic decay is not sufficiently fast, as is indeed the case for
Schwarzschild potentials at Iþ). If we now insert the

Pöschl-Teller expression (45) and notice that sech2ðx̄Þ ¼
1 − x2, we get a remarkably simple effective potential Ṽ,
which is actually a constant:

ṼðxÞ ¼ Vo: ð51Þ

In particular, the Pöschl-Teller wave equation (50) exactly
corresponds to Eq. (4) in Ref. [81], so the Pöschl-Teller
problem is equivalent to the Klein-Gordon equation in de
Sitter spacetime with mass m2 ¼ Vo. In the following, we
choose λ ¼ 1=

ffiffiffiffiffiffi
Vo

p
in the rescaling (5), so we can set

Ṽ ¼ 1: ð52Þ

Now performing the first-order reduction in time [Eqs. (8)
and (9)], for wðxÞ, pðxÞ, qðxÞ, and γðxÞ in Eq. (12), we get
the values

wðxÞ ¼ 1; pðxÞ ¼ ð1 − x2Þ;
qðxÞ ¼ Ṽ ¼ 1; γðxÞ ¼ −x: ð53Þ

Therefore, the operators L1 and L2 building the operator L
in Eq. (10) are written, in the Pöschl-Teller case, as

L1 ¼ ∂x(ð1 − x2Þ∂x) − 1;

L2 ¼ −ð2x∂x þ 1Þ: ð54Þ

As discussed in Sec. II C 1, the function pðxÞ ¼ 1 − x2

vanishes at the boundaries of the interval ½a; b� ¼ ½−1; 1�,
defining a singular Sturm-Liouville operator. This fact is at
the basis of the absence of boundary conditions, if
sufficient regularity is enforced on the eigenfunctions of
the spectral problem. Therefore, regularity encodes the
outgoing boundary conditions (see below). Finally, the
scalar product (22) in this case is written as

hu1; u2iE ¼
��

ϕ1

ψ1

�
;

�
ϕ2

ψ2

�	
E

¼ 1

2

Z
1

−1
ðψ̄1ψ2 þ ð1 − x2Þ∂xϕ̄1∂xϕ2 þ ϕ̄1ϕ2Þdx:

ð55Þ

B. Pöschl-Teller QNM spectrum

1. Exact Pöschl-Teller QNM spectrum

The Pöschl-Teller QNM spectrum can be obtained by
solving the eigenvalue problem in Eqs. (14) and (15), with
operators L1 and L2 given by Eq. (54). As commented
above, no boundary conditions need to be added if we
enforce the appropriate regularity. In this particular case,
the eigenvalue problem can be solved exactly. The reso-
lution itself is informative since it illustrates this regularity
issue concerning boundary conditions.
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If we substitute the first component of Eq. (15) into the
second or, simply, if we take the Fourier transform in τ in
Eq. (50) [with Ṽ ¼ 1 from the chosen λ leading to
Eq. (52)], we get

�
ð1−x2Þ d

2

dx2
−2ðiωþ1Þx d

dx
− iωðiωþ1Þ−1

�
ϕ¼0: ð56Þ

This equation can be solved in terms of the hypergeometric
function 2F1ða; b; c; zÞ, with z ¼ ð1 − x=2Þ (see details in
Appendix D). In particular, for each value of the spectral
parameter ω, we have a solution that can be written as a
linear combination of linearly independent solutions
obtained from 2F1ða; b; c; zÞ. Discrete QNMs are obtained
only when we enforce the appropriate regularity that
encodes the outgoing boundary conditions. In this case,
it is obtained by enforcing the solution to be analytic in
x ∈ ½−1; 1� (corresponding, in z, to analyticity in the full
closed interval [0, 1]), which amounts to truncating the
hypergeometric series to a polynomial. We emphasize that
such a need for truncating the infinite series to a poly-
nomial, a familiar requirement encountered in many differ-
ent physical settings, embodies the enforcement of
outgoing boundary conditions. In summary, this strategy
leads to the Pöschl-Teller QNM frequencies (cf. e.g.,
Refs. [92,94])

ω�
n ¼ �

ffiffiffi
3

p

2
þ i

�
nþ 1

2

�
; ð57Þ

with corresponding QNM eigenfunctions in this setting,

ϕ�
n ðxÞ ¼ Pðiω�

n ;iω�
n Þ

n ðxÞ; x ∈ ½−1; 1�; ð58Þ

where Pðα;βÞ
n are the Jacobi polynomials (see Appendix D).

Two comments are in order here:
(i) QNMs are normalizable: QNMeigenfunctionsϕ�

n ðxÞ
are finite and regular when making x̄ → �∞, corre-
sponding to x ¼ �1. This case is in contrast with the
exponential divergence of QNM eigenfunctions in
Cauchy approaches, where the time slices reach
spatial infinity i0. The regularity of ϕ�

n ðxÞ is a direct
consequence of the hyperboloidal approach with
slices reaching Iþ. The resulting normalizability of
the QNM eigenfunctions can be relevant in, e.g.,
resonant expansions (cf. e.g., discussion in Ref. [62]).

(ii) QNM regularity and outgoing conditions: In the
present case, namely, the Pöschl-Teller potential in
Bizoń-Mach coordinates, analyticity (actually, the
polynomial structure) implements the regularity
enforcing outgoing boundary conditions. Analytic-
ity is too strong in the general case. However, asking
for smoothness is not enough (see, e.g., Ref. [75]). In
Refs. [78–80], this problem is approached in terms

of Gevrey classes, which interpolate between ana-
lytic and (smooth) C∞ functions, identifying the
space of ðσ; 2Þ-Gevrey functions as the proper
regularity notion. The elucidation of the general
adequate functional space for QNMs, tantamount to
the consistent implementation of outgoing boundary
conditions, is crucial for the characterization of
QNMs in the hyperboloidal approach.

2. Numerical Pöschl-Teller QNM spectrum

Figure 3 shows the result of the numerical counterpart of
the Pöschl-Teller eigenvalue calculation, whose exact
discussion has been presented above, by using the dis-
cretized operators L, L1, and L2 described in Sec. IV and
Appendix C,

LNvðNÞ
n ¼ ωðNÞ

n vðNÞ
n : ð59Þ

Indeed, this approach numerically recovers the analytical
result in Eq. (57) (we drop the “�” label, focusing on one of
the branches that are symmetric with respect to the
vertical axis).
We stress that the remarkable agreement between the

numerical values from the bottom panel of Fig. 3 (see also
Fig. 7 later) and the exact expression (57) is far from being
a trivial result, as already illustrated in existing systematic
numerical studies. In particular, this is the case of Ref. [99]
(where the Pöschl-Teller potential is referred to as the

FIG. 3. Pöschl-Teller QNM problem. Bottom panel: QNM
spectrum for the Pöschl-Teller potential, calculated in the hyper-
boloidal approach described in Sec. VA, with Chebyshev spectral
methods and enhanced machine precision. Top panel: ratios of
condition numbers κn of the first QNMs over the condition
number κ0 of the fundamental QNM, indicating a growing
spectral instability compatible with the need for using enhanced
machine precision.
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Eckart barrier potential), where the fundamental mode ω�
0

in Eq. (57) is stable and accurately recovered, whereas all
overtones ω�

n≥1 suffer from a strong instability (triggered,
according to the discussion in Refs. [99,100], by the C1

regularity of the approximation modeling the Pöschl-Teller
potential) and cannot be recovered.
In our setting, a convergence study of the numerical

values shows that the relative error

EðNÞ
n ¼

����1 − ωðNÞ
n

ωn

���� ð60Þ

between the exact QNM ωn and the corresponding numeri-

cal approximation ωðNÞ
n (obtained at a given truncation N of

the differential operator) actually increases with the reso-
lution. This increase is a first hint of the instabilities to be
discussed later. Indeed, the top panel of Fig. 4 displays the
error for the fundamental mode n ¼ 0 and the first

overtones n ¼ 1;…; 4 when the eigenvalue problem for
the discretized operator is naively solved with the standard
machine roundoff error for floating point operations
(typically, about 10−16 for double precision).
It is astonishing how, despite the simplicity of the exact

solution, the relative error grows significantly already for
the first overtones and, crucially, more strongly as the
damping grows with higher overtones. To mitigate such a
drawback, one needs to modify the numerical treatment in
order to allow for a smaller roundoff error in floating point
operations. The bottom panel of Fig. 4 shows the error EðNÞ

n

when the calculations are performed with an internal
roundoff error according to 5×machine precision, i.e.,
about 10−5×16. In this case, the fundamental QNM n ¼ 0
is “exactly” calculated at the numerical level (i.e., the
difference between its exact value and the numerical
approximation vanishes at this precision). The error for
the overtones still grows but in a safe range, for all practical
purposes. The values displayed in the bottom panel of
Fig. 3 were obtained with an internal roundoff error set to
10× machine precision, and we can assure that the errors of
all overtones are smaller than 10−100.

3. Condition numbers of QNM frequencies

The growth in the relative error as we move to higher
overtones in Fig. 4 suggests an increasing spectral insta-
bility in n of eigenvalues ω�

n , triggered by numerical errors
related to machine precision. Thus, this instability can be
reduced (but not eliminated) by improving the internal
roundoff error.
At the level of the nonperturbed spectral problem (59),

and in order to assess, more systematically, such spectral
instability, we can apply the discussion in Sec. III A to the
Pöschl-Teller approximates LN . Namely, solving the right-
eigenvector problem (59), together with the left-eigenvector
one,

ðLNÞ†wðNÞ
n ¼ ω̄ðNÞ

n wðNÞ
n ; ð61Þ

we can compute the condition numbers κðNÞ
n ¼ κðωðNÞ

n Þ ¼
kvðNÞ

n kEkwðNÞ
n kE=jhvðNÞ

n ; wðNÞ
n iEj introduced in Eq. (30).

Notice that this calculation is quite nontrivial since it
involves, first, the construction of the adjoint operator
ðLNÞ† ¼ ðGEÞ−1 · ðLNÞ� ·GE and, second, the calculation
of scalar products h·; ·iE and (vector) energy norms k·kE.
These calculations involve the determination of the Gram
matrixGE associated with the energy scalar product (55) by
implementing expression (C23) in Appendix C. These
expressions are quite nontrivial, and in the following
section, we provide a strong test for the associated
analytical and numerical construction.
The result is shown in the top panel of Fig. 3. The ratio of

the condition numbers κn, relative to the condition number
of the fundamental mode κ0, grows strongly with n, which

FIG. 4. Convergence test for the Pöschl-Teller QNM. Top
panel: double floating point operations with internal roundoff
error set to machine precision. Bottom panel: double floating
point operations with internal roundoff error set to 5× machine
precision. Note that missing points for n ¼ 0 correspond to errors
that exactly vanish at the employed machine precision.
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indicates a strong and increasing spectral instability con-
sistent with the error convergence displayed in Fig. 4. The
rest of this section is devoted to addressing this spectral
stability issue.

C. Pöschl-Teller pseudospectrum

1. Motivating the pseudospectrum

As the previous discussion makes apparent, a crucial
question that arises after obtaining the QNM spectrum of
the operator L in Eq. (10), with L1 and L2 in Eq. (54), is
whether such QNM eigenvalues are stable under small
perturbations of L—more specifically for QNM physics,
and in the context of the wave equation (4), whether the
QNM spectrum is stable under small perturbations of the
potential V. The latter is the specific type of perturbation
we are assessing in this work.
In the numerical approach we have adopted, perturba-

tions in the spectrum under small perturbations in L may
arise either from numerical noise resulting from the chosen
discretization strategy, or they can originate from “real-
world sources,” namely, small physical perturbations of the
considered potential V. Ultimately, in the BH setting for
which the Pöschl-Teller potential provides a toy model,
such physical perturbations could stem from a “dirty”
environment surrounding a black hole and/or emergent
fluctuations from quantum-gravity effects. Therefore, the
question of whether QNM spectrum instability is a struc-
tural feature of the operator L—i.e., not just an artifact
of a given numerical algorithm—is paramount for our
understanding of the fundamental physics underlying the
problem.
A pragmatic approach to address this question consists in

explicitly introducing families of perturbations [101]
and studying their effect on the QNM spectra themselves
[23,46–50,52]. We discuss this approach later in Sec. V D,
but first, we apply the pseudospectrum approach described
in Sec. III B to the Pöschl-Teller problem. Indeed, one of
the main goals of our present work is to bring attention to
and emphasise the fact that the unperturbed operator
already contains crucial information to assess such (in)
stability features. We have already encountered this fact in
the evaluation of the condition numbers κn in Fig. 3, which
only depends on the unperturbed operator L, but we
develop this theme further with the help of the pseudo-
spectrum notion. Indeed, pseudospectrum analysis pro-
vides a framework to identify the (potential) spectral
instability, which is oblivious to the particular perturbation
employed. Then, in a second stage, actual perturbations of
the operators, with a particular emphasis on random
perturbations along the lines in Sec. III C, can be used
to complement and refine such pseudospectrum analysis.
Figure 5 shows the pseudospectrum for the Pöschl-Teller

potential in the energy norm of Eq. (20) associated with the
scalar product (55). Let us explain the content of such a
figure. According to the characterization in Definition 1,

namely, Eq. (31), of the ϵ-pseudospectrum of the operator
L, the set σϵðLÞ is the collection of all complex numbers
ω ∈ C that are actual eigenvalues for some operator
Lþ δL, where δL is a small perturbation of “size” smaller
than a given ϵ > 0. Consequently and crucially, adding
a perturbation δL with kδLkE < ϵ entails an actual
(“physical”) change in the eigenvalues ωn that can reach
up to the boundary of the σϵðLÞ set, marked by white lines
in Fig. 5. The key question is to assess if ϵ-pseudospectra
for small ϵ can extend to large areas of C or not, which is
tightly related to condition numbers κn controlling eigen-
value spectral instabilities, as explicitly estimated by the
Bauer-Fike relation (39) between ϵ-pseudospectra sets
and “tubular neighborhoods” Δκϵ of radii ϵκn around the
spectrum. Let us first discuss a self-adjoint test case and, in
a second stage, the actual non-self-adjoint case [105].

2. Pseudospectrum: Self-adjoint case

As discussed in Sec. II D, setting L2 ¼ 0 in Eq. (10)—
while keeping L1 as in Eq. (54)—leads to a self-adjoint
operator L [106]. Therefore, the associated spectral prob-
lem is stable, cf. Sec. III A. A typical pseudospectrum in the
self-adjoint (more generally, “normal”) case is illustrated in
Fig. 6: a “flat” pseudospectrum with large values of ϵ for ϵ-
pseudospectra sets, when moving “slightly” (in the C
plane) away from the eigenvalues. Note also, in this case,
the horizontal contour lines far from the spectrum, indicat-
ing that all eigenvalues share the same stability properties in
the energy norm.

FIG. 5. Top panel: pseudospectrum for the Pöschl-Teller
potential. QNMs (red circles) from Fig. 3 are superimposed,
for reference, on their (in)stability. The color log scale corre-
sponds to log10 ϵ, with white lines indicating the boundaries of
ϵ-pseudospectra sets σϵ, whose interior extends upwards in the ω-
complex plane. Bottom panel: zoom into the region around the
fundamental QNM and first overtones.
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Let us describe Fig. 6 in more detail. Boundaries of ϵ-
pseudospectra σϵðAÞ are marked by white lines, with the ϵ’s
corresponding to the values in the color log scale.
Pseudospectra σϵðLÞ are, by construction, “nested sets”
around the spectrum (red points in Fig. 6), the latter
corresponding to the “innermost set” σϵðLÞ when ϵ → 0.
In this self-adjoint case, condition numbers in Eq. (30) must
satisfy κn ¼ 1, as we have verified and explicitly shown in
the top panel of Fig. 6. Then, and consistently with
Eq. (38), the corresponding nested sets σϵðLÞ are actually
tubular regions ΔϵðLÞ of radius ϵ around the spectrum, so a
change δLwith a norm of order ϵ in the operator L entails a
maximum change in the eigenvalues of the same order ϵ.
Specifically, ϵ-pseudospectra sets show concentric circles
around the spectra that quickly reach large-epsilon values,
i.e., ϵ ∼Oð1Þ, when moving away from eigenvalues. As a
consequence, one would need perturbations in the operator
of the same order to dislodge the eigenvalues slightly away
from their original values: Then, we say that L is spectrally
stable. Pseudospectra sets with small ϵ are then “tightly
packed” in “thin throats” around the spectrum; thus, light
green colors are indeed so close to spectrum “red points”
that they are not visible in the scale of Fig. 6, giving rise to a
typical “flat” pseudospectrum figure of a “single color.”
Horizontal boundaries of ϵ-pseudospectra, when far

from the spectrum, are a consequence (in this particular

problem) of using the energy norm. If another norm is used,
e.g., the standard one induced from the L2 norm in Cn, the
global “flatness” of the pseudospectrum is still recovered,
especially when comparing with the corresponding scales
in Fig. 5, indicating a much more stable situation than the
general L2 ≠ 0 case. But when refining the scale, one
would observe that pseudospectra contour lines far from the
spectrum are not horizontal but present a slope, growing
with the frequency. This behavior indicates that, under
perturbations of the same size in that L2 norm, higher
frequencies can move further than low frequencies, which
is in tension with the equal stability of all the eigenvalues.
What is going on is the effect commented on in Sec. III B 4
concerning the impact of the norm choice on the notions of
big or small: When using theL2 norm, wewould mark, with
the same small ϵ, different perturbations among which there
exist δL instances that actually strongly excite the high
frequencies, but such a feature is blind to the L2 norm.
However, if using a norm sensitive to high-frequency effects,
as is the case of the energy norm that has a H1 character
incorporating derivative terms, those same perturbations δL
would have a norm much larger than ϵ, with the derivative
terms in the energy norm indeed weighing more as the
frequency grows. A small perturbation δL in the norm L2

turns out to be a big one in the energy norm, so stronger
modifications in the eigenvalues are indeed consistent with
stability. In practice, in order to construct a given ϵ-pseudo-
spectrum set, such high-energy perturbations δL need to be
renormalized to keep ϵ fixed, something that the energy norm
does automatically. This example shows how the choice of
the norm affects the assessment of spectral stability, and, in
particular, it shows the importance of the energy norm in the
present work, namely, for high-frequency issues.
Figure 6 may appear uninteresting, but it is actually a

tight and constraining test of our construction, both at the
analytical and at the numerical level. First, the panels in
Fig. 6 correspond to different calculations: The top panel
results from an eigenvalue calculation (actually two, one for
L and another for L†), whereas the “map” in the middle and
bottom panels is the result of calculating the energy norm of
the resolvent RLðωÞ ¼ ðωId − LÞ−1 at each point ω ∈ C.
Both calculations depend on the construction of the Gram
matrix GE but are indeed different implementations. The
κn ¼ 1 values in the top panel constitute a most stringent
test since modifications in either the analytical structure of
the scalar product (55) or the slightest mistake in the
discrete counterpart (C23) spoil the result. As discussed at
the end of Sec. V B 3, this provides a strong test of both the
analytical treatment and the numerical discretization of the
differential operator and scalar product. On the other hand,
the plain flatness of the pseudospectrum in the middle panel
is a strong test of the self-adjoint character of L when
L2 ¼ 0, which, given the subtleties of the spectral discre-
tization explained in Appendix C, provides a reassuring
nontrivial test for the whole numerical scheme.

FIG. 6. Pseudospectrum and eigenvalue condition numbers of a
self-adjoint operator (Pöschl-Teller potential with L2 ¼ 0). Top
panel: condition numbers, κn ¼ 1 for ωn (0 ≤ n ≤ 20). Middle
panel: pseudospectrum, “flat” pattern typical of a spectrally stable
(normal) operator. Bottom panel: zoom near the spectrum, with
concentric circles (“radius ϵ” tubular regions around eigenvalues)
characteristic of stability.
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3. Non-self-adjoint case: Pöschl-Teller pseudospectrum

In contrast with the self-adjoint case, when considering
the actual L2 ≠ 0 of the Pöschl-Teller case, pseudospectra
sets σϵðLÞwith small ϵ extend in Fig. 5 into large regions of
C (with typical sizes much larger than ϵ); therefore, the
operator L is spectrally unstable: Very small (physical)
perturbations δL, with kδLkE < ϵ, can produce large
variations in the eigenvalues up to the boundary of the
now largely extended region σϵðLÞ. Such strong variations
of the spectrum are not a numerical artifact, related, e.g., to
machine precision; rather, they correspond to an actual
structural property of the nonperturbed operator. Indeed,
large values of the condition numbers κn in the top panel of
Fig. 3 show that the tubular sets ΔϵκðLÞ in Eq. (36) now
extend into large areas in C. This fact about the κn’s is
consistent with the large regions in Fig. 5 corresponding to
σϵðLÞ sets with very small ϵ’s. Such a nontrivial pattern of
ϵ-pseudospectra is a strong indication of spectral instability,
although without a neat identification of the actual nature of
the perturbations triggering instabilities.

4. Reading pseudospectra: “Topographic maps”
of the resolvent

In practice, if one wants to read from pseudospectra—
such as those in Figs. 5 or 6—the possible effect of a
physical perturbation of (energy) norm of order ϵ on
QNMs, one must first determine the white line correspond-
ing to that ϵ (using the log scale). Then, eigenvalues can
potentially move in the whole region bounded by that line
(namely, the ϵ-pseudospectrum set for the nonperturbed
operator L), which, in Fig. 5, corresponds to the region
above the white line.
Pseudospectra can actually be seen as a map of the

analytical structure of the resolvent RLðωÞ ¼ ðωId − LÞ−1
of the operator L, taken as a function of ω. This inter-
pretation corresponds to the characterization in Definition 2
of the pseudospectrum, Eq. (32), which is indeed the
one used to effectively construct the pseudospectrum
[specifically, its realization (43) in the energy norm;
cf. Appendix B 3 for details). From this point of view,
the boundaries of the ϵ-pseudospectra (white lines in
Figs. 5 and 6) can be seen as contour lines of the height
function kRLðωÞjjE, namely, the norm of the resolvent
RLðωÞ. In quite a literal sense, the pseudospectrum can then
be read as a topographic map, with stability characterized
by very steep throats around eigenvalues quickly reaching
flat zones away from the spectrum, whereas instability
corresponds to nontrivial topographic patterns extending
into large regions of the map far away from the eigenvalues.
In summary, this topographic perspective makes it

apparent that there is a stark contrast between the flat
pattern of the self-adjoint case of Fig. 6, corresponding to
stability, and the nontrivial pattern of the (non-self-adjoint)
Pöschl-Teller pseudospectrum in Fig. 5—in particular,

indicating a (strong) QNM sensitivity to perturbations that
increases as damping grows.

D. Pöschl-Teller perturbed QNM spectra

Pseudospectra inform about the spectral stability and
instability of an operator, but they do not identify the
specific type of perturbation triggering instabilities.
Therefore, in a second stage, it is illuminating to comple-
ment the pseudospectrum information with the exploration
of spectral instability with perturbative probes into the
operator, always under the perspective acquired with the
pseudospectrum. A link between both pseudospectra and
perturbation strategies is provided by the Bauer-Fike
theorem [6], as expressed in Eq. (39).

1. Physical instabilities: Perturbations
in the potential V

Not all possible perturbations of the L operator are
physically meaningful. One example, in the setting of our
numerical approach, are the machine precision error per-
turbations δLN to theLN matrix. As discussed in Sec. V B 2,
machine precision errors indeed trigger large deviations in
the spectrum, consistently with the nontrivial pattern of the
pseudospectrum in Fig. 5, but clearly, we should not
consider such effects to be physical. They are a genuine
numerical artifact since the structure of the perturbation δLN

does not correspond to any physical or geometrical element
in the problem.
The methodology we follow to address this issue is as

follows: (i) Given a grid resolution N, we first set the
machine precision to a value sufficiently high so as to
guarantee that all nonperturbed eigenvalues are correctly
recovered; (ii) we then add a prescribed perturbation with
the specific structure corresponding to the physical aspect
we are studying.
In the present work, we focus on a particular kind of

perturbation, namely, perturbations to the potential V and,
more specifically, perturbations δṼ to the rescaled potential
Ṽ in Eq. (21). This approach is similar to the study in
Ref. [44]. In other words, we consider perturbations δL to
the L operator of the form

δL ¼ 1

i

�
0 0

δṼ=wðxÞ 0

�
: ð62Þ

We note that, at the matrix level, the δṼ=wðxÞ submatrix is
just a diagonal matrix. Therefore, the structure of δL in
Eq. (62) is a very particular one. The pseudospectrum in
Fig. 5 tells us that L is spectrally unstable, and we know
that machine precision perturbations trigger such instabil-
ities. However, nothing guarantees that L is actually
unstable under a perturbation of the particular form in
Eq. (62). It is a remarkable fact, crucial for our physical
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discussion, that L is indeed unstable under such perturba-
tions and, therefore, under perturbations of the potential V.

2. Random and high-frequency perturbations
in the potential V

We have considered two types of generic, but represen-
tative, perturbations δL of the form given in Eq. (62):

(i) Random perturbations δṼr: We set the perturbation
according to a normal Gaussian distribution on the
collocation points of the grid. By construction, this is
a high-frequency perturbation. Random perturba-
tions are a standard tool [6] to explore generic
properties of spectral instability, and there indeed
exists a rich interplay between pseudospectra and
random perturbations [9].

(ii) Deterministic perturbations δṼd: We have chosen

δṼd ∼ cosð2πkxÞ; ð63Þ
in order to address the specific impact of high- and low-
frequency perturbations in QNM spectral stability, by
exploring the effect of changing the wave number k.

PerturbationsδṼ are then rescaled soas toguarantee jjδLjj
E
¼

ϵ (abusingnotation, in thefollowingwewrite jjδṼjj
E
insteadof

jjδLjj
E
, in order to emphasize that the operator perturbation is

restricted to the potential). The impact on QNM frequencies
resulting fromadding theseperturbations is shown inFig. 7. In
bothrandomanddeterministiccases, thesequenceofimagesin
Fig. 7 shows a high-frequency instability of QNM overtones
that “migrate” towards newQNMbranches. The fundamental
(slowest-decaying) QNM is, however, stable under these
perturbations. More generally, such QNM instability is sensi-
tive with respect to both the perturbation size and frequency.
Before further discussing the details of the QNM insta-

bility, namely, the nature of the new QNM branches, an
important point must be addressed: whether the values
obtained correspond to the actual eigenvalues of the new,
perturbed operator Lþ δL, or whether they are an artifact of
some numerical noise. As in the nonperturbed case discussed
in Sec. V B 2, and as explained above when introducing the
employed methodology, results are obtained with a high
internal accuracy (10×machine precision), so any numerical
noise is below the range of values shown. Proceeding
systematically, Fig. 8 presents the convergence tests for a
few eigenvalues resulting from the deterministic perturbation
(random perturbations do not admit this kind of test) with
norm kδṼdkE ¼ 10−8 and frequency k ¼ 20 (bottom-right
panel of Fig. 7). The relative error is calculated as

EðNÞ
n ¼

����1 − ωðNÞ
n

ωðN¼400Þ
n

����; ð64Þ

i.e., in the absence of exact results, we take, as reference, the
values with a high resolution N ¼ 400. As representative
QNMs, we have chosen the following:

(a) The last “unperturbed” overtone, whose value is
actually very close to the (truly) unperturbed QNMω4.

(b) The first new QNM on the imaginary axis.
(c) Three QNMs along the new branch with values spread

in the ranges 1≲ ReðωnÞ≲ 10 and 5≲ ImðωnÞ≲ 8.
One observes a systematic convergence, with the relative

error dropping circa 10 orders of magnitude when the
numerical resolution increases [107] from N ¼ 150 to
N ¼ 400. This result confirms that the spectrum indeed
corresponds to the new, perturbed operator and is not a
numerical artifact, which neatly shows the unstable nature
of the QNM spectrum of the unperturbed Pöschl-Teller
operator: Eigenvalues indeed migrate to new branches
under very small perturbations.

3. Perturbed QNM branches and pseudospectrum

High-frequency perturbations trigger the migration of
QNM overtone frequencies to new perturbed QNM
branches. Figure 9 displays the perturbed QNM spectra
on top of the pseudospectra for the unperturbed operator.
The remarkable predictive power of the pseudospectrum
becomes apparent: Perturbed QNMs follow the boundaries
of pseudospectrum sets. In other words, QNM overtones
migrate to new branches closely tracking the ϵ-pseudo-
spectra contour lines. This happens for both random and
deterministic high-frequency perturbations. Crucially, no
such instability is observed for low-frequency deterministic
perturbations, with small wave number k. Consequently, in
the following, we refer to this effect as an ultraviolet
instability of QNM overtones.
Remarkably, such high-frequency QNM instability is not

limited to highly damped QNMs but indeed reaches the
lowest overtones, with the random perturbations being
more effective in reaching the slowest-decaying overtones
for a given norm kδṼkE ¼ ϵ. This result is qualitatively
consistent with the analyses in Refs. [45,52] for Dirac-delta
potentials (compare, e.g., perturbed QNM branches in
Fig. 9 here with Fig. 1 in Ref. [52]). These findings
advocate the use of pseudospectra to probe QNM insta-
bility, demonstrating its capability to capture it already at
the level of the nonperturbed operator. At the same time,
pseudospectra are oblivious to the nature of the perturba-
tion triggering instabilities. A complementary perturbation
analysis, in particular, through random perturbations, is
then necessary to identify the high-frequency nature of the
instability, confirming its physicality in the sense of being
associated with actual perturbations of the potential V.

4. High-frequency stability of the slowest-decaying QNM

The high-frequency instability observed for QNM over-
tones is absent in the fundamental QNM. The slowest-
decaying QNM is therefore ultraviolet stable. Such a
stability is already apparent in the pseudospectrum in
Fig. 5, where the order of the ϵ’s corresponding to
ϵ-pseudospectra sets around the fundamental QNM reaches
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Pöschl-Teller QNM Perturbed-Spectra: Random Potential Pöschl-Teller QNM Perturbed-Spectra: Deterministic Potential

FIG. 7. Left column: sequence of QNM spectra for the Pöschl-Teller potential subject to a random perturbation δṼr of increasing size (in
energy norm). The sequence shows how switching on a perturbationmakes theQNMsmigrate to a newbranch (that actually closely follows a
pseudospectrumcontour line, comparewithFig. 5), in such away that the instability starts appearing at highly dampedQNMsand descends in
the spectrumas the perturbation grows (unperturbed values, in red, are kept along the sequence for comparison). The top panel corresponds to
the nonperturbed potential shown in Fig. 3, the second panel shows how a random perturbation of (energy) norm kδṼrkE ¼ 10−16 already
reaches the sixthQNMovertone, and, in the third panel, a perturbationwith kδṼrkE ¼ 10−8 already reaches the third overtone. This confirms
the instability already detected in the pseudospectrum, indicating its high-frequency nature. Crucially, to reach the fundamental mode, a
perturbation of the same orderOð1Þ as the variation of the eigenvalue is required, thus demonstrating the stability of the fundamentalQNM in
agreementwith the pseudospectrum in Fig. 5. Right panel: sequence ofQNMspectra for the Pöschl-Teller potential subject to a deterministic
perturbation δṼd ∼ cosð2πkxÞ. The first panel again shows the unperturbed potential, whereas the second one shows that a low-frequency
(k ¼ 1) perturbation leaves the spectrum unperturbed, in spite of the kδṼdkE ¼ 10−8 norm (compare with the random case with the same
norm): This illustrates the harmless character of low-frequency perturbations. The third panel showshowkeeping the normof the perturbation
but increasing its frequency indeed switches on the instability, confirming the high-frequency insight gained from randomperturbations. The
fourth panel shows how the instability increases with the frequency but less efficiently than with random perturbations of the same norm.
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the values in the stable self-adjoint case in Fig. 6. This high-
frequency stability is then confirmed in the perturbation
analysis. Indeed, Fig. 9 demonstrates the need for large
perturbations in the operator in order to reach the funda-
mental QNM, namely, (random) perturbations with a size
kδṼkE of the same order as the induced variation in ω�

0 .
This behavior is a manifestation of spectral stability.

The contrast between the high stability of ω�
0 and the

instability of overtone resonances ω�
n≥1 has already been

evoked in Sec. V B 2, when referring to the large condition
number ratios κn=κ0, in particular, referring to Bindel and
Zworski’s discussion in Refs. [99,100]. This high-fre-
quency stability of the fundamental mode is in tension
with the instability found by Nollert in Ref. [44] for the
slowest-decaying mode for Schwarzschild spacetime. We
will revisit this point in Sec. VI D 3. For the time being, we
simply emphasize that the observed stability relies critically
on the faithful treatment of the asymptotic structure of the
potential, which is built into the adopted hyperboloidal
approach, allowing us to capture the long-range structure of
the potential up to null infinityIþ. It is onlywhenwe enforce
amodification of the potential at large distances that the low-
frequency fundamental QNM is affected. This phenomenon
is illustrated in Fig. 10 (see also Refs. [47,108]), corre-
sponding to a Pöschl-Teller potential set to zero beyond a
compact interval ½xmin; xmax�: Such a cut introduces high
frequencies that migrate the overtones to the new branches,
and, crucially, it alters the asymptotic structure so that the
fundamental QNM is also modified. Such an “infrared”
effect is, however, compatible with the spectral stability of
the fundamental QNM since such a cut of the potential does
not correspond to a small perturbation in δL.

5. Regularization effect of random perturbations

Before proceeding to the BH case, let us briefly com-
ment on an apparently paradoxical phenomenon resulting
from the interplay between random perturbations and the
pseudospectrum. In contrast with what one might expect,

FIG. 9. QNM spectral instability of Pöschl-Teller potential.
Combination of Figs. 3, 5, and 7, corresponding to three
independent calculations, respectively: condition number ratios
κn=κ0 (top panel), pseudospectrum, and perturbed QNM spectra
(bottom panel). The bottom panel demonstrates the high-fre-
quency nature of the spectral instability, as well as the migration
of Pöschl-Teller QNMs towards pseudospectrum contour lines
under high-frequency perturbations.

FIG. 8. Convergence test for five significant QNMs of the
Pöschl-Teller potential perturbed under a deterministic high-
frequency perturbation δṼd (cf. text). This behavior demonstrates
that the large QNM “migrations” observed in Fig. 7 are not a
numerical artifact, but actually, very small perturbations of the
potential can result in large variations of the QNM spectrum,
consistent with the pseudospectrum in Fig. 5.

FIG. 10. QNMs of the Pöschl-Teller cut potential. Setting the
Pöschl-Teller potential to zero outside an interval ½xmin; xmax�
introduces high-frequency perturbations that make QNM over-
tones migrate towards pseudospectrum contour lines, as well as
an “infrared” modification that alters the fundamental QNM
frequency. Whereas the latter tends to the nonperturbed Pöschl-
Teller value as xmin → −∞ and xmax → ∞, QNM overtones
always remain strongly perturbed.
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the addition of a random perturbation to a spectrally
unstable operator L does not worsen the regularity proper-
ties of L but, on the contrary, it improves the analytical
behavior of its resolvent RLðωÞ [9,109–118]. This is
illustrated in Fig. 11, which shows a series of pseudospectra
corresponding to random perturbations of the Pöschl-Teller
potential with increasing kδṼrkE. In addition to the
migration of QNM overtones towards pseudospectra con-
tour lines, we observe two phenomena: (i) ϵ-pseudospectra
sets with ϵ > kδṼrkE are not affected by the perturbation,
whereas (ii) the pseudospectrum structure for ϵ < kδṼrkE
is smoothed into a flat pattern. As we have discussed in

Fig. 6, such flat pseudospectra patterns are the signature of
spectral stability, a feature of regularity of the resolvent
RLðωÞ. The resulting improvement in the spectral stability
of Lþ δL, as compared to L, is indeed consistent with the
convergence properties of the respective QNM spectra, as
illustrated by the contrast between the corresponding
convergence tests in Figs. 8 and 4. In summary, random
perturbations improve regularity, an intriguing effect seem-
ingly intimately related to a Weyl law occurring in the
large-n asymptotics of QNMs [100,119], with suggestive
physical implications in the QNM setting, e.g., in (semi)
classical limits to smooth spacetimes from (random)
structures at Planck scales.

VI. SCHWARZSCHILD QNM (IN)STABILITY

We now address the physical BH case, namely, the
stability of QNMs in Schwarzschild spacetime. Whereas
the previous section has been devoted, to a large extent, to
discussing some of the technical issues in QNM stability,
the spirit in this section is to focus more on the physical
implications, in particular, in the perspective of assessing
the pioneering work in Refs. [44,45].

A. Hyperboloidal approach in Schwarzschild spacetime

The attempt to implement the QNM stability analysis in
the coordinate system employed for the Pöschl-Teller
potential, namely, the Bizoń-Mach chart (46), was unsuc-
cessful because of the bad analytic behavior at null infinity
of the Schwarzschild potential(s) in the corresponding
coordinate x. Instead, we resort to the minimal gauge
slicing [75,76,120], devised to improve regularity in the
Schwarzschild(-like) case.
We start by considering standard Schwarzschild ðt; rÞ

coordinates in the line element (2), with fðrÞ ¼
ð1 − 2M=rÞ and a BH horizon at r ¼ 2M. Axial and polar
Schwarzschild gravitational parities are described by the
wave equation (4) with, respectively, Regge-Wheeler
VRW;s
l ðrÞ and Zerilli VZ

lðrÞ potentials [12,13,82,121,122].
Specifically, we have

VRW;s
l ðrÞ ¼

�
1 −

2M
r

��
lðlþ 1Þ

r2
þ ð1 − s2Þ 2M

r3

�
; ð65Þ

for the axial case, where s ¼ 0, 1, 2 correspond to the
scalar, electromagnetic, and (linearized) gravitational
cases, and

VZ
lðrÞ ¼

�
1−

2M
r

�

×

�
2n2ðnþ 1Þr3 þ 6n2Mr2 þ 18nM2rþ 18M3

r3ðnrþ 3MÞ2
�
;

ð66Þ

FIG. 11. Pseudospectra of the Pöschl-Teller potential under
random perturbations δṼr of increasing norm, demonstrating the
regularizing effect of random perturbations. Pseudospectra sets σϵ

bounded by the contour line reached by perturbed QNMs become
flat, a signature of improved analytic behavior of the resolvent, as
illustrated in Fig. 6. Pseudospectra sets not attained by the
perturbation remain unchanged. Regularization of RLþδLðωÞ
increases as kδṼrkE grows.
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with

n ¼ ðl − 1Þðlþ 2Þ
2

ð67Þ

for the polar case.
To construct horizon-penetrating coordinates reachingnull

infinity, one defines a height function h in Eq. (6) by first
considering an advanced time coordinate built on the rescaled
tortoise coordinate x̄¼r�=λ, with r�¼rþ2M lnðr=2M−1Þ,
so that the BH horizon is at x̄ → −∞; one then enforces a
deformation of the Cauchy slicing into a hyperboloidal one
through the choice of a minimal gauge, prescribed under the
guideline of preserving a good analytic behavior at Iþ. In a
second stage, the function g in Eq. (6) implementing the
compactification along hyperboloidal slices is implicitly
determined by [note that instead of x in Eq. (6), we rather
use σ for the spatial coordinate, so as to keep the standard
usage in Refs. [75,76,120] ]

r ¼ 2M
σ

: ð68Þ

Choosing λ ¼ 4M in the rescaling x̄ ¼ r�=λ of Eq. (5), the
steps above result in (see details in Refs. [75,76,120]) the
minimal-gauge hyperboloidal coordinates for the transfor-
mation (6),

�
t̄ ¼ τ − 1

2
ðln σ þ lnð1 − σÞ − 1

σÞ
x̄ ¼ 1

2
ð1σ þ lnð1 − σÞ − ln σÞ; ð69Þ

which, upon the addition of the BH horizon and Iþ points,
maps x̄ ∈ ½−∞;∞� to the compact interval σ ∈ ½a; b� ¼
½0; 1�, with the BH horizon at σ ¼ 1 and future null infinity
at σ ¼ 0.
Implementing transformation (69) in the first-order

reduction in time in Eqs. (8) and (9), we get, for wðσÞ,
pðσÞ, qlðσÞ (now explicitly depending on l), and γðσÞ in
Eq. (12),

wðσÞ ¼ 2ð1þ σÞ; pðσÞ ¼ 2σ2ð1 − σÞ;

qlðσÞ ¼
ð4MÞ2Vl

2σ2ð1 − σÞ ; γðσÞ ¼ 1 − 2σ2; ð70Þ

leading to the L1 and L2 operators building L in Eq. (10),

L1 ¼
1

2ð1þ σÞ ½∂σð2σ2ð1 − σÞ∂σÞ − Ṽl�;

L2 ¼
1

2ð1þ σÞ (2ð1 − 2σ2Þ∂σ − 4σ); ð71Þ

where the rescaled potential ṼlðσÞ ≔ qlðσÞ results, in the
respective axial and polar cases, in the explicit expressions

ṼRW;s
l ¼ 2(lðlþ 1Þ þ ð1 − s2Þσ);

ṼZ
l ¼ 2

�
σ þ 2n

3

�
1þ 4n

3þ 2n
ð2nþ 3σÞ2

��
: ð72Þ

Finally, from Eqs. (70) and (22), the energy scalar product is

hu1; u2iE ¼
��

ϕ1

ψ1

�
;

�
ϕ2

ψ2

�	
E

¼
Z

1

0

�
ð1þ σÞψ̄1ψ2 þ σ2ð1 − σÞ∂xϕ̄1∂xϕ2

þ Ṽl

2
ϕ̄1ϕ2

�
dσ; ð73Þ

where the weight Ṽl is fixed by Eq. (72) for each
polarization.

B. Schwarzschild QNM spectrum

As discussed in Sec. II C 1, outgoing boundary con-
ditions have been translated into regularity conditions on
eigenfunctions. Specifically, as we have seen in the Pöschl-
Teller case, the operator L1 in Eq. (71) is a singular Sturm-
Lioville operator; namely, the function pðσÞ ¼ 2σ2ð1 − σÞ
vanishes at the boundaries of the interval ½a; b� ¼ ½0; 1�
consistently with Eq. (16). This result translates into the
fact that no boundary conditions can be imposed if enough
regularity is required.
However, there is a key difference between the Pöschl-

Teller and the BH case: Whereas in the Pöschl-Teller case
the function pðxÞ ¼ ð1 − xÞð1þ xÞ vanishes linearly at the
boundaries, and therefore x ¼ �1 are regular singular
points, in the Schwarzschild case this is true for σ ¼ 1
(BH horizon) but not for σ ¼ 0 (Iþ) because of the
quadratic σ2 term. Null infinity is then an irregular singular
point, which is the counterpart, in our compactified hyper-
boloidal formulation, of the power-law decay of
Schwarzschild potentials responsible for the branch cut
in the Green function of Eq. (4), with its associated “tails”
in late decays of scattered fields. In the context of our
spectral problem for the operator L, this translates into the
appearance of a (branch-cut) continuous part in the spec-
trum. This has an important impact on the numerical
approach since the continuous branch cut is realized in
terms of actual eigenvalues of the discretized approximates
LN . Such eigenvalues are not QNMs and can indeed be
unambiguously identified, but their presence has to be
taken into account when performing the spectral stability
analysis, which becomes a more delicate problem than in
the Pöschl-Teller case. In this context, the latter becomes a
crucial benchmark to guide the analysis in the BH case.
The Schwarzschild (gravitational) QNM spectrum (for

l ¼ 2) is shown in Fig. 12, which presents the result of the
numerical calculation of the spectrum of the L operator
defined by Eq. (70). This result is obtained either for the
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Regge-Wheeler or the Zerilli rescaled potentials in Eq. (72),
corresponding, respectively, to potentials (65) and (66),
thus providing a crucial internal consistency check for the
analytical and numerical construction since both potentials
are known to be QNM isospectral (see below in Sec. VI D 2).
The branch-cut structure is apparent in the eigenvalues along
the upper imaginary axis. Such branch-cut points can be
easily distinguished from the special QNM corresponding
to ωn¼8, also in the imaginary axis, simply by changing
the resolution: Branch points move randomly along the
vertical axis, whereas ωn¼8 stays at the same frequency (see
Sec. VI D 1 for a more systematic approach to establish
the nonbranch nature of ωn¼8, where we consider high-
frequency perturbations to QNMs). Moreover, eigenfunc-
tions associated with algebraically special modes are poly-
nomials, as shown in the detailed studies of these modes for
Schwarzschild and Kerr spacetimes in Refs. [75,123].
Because of the lack of an exact expression for the

Schwarzschild QNMs, one must compare the obtained
values against those available in the literature via alternative
approaches—see, for instance, Refs. [13–16,124–127]. An
estimative for the errors when QNMs are calculated with
the methods from this work is found in Ref. [120]. From a
practical perspective, and regardless of the numerical
methods, it is well known that the difficulty to accurately
calculate numerically a given QNM overtone ω�

n increases

significantly with n. For instance, convergence and
machine precision issues similar to the ones commented
above are reported in Refs. [128–130], with a control of the
internal roundoff accuracy being required. Alternatively,
iterative algorithms such as Leaver’s continued fraction
method [131] require an initial seed relatively near a given
QNM, which must be carefully adapted when dealing
with the overtones [132]. The bottom line is that the
calculation of BH QNM overtones is a challenging and
very delicate issue.
In our understanding, the latter challenge is not a

numerical hindrance but the consequence of a structural
feature of the underlying analytical problem, namely, the
spectral instability of the Schwarzschild QNM problem.
This is manifested already at the present stage of analysis,
namely, the calculation of QNM frequencies of nonper-
turbed Schwarzschild's potential, in the eigenvalue con-
dition numbers κn’s shown in the top panel of Fig. 12: We
again encounter the pattern found in the Pöschl-Teller case,
cf. Fig. 3, with a growth of the spectral instability as the
damping increases, with the notable anomaly of an
enhanced stability for the algebraically special QNM
frequency, with n ¼ 8. We devote the rest of the section
to exploring this spectral instability with the tools
employed for the Pöschl-Teller potential.

C. Schwarzschild pseudospectrum

The pseudospectrum of Schwarzschild spacetime is
presented in Fig. 13. As illustrated in the Pöschl-Teller
potential, the pseudospectrum provides a systematic and
global tool to address QNM spectral instability, already at
the level of the unperturbed potential. In a topographic map
of the analytic structure of the resolvent, regions associated
with small ϵ-pseudospectra (light green) correspond to
strong spectral instability, whereas regions with large ϵ
[namely, OðϵÞ ∼ 1, dark blue] indicate spectral stability.
The superposition of the QNM spectrum shows the
respective spectral stability of QNM frequencies.
We can draw the following conclusions from Fig. 13:
(i) The Schwarzschild pseudospectrum indicates a

strong instability of QNM overtones, an instability
that grows quickly with the damping. White-line
boundaries corresponding to ϵ-pseudospectra with
very small ϵ’s extend in large regions of the complex
plane, which is compatible with the results in
Ref. [44], providing a rationale—already at the level
of the unperturbed potential—for the QNM overtone
instability discovered by Nollert.

(ii) The slowest-decaying QNM is spectrally stable.
Figure 13 tells us that changing the fundamental
QNM frequency requires perturbations in the oper-
ator of order kδLkE ∼ 1, which corresponds to
spectral stability and is in tension with the results
in Ref. [44], where the fundamental QNM is found
to be unstable. We will address this point below.

FIG. 12. Schwarzschild QNM problem. Bottom panel: QNMs
for the l ¼ 2 axial and polar gravitational modes of Schwarzs-
child spacetime, corresponding, respectively, to the (isospectral)
Regge-Wheeler and Zerilli potentials (eigenvalues along the
imaginary upper half line are the numerical counterpart of the
Schwarzschild branch cut, but also the algebraically special QNM
ωn¼8; see Ref. [75] for a discussion of this). Note the normali-
zation 4Mωn, consistent with λ ¼ 4M after Eq. (68). Top panel:
condition numbers κn normalized to the condition number κ0 of
the fundamental QNM. Note the relative enhanced stability of the
algebraically special QNM.
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(iii) Schwarzschild and Pöschl-Teller potentials show
qualitatively the same pseudospectrum pattern, with
large “green regions” producing patterns in stark
contrast with the flat self-adjoint case. On the one
hand, this shared behavior reinforces the usage of
the Pöschl-Teller potential as a convenient guideline
for understanding the stability structure of BH
QNMs; on the other hand, it points towards an
instability mechanism independent, at least in some
measure, on certain details of the potential.

We can conclude that Fig. 13 demonstrates—at the level of
the unperturbed operator—the main features of the stability
structure of the BH QNM spectrum, namely, the QNM
overtone instability and the stability of the fundamental
QNM. However, the pseudospectrum does not inform us
about the particular type of perturbations that trigger
the instabilities, which is addressed in the following
subsection.

D. Perturbations of the Schwarzschild potential

Once the Schwarzschild pseudospectrum, together with
the condition numbers κn, have presented evidence of
QNM spectral instability at the level of the unperturbed
operator, we address the question about the actual physical
character of perturbations triggering such instabilities.

1. Ultraviolet instability of BH QNM overtones

The qualitative agreement between Pöschl-Teller and
Schwarzschild pseudospectra, cf. Figs. 5 and 13, together
with the experience gained in the study of Pöschl-Teller
perturbations regarding the high-frequency instability of all
QNM overtones and the stability of the fundamental QNM,
guide our steps in the analysis of the BH setting.

Random perturbations: spoils from the branch cut.—The
presence of a branch cut in the Schwarzschild spectrum,
discussed in Sec. VI B, translates into a methodological
subtlety when considering random perturbations in the BH
case, as compared with the Pöschl-Teller one. The difficulty
stems from the fact that not only the QNM eigenvalues, but
also the eigenvalues associated with the discretized version
of the branch cut, are sensitive to random perturbations δṼr
of the potential. As a consequence, the possible contami-
nation from eigenvalues from the branch cut complicates the
analysis of the impact of random perturbations on QNM
frequencies, which is an artifact of our particular numerical
approach and not a problemof the differential operator itself;
however, it limits our capability to assess the triggering
by random perturbations of the QNM migration to new
branches, which was observed in the Pöschl-Teller case
(cf. left column of Fig. 7). Other tools, either numerical
refinements and/or analytical methodologies, are required to
address this specific issue in the Schwarzschild case.
In spite of this, random perturbations are still useful in our

BH discussion. An illustrative example is the study of the
stability of the algebraically special Schwarzschild QNM
ωn¼8.Whereas randomperturbationsmove branch-cut eigen-
values away from the imaginary axis, the algebraically special
QNM stays stable. This methodology provides a powerful
and efficient tool to probe the physicality of specific eigen-
values in very general settings (cf. e.g., Fig. 4 in Ref. [133]).

Deterministic perturbations.—Given the limitations for
random δṼr’s, in the present study we have focused on
the class of deterministic perturbations to the potential δṼd
provided by Eq. (63). Crucially, such perturbations do not
perturb the branch eigenvalues as (much as) random δṼr
do, thus bypassing the associated spectral instability
contamination. Despite their simplicity, they provide a
good toy model to explore the effects of astrophysically
motivated perturbations (assessment of long-range and
low-frequency versus small-scale and high-frequency
perturbations), as well as those arising from generic
approaches to quantum gravity (small-scale and high-
frequency effective fluctuations). Therefore, they are con-
veniently suited to address these instability issues.
The left column in Fig. 14 depicts (with kδṼdkE ∼ 10−8)

the stability of the first overtones against low-frequency
perturbations (k ¼ 1, top-left panel), in contrast with the
instability resulting from high-frequency perturbations
(k ¼ 20, bottom-left panel). Along this line, the right

FIG. 13. Top panel: pseudospectrum of Schwarzschild space-
time (l ¼ 2 gravitational modes, from Regger-Wheeler potential,
and similar for Zerilli). Again, QNM frequencies (red circles)
from Fig. 12 are superimposed for reference on their (in)stability.
The pattern of ϵ-pseudospectra sets σϵ is qualitatively similar to
the Pöschl-Teller one (cf. Fig. 5), though presenting an enhanced
spectral instability indicated by the smaller ϵ values of ϵ-
pseudospectra contour lines (cf. range in color log scale for
log10 ϵ in Fig. 5). Bottom panel: zoom into the region around the
fundamental QNM and first overtones.
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column in Fig. 14 zooms in to study the very first over-
tones, which are paramount for the incipient field of black
hole spectroscopy. Assessing the (in)stability of the very
first overtones is therefore crucial for current research
programs in gravitational astronomy. It becomes apparent
that the first overtones, including the very first overtone, are
indeed affected without any extraordinary or fine-tuned
perturbations δṼd. In particular, and taking the left column
as a reference, the first overtone is reached: either by
considering (i) a slightly more intense perturbation
(kδṼdkE ∼ 10−4, k ¼ 20) or (ii) perturbations with suffi-
ciently high frequency (kδṼdkE ∼ 10−8, k ¼ 60).
From this perturbation analysis of the BH potential, we

make the following conclusions: (i) All QNM overtones are
ultraviolet unstable, as in the Pöschl-Teller case, with the
instability reaching the first overtone for sufficiently high
frequency; (ii) QNMs are stable under low-frequency
perturbations, illustrating that spectral instability does
not mean instability under any perturbation, in particular,

long-wave perturbations not affecting the QNM spectrum;
(iii) the slowest-decaying QNM is ultraviolet stable,
a result that is in tension with the instability of the
fundamental QNM found in Ref. [44]. We revisit this point
in Sec. VI D 3 below.

2. Isospectrality loss: Axial versus polar
spectral instability

Regge-Wheeler and Zerilli potentials for axial and polar
perturbations are known to be isospectral in the QNM
spectrum (cf. Refs. [12,134–136]; see also Ref. [82]). In
particular, Chandrasekhar identified (cf. point 28 in
Ref. [12]) a necessary condition for two (one-dimensional)
potentials V1ðx̄Þ and V2ðx̄Þ, with x̄ ∈� −∞;∞½ as it is the
case for the rescaled tortoise coordinate, to have the same
transmission amplitude and present the same QNM spec-
trum. Specifically, both potentials must render the same
values when evaluating an infinite hierarchy of integrals,

FIG. 14. QNM spectra for deterministic perturbations δṼd of Schwarzschild l ¼ 2 gravitational modes (here Regge-Wheeler, similar
behaviour for Zerilli, cf. Fig. 15), superimposed over the unperturbed values (red). Left column: stability under low-frequency
perturbation (top panel) versus high-frequency instability of QNM overtones (bottom panel). Right column: zoom into the first QNM
overtones, showing the instability of the first overtone by increasing (i) the frequency of the perturbation (top panel) and (ii) the (energy)
norm of the perturbation (bottom panel).
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Cn ¼
Z

∞

−∞
vnðx̄Þdx̄; ð74Þ

with

v1 ¼ V; v3 ¼ 2V3 þ V 02;

v5 ¼ 5V4 þ 10VV 02 þ V 002; v2nþ1 ¼ …: ð75Þ

These quantities are the conserved quantities of the
Korteweg–de Vries equation, and they connect the
Schwarzschild QNM isospectrality problem to integrability
theory through the inverse scattering transform of Gelfand-
Levitan-Marchenko (GLM) theory (cf. Ref. [137]; see
Ref. [136] for an alternative approach in terms of Darboux
transformations).
The key point for our spectral stability analysis ofL is that

axial and polar QNM isospectrality is the consequence of a
subtle and delicate integrability property of stationary BH
solutions, so we do not expect it to be robust under generic
perturbations of V. In particular, given the nonlinear
dependence in V of the conserved quantities Cn in
Eq. (74), wewould expect changes inV under either random
δṼr or deterministic δṼd perturbations to render different
values of Cn, therefore resulting in a loss of QNM iso-
spectrality. Figure 15 confirms this expectation:Whereas the
fundamental QNM mode remains stable under high-fre-
quency perturbations, isospectrality is broken for the over-
tones with a slight, but systematic, enhanced damping in the
axial case. Other mechanisms for BH isospectrality loss
have been envisaged, e.g., in the study of the imprints of
modified gravity theories [50], whereas ultraviolet QNM
overtone instability would provide a possible mechanism
inside general relativity. In summary, isospectrality loss
provides an interesting probe into QNM instability, with
potential observable consequences, and it will be the subject
of a specifically devoted study elsewhere.

3. Infrared instability of the fundamental QNM

Both the pseudospectrum and the explicit perturbations
of the potential indicate a strong spectral stability of the
slowest-decaying Schwarzschild QNM, which is tension
with the results in Refs. [44,45], where the instability
affects the whole QNM spectrum, including the slowest-
decaying QNM. This point is fundamental to establish
since it directly impacts the dominating frequency in the
late BH ringdown signal.
In our understanding, and as was the case of the Pöschl-

Teller potential discussed in Sec. V D 4, the instability of
the fundamental QNM frequency found by Ref. [44] is an
artifact of the implemented perturbations, namely, steplike
approximations to the Schwarzschild potential (in particu-
lar, Regge-Wheeler, but the same applies for Zerilli) that
modify the potential at large distances. Specifically, Vl is
set to zero beyond ½xmin; xmax�, fundamentally altering the

long-range nature of the Schwarzschild potential that is
then of compact support. What we observe in Fig. 14 is that
using a faithful treatment of the asymptotic structure at

FIG. 15. Loss of QNM isospectrality in Schwarzschild spacetime,
under high-frequencyperturbations. The sequenceof figures shows a
zoom into the perturbation of lowest l ¼ 2 axial and polar QNM
overtones (the branch cut has been removed), with δṼd fixed to a
value reaching the first overtone, and then increasing the frequency.
The breaking of axial and polar isospectrality is demonstrated, with
perturbed axial overtones slightlymore damped than polar perturbed
counterparts, though both are over the same perturbed QNM
branches (actually tracking the pseudospectra contour lines,
cf. Fig. 17 below). The fundamental QNM remains unchanged,
consistently with its stability, so the dominating ringdown frequency
remains “isospectral.”
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infinity through the compactified hyperboloidal approach
maintains spectral stability.
To test this idea (cf. also the recent work [47], as well as

Ref. [108]), as we did in the Pöschl-Teller case, we have
implemented a “cut Schwarzschild” potential in our hyper-
boloidal approach, setting the potential to zero from a given
distance (both towards null infinity and the BH horizon).
The result is shown in Fig. 16, showing a similar qualitative
behavior to the Pöschl-Teller case in Fig. 10. Overtones are
strongly perturbed into the QNM branches already
observed in Fig. 14, consistently with the high frequencies
introduced by the Heaviside cut. But, crucially, now the
fundamental QNM is indeed also modified, in contrast with
its stable behavior under high-frequency perturbations.
This reinforces the understanding of this effect as a
consequence of the “suppression” of the large-scale asymp-
totics of the potential [138]. However, the observed
modification of the fundamental QNM frequency is not
as dramatic as the one in Ref. [44]. We do not have a good
explanation for this, but it may relate to the fact that the
analysis in Refs. [44,45] deals directly with Eq. (4), in
particular, in the setting of a Cauchy slicing getting to
spatial infinity i0. Such an asymptotic framework may be
more sensitive to the modification of the potential than the
hyperboloidal one, related to null infinity Iþ. In this
setting, and lacking a better expression, we refer to this
effect as an infrared instability of the fundamental QNM.
Enforcing the compact support nature of V is naturally

motivated in physical contexts such as optical cavities and
will be studied systematically in such settings [108]. In
gravitation, the physicality of such an effect is more
difficult to assess since gravity is a long-range interaction
that, in contrast to the electromagnetic one, is not screened.

In any case, insofar as a pertinent gravitational scenario
may be envisaged for such a cut potential, then the infrared
instability shown for the first time in Ref. [44] would
constitute a physical effect.

E. Nollert-Price BH QNM branches: Instability
and universality

We revisit the results in Refs. [44,45] (see also
Refs. [46,47]), under the light of the elements introduced
for the study of QNM spectral stability. Figure 2 in Ref. [44]
presents the migration of Schwarzschild QNMs to new
branches, as a result of perturbing the (Regge-Wheeler)
Schwarzschild potential with a steplike approximation with
an increasing number Nst of steps (cf. Fig. 1 in Ref. [44]). A
salient feature of Nollert’s Fig. 2, further analyzed with Price
in Ref. [45], is that the new QNM branches are distributed in
a perfectly structured family of curves in the complex plane,
unbounded in the real part of the frequency, that “move
down” in the complex plane as Nst (i.e., the frequency in
the perturbation) increases [139]. A comparison with
Schwarzschild’s pseudospectrum in our Fig. 13 shows
two remarkable features: (i) The pattern of the new branches
found and studied by Nollert and Price is qualitatively
similar to the contour lines of ϵ-pseudospectra, and (ii) the
effect of increasing the frequency perturbation indeed
corresponds to an increment in the ϵ of the corresponding
contour line (namely, the energy norm of the perturbation
that, as a H1 norm, includes the frequency). In other words,
Nollert and Price’s BH QNM branches indeed seem to be
closely related to ϵ-pseudospectrum contour lines.
In order to test this picture, we use our perturbation

analysis from Sec. VI D. Figure 17 presents the super-
position of perturbed QNM spectra in Fig. 14 onto the
Schwarzschild pseudospectrum in Fig. 13. As in the Pöschl-
Teller case, perturbed QNMs closely track ϵ-pseudospectra
lines, demonstrating the insight gained above on Nollert’s
QNM instability by using the pseudospectrum: Nollert-
Price QNM branches are identified as actual probes into the
analytical structure of the nonperturbed wave operator.
Moreover, the correlation of ϵ-contour lines with the size
and frequency of the perturbations endows the pseudospec-
trum not only with an explicative but also with a predictive
power, as a tool to calibrate the relation between spacetime
perturbations and QNM frequency changes. The conceptual
frame encoded in Fig. 17 is, in our understanding, the main
contribution in this work.

1. QNM structural stability, universality,
and asymptotic analysis

Building onNollert andPrice’swork, our analysis strongly
suggests that BH QNM overtones are indeed structurally
unstable under high-frequency perturbations: BH QNM
branches migrate to a qualitatively different class of QNM
branches. Noticeably and in contrast with this, the pseudo-
spectrum analysis combined with the perturbation tools also

FIG. 16. Infrared modification of the Schwarzschild
fundamental QNM. As in the Pöschl-Teller case, cutting the
Schwarzschild potential (l ¼ 2, either Regge-Wheeler or Zerilli)
outside a compact interval ½xmin; xmax� modifies the fundamental
QNM, thus accounting for its instability as found in Ref. [44]. All
QNM overtones are strongly perturbed because of the high
frequencies in the Heaviside cut, whereas (only) the fundamental
QNM is recovered as xmin; xmax → ∓∞.
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suggests that the new class of Nollert-Price BH QNM
branches presents structural stability features pointing to a
kind of universality in the QNM overtone migration pattern.

Universality in the high-frequency perturbations.—The
QNM migration pattern seems to be independent of
the detailed nature of the high-frequency perturbation in
the Schwarzschild potential. First, such universality is
manifested by a similar QNM perturbation pattern pro-
duced by very different perturbations: steplike perturba-
tions in Ref. [44], the sinusoidal deterministic ones shown
in Fig. 17, and also random perturbations (not presented
here because of blurring issues, which are a consequence of
the branch-cut contamination). Second, the new branches
closely follow the pseudospectra contour lines, a key point
in this universality discussion since it is completely prior to
and independent of perturbations.

Universality in the potential.—Perhaps more importantly,
universality seems to go beyond the insensitivity to the

nature of the perturbation: It seems to be shared by a whole
class of potentials. First, the same pattern of perturbed
branches is found in the Pöschl-Teller potential, cf. Fig. 9.
More dramatically, Nollert and Price’s analysis in Ref. [45]
is particularly illuminating in this respect. They considered
a toy model capturing the effect of a (Dirac-delta) high-
frequency perturbation on a BH-like potential, referred to
as the truncated dipole potential (TDP), that contains only
two QNMs. Adding the singular (high-frequency) “spike”
creates an infinite number of QNMs, again following a
QNM branch pattern compatible with our pseudospectra
contour lines (cf. Fig. 5 in Ref. [45] and see below).
But more noteworthy, and again noticed by Nollert [44],

beyond the BH setting, the new BH QNM branches are
strikingly similar to (curvature) w modes in neutron-star
QNMs (cf. e.g., Fig. 3 in Ref. [13] and the systematic study
in Ref. [140]). This result is remarkable, suggesting that
exact but unstable BH QNMs migrate to perturbed but
stable QNM branches whose qualitative pattern may be
shared by generic compact objects [141].

FIG. 17. Gravitational QNM spectral (in)stability in Schwarzschild spacetime (here, l ¼ 2 axial case corresponding to the Regge-
Wheeler potential, same behaviour for polar modes with Zerilli potential). The figure shows the superposition of the pseudospectrum of
Fig. 13, perturbed QNM spectra in Fig. 14, together with exact QNMs and condition numbers κn from Fig. 12. Employed norms follow
from the energy scalar product in Eq. (73), i.e., energy defines “big” and “small”. The pseudospectrum pattern, with ϵ-pseudospectra sets
with small ϵ extending into large regions of the complex plane, indicates spectral instability of QNM overtones, consistently with the
fastly growing κn’s. Perturbations in the potential demonstrate the high-frequency (ultraviolet) instability of all overtones and their
stability under low-frequency perturbations. Both pseudospectrum and perturbations in the potential show the ultraviolet stability of the
fundamental QNM. Ultraviolet instability induce QNM overtones to migrate towards ϵ-pseudospectra contour lines, a pattern consistent
with “Nollert-Price QNM branches” [44,45] here illustrated up to the lowest overtone. Universality of this pattern is further supported by
comparison with the Pöschl-Teller potential in Fig. 9.
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Asymptotic analysis and universality.—How does one
systematically address a possible universality in the quali-
tative pattern of the perturbed QNM branches? Asymptotic
analysis provides a sound approach. The study of the
spiked TDP QNMs by Nollert and Price [45] provides an
excellent illustration, with the identification of the large-n
asymptotic form of perturbed QNM branches, according to
the logarithm dependence

ImðωnÞ ∼ C1 þ C2 ln (ReðωnÞ þ C3); n ≫ 1; ð76Þ
with C1, C2, and C3 being appropriate constants (note that
C3 can be put to zero for sufficiently high n, as in Ref. [45],
since ReðωnÞ → ∞ as n → ∞; we prefer to keep it to
account for intermediate asymptotics [57]). It is suggestive
that this makes direct contact with the possible universality
of perturbed BH QNMs and (nonperturbed) QNMs of
compact objects evoked above. Indeed, as shown in
Ref. [140], w modes of (a class of) neutron stars present
exactly this logarithm pattern [150]. Moreover, this makes
(unexpected) contact with the Pöschl-Teller potential,
where the spectral instability discussed in Sec. V B 2 is
explained [59,60,99,100] in terms of so-called broad Regge
resonances (not to be confused with Regge poles), precisely
described by such a logarithmic dependence [151] and
explained in terms of the loss of continuity at a pth order
derivative, i.e., in terms of an underlying reduced Cp

regularity (with p < ∞). Along these lines of Cp regularity,
and in a WKB semiclassical analysis, such logarithmic
branches have also been recovered in Ref. [47] in their
recent discussion of Nollert’s original work [44]. Therefore,
it would be tempting to refer to the perturbed BH QNM
branches as Nollert-Price-(Regge) QNMs, but this requires
an elucidation of the role of the reduced Cp regularity in the
generic perturbations we have studied here, which, in
particular, include C∞ regular (high-frequency) sinusoidal
deterministic perturbations (63). In summary, the asymp-
totic pattern (76) provides a starting point to probe, in
gravitational-wave signals, the physical properties (e.g.,
energy and frequency) of small-scale perturbations [57].
Beyond specific models, this kind of universal behavior,

independent of the detailed nature of the high-frequency
perturbation and valid for a large class of potentials, calls
for systematic semiclassical analyses of highly damped
scattering resonances, in terms of the wave-operator prin-
cipal part [152], including boundary behaviors. In the spirit
adopted in this work, we expect asymptotic tools in the
semiclassical analysis of the pseudospectrum to provide a
systematic approach to assess the universality of perturbed
BH QNM branches [153].

2. Overall perspective on Schwarzschild QNM instability

The main result of this article is summarized in Fig. 17.
Specifically, it combines Figs. 12–14 to demonstrate QNM
spectral (in)stability through their three, respective, distinct
calculations: (i) the calculation of the eigenfunctions of the

exact spectral problem to calculate condition numbers κn,
(ii) the evaluation of operator (matrix) norms to generate
the pseudospectrum, and (iii) the calculation of eigenvalues
of the perturbed spectral problem. Calculations (i) and
(ii) work at the level of the unperturbed problem, whereas
(iii) deals with the perturbed problem. The three calcu-
lations fit consistently through the Bauer-Fike theorem that
constrains, through Eq. (39), the relation between the
pseudospectrum and the tubular regions around the spec-
trum. They lead to these main results:

(i) QNM overtones
(i.1) QNM overtones are ultraviolet unstable, including

the lowest overtones. The pseudospectrum provides
a systematic explanatory and predictive framework
for QNM spectral instability, confirming the result
by Nollert and Price [44,45]. Such instability is
indeed realized by physical high-frequency pertur-
bations in the effective potential V, reaching the first
overtone for sufficiently high frequencies and/or
amplitudes in the perturbation.

(i.2) QNM overtones are stable under low-frequency
perturbations. No instability appears for low- or
intermediate-frequency perturbations of V, consis-
tently with studies [48–50,52,93] on astrophysical
BH environments.

(ii) Slowest-decaying (fundamental) QNM
(ii.1) The slowest-decaying QNM is ultraviolet stable.

This behavior holds, in Schwarzschild spacetime,
for each l-fixed branch. This feature critically relies
on keeping a faithful description of the asymptotic
structure at infinity through the compactified hyper-
boloidal approach. This result is in contrast with
conclusions in Refs. [44,45], but no contradiction
appears since the latter implements a step-potential
approximation fundamentally modifying V at large
distances, resulting, rather, in an infrared probe
into QNMs.

(ii.2) The slowest-decaying QNM is stable under low- and
intermediate-frequency perturbations in the poten-
tial. This property is shared by the whole QNM
spectrum.

(ii.3) The slowest-decaying QNM is infrared unstable.
The instability of the fundamental QNM observed in
Refs. [44,45] is physical inasmuch as fundamental
modifications of the large-distance structure of the
potential are allowed.

(iii) Structural stability and QNM isospectrality
(iii.1) Nollert-Price BH QNM branches track pseudospec-

trum contour lines. The BH QNM spectrum is
ultraviolet structurally unstable, migrating to per-
turbed branches tracking ϵ-contour lines of pseudo-
spectra. Such a migration pattern is largely
independent of the detailed nature of high-frequency
perturbations and potentials. Once on such Nollert-
Price branches, QNMs are spectrally stable. These
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structural stability properties result in the universal-
ity of perturbed QNM branches.

(iii.2) QNM isospectrality ultraviolet loss. High-frequency
perturbations spoil the integrability of Regge-
Wheeler and Zerilli potentials, resulting (for pertur-
bations reaching the first overtone) in a slightly
enhanced damping of axial modes with respect to
polar ones.

VII. CONCLUSIONS AND PERSPECTIVES

A. Conclusions

We have demonstrated the following: (i) Fundamental
BH QNMs are stable under high-frequency (ultraviolet)
perturbations while unstable under (infrared) modifications
of the asymptotics, the latter being consistent with
Ref. [44]; (ii) (all) BH QNM overtones are unstable under
high-frequency (ultraviolet) perturbations, instabilities
being quantifiable in terms of the energy content (norm)
of the perturbation, extending results in Refs. [44,45] to
show isospectrality loss; and (iii) pseudospectrum contour
lines provide the rationale underlying the structurally stable
pattern of perturbed Nollert-Price BH QNM branches.
Pseudospectra, together with tools from the analysis of
non-self-adjoint operators, have revealed the analytic
structure underlying such (in)stability properties of BH
QNMs, offering an integrating and systematic approach to
encompass a priori disparate phenomena. The soundness
of the results relies on the use of a compactified hyper-
boloidal approach to QNMs, with the key identification of
the relevant scalar product in the problem as associated
with the physical energy, combined with accurate spectral
numerical methods.

1. Caveats in the current approach to QNM instability

Beyond the soundness of the results, key questions remain:
(i) How much does the instability depend on the hyper-

boloidal approach? In other words, is the instability a
property of the equation or rather of the employed
scheme to cast it? This question is legitimate and
crucial, requiring a specific investigation. In spite of
this, we are confident in the soundness of our
conclusions: As discussed in detail, the same quali-
tative behavior is found systematically by other
studies not relying on the hyperboloidal approach,
in particular, Nollert and Price’s pioneer work. De-
tails may change from scheme to scheme, but the (in)
stability properties seem robust.

(ii) A numerical demonstration is not a proof. Moreover,
numerical discretizations introduce their own diffi-
culties and limitations. In particular, spectral issues
in the passage from matrix approximations to the
actual differential operator are a delicate problem.
Again, we are confident in our results, as a
consequence of mutual consistency of existing

results and nontrivial tests like the ones described
in the text. Proofs will definitely require the use of
other methods and techniques.

(iii) Could the observed QNM spectral instability be an
effect of regularity loss, namely, a Cp effect? It may
be, but it is difficult to conclude at this stage. Indeed,
Cp regularity provides a sufficient condition for
logarithmic branches (76) that can be traced to
works by Regge [151], Berry [155,156], or Zworski
[100] and manifests in our setting in Nollert and
Price’s analysis of BH QNM instability [45] (com-
plemented in Ref. [47]), in broad Regge resonances in
Pöschl-Teller QNM instability [59,60,99], or in neu-
tron star w modes [140] (cf. also Ref. [148] dealing
with related Regge poles). But we also attest to the
same instability phenomenon for regular sinusoidal
perturbations of sufficiently high frequency. More-
over, the pseudospectrum already informs us of the
instability (cf. contour lines) at the unperturbed
regular stage. If high frequency is actually the basic
mechanism, then Cp regularity would provide a
sufficient, but not necessary condition for QNM
instability. This point must be addressed.

B. Perspectives

While the pseudospectrum framework is already
employed in physics (cf. e.g., Refs. [2,6,8,9,11]), there
seems to be (to our knowledge) no systematic application
in the gravitational context. The introduction of pseudo-
spectra in gravitational physics opens an avenue to blend
the study of instability and transients with other domains in
physics (and beyond), by using pseudospectrum analysis
as a common methodological frame. In the following, we
mention some possible lines of exploration in different
gravitational settings, from astrophysics and fundamental
gravity physics to mathematical relativity, closing the
discussion with a perspective beyond gravity.

1. Astrophysics and cosmology

The astrophysical status of the ultraviolet QNM overtone
instability, which reaches the lowest overtones for generic
perturbations of sufficiently high frequency and energy,
requires us to assess whether actual astrophysical (and/or
fundamental spacetime) perturbations are capable of trig-
gering it. Some problems in which this question is relevant
are the following:
(a) BH spectroscopy. If such instability is actually present,

this should be taken into account in current approaches
to BH spectroscopy. The stability of the slowest-
decaying QNM guarantees that the dominating ring-
down frequency is unaltered. But regarding QNM
overtones, note that we have not referred at all to late-
time ringdown frequencies, but to QNM frequencies:
Since such sets of frequencies can actually decouple
[44–47,53–56] and, as already noticed by Nollert [44],

PSEUDOSPECTRUM AND BLACK HOLE QUASINORMAL MODE … PHYS. REV. X 11, 031003 (2021)

031003-31



the propagating (scattered) field itself is not much
affected by high-frequency perturbations, finding the
signature of perturbed QNMs in the gravitational-
wave signal may pose a very challenging problem
[57]. Awareness of this potential effect in the GW
signal may, however, lead to specifically tailored data
analysis tools.

(b) BH environment. The arrangement of perturbed QNM
branches along (a priori known) ϵ-contour lines of
pseudospectra opens the possibility of probing, in an
inverse scattering spirit, environmental BH perturba-
tions. One can envisage reading the size of the
physical perturbations by comparing observational
QNM data with the a priori calibrated pseudospec-
trum. This may help, for instance, to assess dry versus
wet BH mergers, a point of cosmological relevance in
LISA science.

(c) Universality of compact object QNMs. The combina-
tion of the universality of the perturbed Nollert-Price
BH QNM branches with Nollert’s remark on their
similarity to neutron star w modes, together with the
demonstrated loss of BH QNM axial-polar isospec-
trality, poses a natural question: Do QNM spectra of
all generic compact objects share the same pattern?
Schemes such as Ref. [23] may provide a systematic

framework for the analysis of the astrophysical
implications.

(d) BH QNM (in)stability in generic BHs. A natural and
necessary extension of the present work is the study of
QNM (in)stability in the full BH Kerr-Newman family,
in particular, understanding how it intertwines with
superradiance instability and the approach to extrem-
ality. Beyond asymptotic flatness, the study of QNM
(in)stability should be extended to asymptotically de
Sitter and Anti-De Sitter BHs.

2. Fundamental gravitational physics

We note some possible prospects at the fundamen-
tal level:
(a) (Sub)Planckian-scale physics. Planck scale spacetime

fluctuations seem to be a robust prediction of different
models of quantum gravity. They represent irreducible
ultraviolet perturbations potentially providing a probe
into Planck scale physics that, given the universality of
BH QNM overtone instability, may be agnostic to an
underlying theory of quantum gravity. Such a search
of quantum gravity signatures in BH gravitational-
wave physics is akin to Ref. [157]. Actually, it would
suffice that a Planck scale cutoff induces an effective
Cp regularity in the otherwise smooth low-energy
spacetime description, to trigger the instability phe-
nomenon. BH QNM instability might then provide a
particular probe into discreteness of spacetime (e.g.,
Ref. [158] are references therein).

(b) QNMs and (strong) cosmic censorship. In the
setting of cosmological BHs, the assessment of the
extendibility through the Cauchy horizon in Reissner-

Nordström-de Sitter spacetime is controlled by the
parameter β ¼ α=κ−, where α is the spectral gap (the
imaginary part of the fundamental QNM in our
setting) and κ− is the surface gravity of the Cauchy
horizon [29,159]. Therefore, a good understanding in
this setting [cf. also point 1.(d) above] of the (in)
stability properties of the slowest-decaying QNM, and,
more generally, of the QNM spectrum, may be
enlightening in the assessment of the thresholds for
Cauchy horizon stability.

(c) Random perturbations and spacetime semiclassical
limit. The regularization effect of random perturba-
tions [9,109–118] in the analytic structure of the
scattering Green’s function is an intriguing phenome-
non that may play a role in the transition to a
semiclassical, smooth, effective description of funda-
mental gravitational degrees of freedom described in a
more basic (quantum) theory, possibly including an
irreducible randomness ingredient. Again, the univer-
sality of the phenomenon may play a key role.

3. Mathematical relativity

The presented numerical evidence needs to be trans-
formed into actual proofs. Some mathematical issues to
address are as follows:
(a) Regularity conditions and QNM characterization. The

mathematical study of QNMs entails subtle functional
analysis issues. In the present hyperboloidal approach,
this involves, in particular, the choice of appropriate
regularity conditions and the associated functional
space. This point connects our pseudospectrum study
with the identification in Ref. [75] of the full upper-
complex plane as the actual QNM spectrum, if general
C∞ eigenfunctions are allowed. More regularity must
therefore be enforced. An analysis along the lines in
Refs. [78–80], where Gevrey classes are identified as
the proper functional spaces to define QNMs, is
therefore required. Likewise, a systematic comparison
with QNM stability in the framework of Refs. [29,77]
is needed (cf. also Refs. [59,60]).

(b) Semiclassical analysis and QNM (in)stability. The
interest of asymptotic tools, in the study of QNM
stability, is twofold. On the one hand, an asymptotic
reasoning [154] built on the semiclassical analysis of
QNMs (a subject taken to full maturity in Sjöstrand’s
works [160–164]), with a small parameter defined in
terms of highly damped QNM frequencies, can help us
to assess universality patterns of perturbed Nollert-
Price BH QNM branches. On the other hand, asymp-
totic analysis provides powerful tools to rigorously
prove spectral instability and nontrivial pseudospectra
(cf. e.g., Ref. [165]). In particular, the recent work
[166] provides an explicit example of scattering
resonance (or QNM) instability, sharing much of
the spirit of the discussion in this work.
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4. Beyond gravitation: Gravity as a crossroad in physics

The disclosure of BH QNM instability [44] resulted from
the fluent interchange between gravitational and optical
physics [48,102–104,167], again a key “flow channel” in
our work, e.g., to understand the infrared instability of the
fundamental QNM [108]. In this spirit, the present work
can offer some hints for further boosting such kinds of
transversal research in physics.
The hyperboloidal approach, with its explicit formulation

of the dynamics in terms of a non-self-adjoint operator,
provides a scheme of interest whenever dealing with an open
physical system with losses at a radiation zone, a recurrent
situation throughout physics (e.g., in optics, acoustics, and
physical oceanography, to cite some settings). A specific
lesson of the present work, to be exported to other physical
contexts, is the identification of the relevant scalar product in
terms of the system’s energy, thus casting an a priori
technical issue into neat physical terms. Moreover, when
studying QNMs, the normalizability of the QNM eigenfunc-
tions in the hyperboloidal approach may open an alternative
avenue to the characterization of the so-called mode volume
Vn of a QNM, which is relevant, e.g., in the setting of
photonic-plasmonic resonances [62]: Together with the
notion of quality factor Qn, given in terms of the ratio
between the real and imaginary parts of a QNM (see, e.g.,
Ref. [168] for its connection with BH gravity physics), it
characterizes the Purcell factor Fn ∼Qn=Vn controlling the
enhancement of spontaneous emission of a quantum system,
a key notion in cavity quantum electrodynamics [169].
Regarding the pseudospectrum, this notion is relevant

whenever a non-Hermitian (or, more generally, non-self-
adjoint operator) enters into the scene, as is typically the
case in open systems [1]. In the context of non-Hermitian
quantum mechanics, it has been proposed [8] to endow the
pseudospectrumwith a guiding central role in the theory, in a
setting in which spectral instability makes insufficient the
standard notion of the spectrum to fully characterize the rel-
evant operators. Apart from spectral instability, the pseudo-
spectrum underlies purely dynamical phenomena [2,6], in
particular, accounting for so-called nonmodal instability
[170] in the setting of hydrodynamic stability theory and
turbulence. Beyond hydrodynamics, the latter feature turns
the pseudospectrum into a powerful tool for studying both
spectral and dynamical stability issues in (open) physical
systems that trace over a part of the total degrees of freedom
and, as a result, are governed by non-self-ajoint operators.
Such systems occur in many areas of physics (e.g., con-
densed matter, optics, plasmonics, acoustics, nanophysics,
etc., [1]), offering a natural arena for extending the already
large range of applications of pseudospectra [10].
Gravitational physics is remarkable in its capacity

to “provide a framework that calls for the interchange of
ideas, concepts and methodologies from very different
communities” [171] in physics. The hyperboloidal
approach and the pseudospectrum discussed here realize

an instance of this understanding of “gravity as a crossroad
in physics” [171].
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APPENDIX A: ENERGY SCALAR PRODUCT
AND ADJOINT OPERATOR L†

1. Energy scalar product

We start by considering the energy contained in the
hyperboloidal slice Στ, defined by τ ¼ const in Eq. (6), and
associated with a mode ϕlm satisfying the effective
equation (4), namely, propagation in 1þ 1 Minkowski
spacetime with a potential Vl (see also Ref. [83]). In this
stationary situation, this energy is given [67] by Eq. (18),

E ¼
Z
Στ

TabtanbdΣτ: ðA1Þ

The stress-energy tensor Tab ¼ Tabðϕlm;∇ϕlmÞ of a
(generally complex) scalar field is given by Eq. (17), with
ηab the Minkowski metric in arbitrary coordinates [drop-
ping ðl; mÞ],

Tab ¼
1

2

�
∇aϕ̄∇bϕ−

1

2
ηab

�
∇cϕ̄∇cϕþVϕ̄ϕ

�
þ c:c.

�
;

ðA2Þ
with “c.c.” denoting “complex conjugate.” Coming back to
Eq. (A1), and using coordinates ðτ; xÞ adapted to Σt
and defined in Eq. (6), the timelike Killing vector is
ta ¼ ∂t ¼ 1

λ ∂τ, and we have

PSEUDOSPECTRUM AND BLACK HOLE QUASINORMAL MODE … PHYS. REV. X 11, 031003 (2021)

031003-33



na ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g02 − h02

p
�
g02 − h02

jg0j ∂τ −
h0

jg0j ∂x

�
ðA3Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g02 − h02

p (wðxÞ∂τ − γðxÞ∂x); ðA4Þ

for the timelike normal na, with wðxÞ and γðxÞ defined in
Eq. (12). Finally, the radial part of the metric integration
measure dΣτ induced in the hyperboloidal slice Στ (see
details in Ref. [83] for the handling of the angular terms) is
given by

dΣτ ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g02 − h02

q
dx: ðA5Þ

Inserting these elements in Eq. (A1), a straightforward
calculation leads to Eq. (19), which we can rewrite as

E ¼ 1

2

Z
b

a

�
g02 − h02

jg0j ∂τϕ̄∂τϕþ 1

jg0j∂xϕ̄∂xϕþ jg0jV̂ ϕ̄ ϕ

�
dx

¼ 1

2

Z
b

a
(wðxÞ∂τϕ̄∂τϕþ pðxÞ∂xϕ̄∂xϕþ qðxÞϕ̄ϕ)dx:

ðA6Þ
Identifying ψ ¼ ∂τϕ, and taking E for the square of the
norm of the vector u ¼ ðϕ;ψÞ, i.e., prescribing kuk2E ≔ E,
we recover expression (20). Considering only the ϕ part,
this “energy norm” is an H1-like norm, so it takes into
account the frequency (actually the wave number) of the
mode ϕ, a most important ingredient in our setting, given
the role of high-frequency perturbations in the ultraviolet
instability of QNM overtones. Finally, considering the
whole u ¼ ðϕ;ψÞ vector, this norm is an L2 norm coming
from the energy scalar product h·; ·iE [for qðxÞ > 0],

��
ϕ1

ψ1

�
;

�
ϕ2

ψ2

�	
E

¼ 1

2

Z
b

a
(wðxÞψ̄1ψ2 þ pðxÞ∂xϕ̄1∂xϕ2 þ qðxÞϕ̄1ϕ2)dx;

ðA7Þ

which coincides with Eq. (22) upon identification,
qðxÞ ¼ Ṽ. Note that γðxÞ plays no role in the energy scalar
product h·; ·iE.

2. Adjoint operator L†

A very important object in our discussion of QNM
spectral instability and the pseudospectrum construction is
the adjoint L† of the operator L. The definition of L†

depends on the choice of scalar product, and we shall adopt
here the energy scalar product (A7). The full construction
of the adjoint L† requires a discussion of its domain of
dependence. This is a delicate question, which is intimately
linked with the boundary and regularity conditions deter-
mining the functional space on which L and L† are defined.
This functional analysis issue will be addressed elsewhere,
and here we focus on the construction of the so-called
formal adjoint, formally satisfying the relation

�
L†

�
ϕ1

ψ1

�
;

�
ϕ2

ψ2

�	
E
¼

��
ϕ1

ψ1

�
; L

�
ϕ2

ψ2

�	
E
; ðA8Þ

for all u1 ¼ ðϕ1;ψ1Þ andu2 ¼ ðϕ2;ψ2Þ. Taking into account
the definition in Eq. (10) of the operator L, we write

�
L†

�
ϕ1

ψ1

�
;

�
ϕ2

ψ2

�	
E
¼

��
ϕ1

ψ1

�
;
1

i

�
0 1

L1 L2

��
ϕ2

ψ2

�	
E

¼
��

ϕ1

ψ1

�
;
1

i

�
ψ2

L1ϕ2 þ L2ψ2

�	
E

¼
��

ϕ1

ψ1

�
;
1

i

� ψ2

1
wðxÞ (∂xðpðxÞ∂xϕ2Þ − qðxÞϕ2 þ 2γðxÞ∂xψ2 þ ∂xγðxÞψ2)

�	
E
; ðA9Þ

where we have used the expressions for L1 and L2 in Eq. (11). Using the energy scalar product (A7) and integrating by parts,�
L†

�
ϕ1

ψ1

�
;

�
ϕ2

ψ2

�	
E
¼
�
1

i

� ψ1

1
wðxÞ(∂xðpðxÞ∂xϕ1Þ−qðxÞϕ1þ2γðxÞ∂xψ1þ∂xγðxÞψ1)

�
;

�
ϕ2

ψ2

�	
E

þ1

i
(2γðbÞψ̄1ðbÞψ2ðbÞ−2γðaÞψ̄1ðaÞψ2ðaÞ)

¼
�
1

i

�
0 1

L1 L2

��
ϕ1

ψ1

�
;

�
ϕ2

ψ2

�	
E
þ
Z

b

a
wðxÞ

�
1

i
2
γðxÞ
wðxÞ(δðx−aÞ−δðx−bÞ)ψ1

�
ψ2dx; ðA10Þ

where we have used pðaÞ ¼ pðbÞ ¼ 0, the real character of wðxÞ, pðxÞ, qðxÞ, and γðxÞ, and the Dirac-delta δðxÞ distribution
to formally evaluate the boundary terms. Thus, we can rewrite
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�
L†

�
ϕ1

ψ1

�
;

�
ϕ2

ψ2

�	
E
¼

�
1

i

�
0 1

L1 L2 þ 2
γðxÞ
wðxÞ (δðx − aÞ − δðx − bÞ)

��
ϕ1

ψ1

�
;

�
ϕ2

ψ2

�	
E

ðA11Þ

so that, introducing the operator L∂
2 as in Eq. (25),

L∂
2 ¼ 2

γðxÞ
wðxÞ (δðx − aÞ − δðx − bÞ); ðA12Þ

we can write the formal adjoint in Eqs. (23) and (24),

L† ¼ Lþ L∂ ; L∂ ¼ 1

i

�
0 0

0 L∂
2

�
: ðA13Þ

In general, γðxÞ does not vanish at the boundaries, so L is
not even symmetric and therefore cannot be self-adjoint.
Equation (A13) neatly identifies the loss of self-adjointness
with such nonvanishing γðxÞ, specifically linking spectral
instability with a boundary phenomenon, formally cast
through the presence of the Dirac-delta terms. This form
also explains the (formal) self-adjoint case L2 ¼ 0 dis-
cussed in Sec. V C 2.
More generally, evaluation of adjoints plays a key role in

all aspects of our discussion of spectral instability: (i) cal-
culation of conditions numbers κn, involving the spectral
problem of the adjoint L†, cf. Eq. (26); (ii) evaluation of the
pseudospectrum, involving the calculation of (generalized)
singular values of RLðωÞ and therefore the spectral problem
of R†

LðωÞRLðωÞ, cf. Eqs. (43) and (B21); and (iii) the
prescription of the norm jjδLjj

E
(that we have systemati-

cally denoted jjδṼjj
E
) to ϵ in the exploration of perturbed

spectral QNM problems, again involving the spectral
problem of the operator δL†δL. Details of the calculation
of adjoints in our discretized approach are given in
Appendixes B and C.

APPENDIX B: PSEUDOSPECTRUM IN THE
ENERGY NORM

Here, we derive the relevant expressions for the con-
struction of pseudospectra in the discretized version of the
energy norm.

1. Scalar product and adjoint

Let us consider a general Hermitian-scalar product in
Cn as

hu; viG ¼ ðu�ÞiGijvj ¼ u� · G · v; ðB1Þ

with G a positive-definite Hermitian matrix,

G� ¼ G; x� ·G · x > 0 if x ≠ 0; ðB2Þ

where � denotes conjugate-transpose, i.e., u� ¼ ūt and
G� ¼ Ḡt (we notice that, in the problem studied in this
work, the Hermitian positive-definite matrix G is actually a
real symmetric positive-definite matrix Gt ¼ G, but we
keep the discussion in full generality). Using Eqs. (B1) and
(B2) in the relation

hA†u; viG ¼ hu; AviG; ðB3Þ

characterizing the adjoint A† of A with respect to the scalar
product (B1), we immediately get

A† ¼ G−1A�G: ðB4Þ

2. Induced matrix norm from a
scalar product norm

The (vector) norm k·kG in Cn associated with the scalar
product h·; ·iG in Eq. (B1), namely,

kvkG ¼ ðhv; viGÞ12; ðB5Þ

induces a matrix norm k·kG in MnðCÞ defined as

kAkG ¼ max
kxkG¼1;x∈Cn

fkAxkGg; A ∈ MnðCÞ: ðB6Þ

A more useful characterization of this L2 induced matrix
norm is given in terms of the spectral radius ρðA†AÞ of A†A,
where

ρðMÞ ¼ max
λ∈σðMÞ

fjλjg: ðB7Þ

Indeed, we can write

kAk2G ¼
�

max
kxkG¼1;x∈Cn

fðhAx; AxiGÞ12g


2

¼ max
kxkG¼1;x∈Cn

fhAx; AxiGg

¼ max
kxkG¼1;x∈Cn

fhA†Ax; xiGg: ðB8Þ

The rest of the argument essentially follows from
the Rayleigh-Ritz formula for self-adjoint operators.
Explicitly, the (self-adjoint) matrix A†A is unitarily
diagonalizable and non-negative definite (that is,
hx; A†AxiG ≥ 0; ∀ x ∈ Cn), so we can find an orthonor-
mal basis of eigenvectors feig,
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A†Aei ¼ λiei; hei; ejiG ¼ δij; ðB9Þ

with real non-negative eigenvalues λi that we order as

0 ≤ λ1 ≤ λ2… ≤ λn: ðB10Þ

Expanding x ¼ P
i x

iei for an arbitrary x ∈ Cn, we write

hA†Ax; xiG ¼
X
i

λijxij2 ≤ λn
X
i

jxij2 ¼ λnkxjj2G; ðB11Þ

which we can recast as

�
A†A

x
kxkG

;
x

kxkG

	
G
≤ λn ¼ ρðA†AÞ: ðB12Þ

Inserting this into Eq. (B8), we conclude

kAk2G ≤ ρðA†AÞ: ðB13Þ
To prove that the inequality is actually saturated, it suffices
to show that there exists a vector x, kxkG ¼ 1, that realizes
the equality, i.e., kAx; Axk2G ¼ ρðA†AÞ. If we consider
x ¼ en,

kAenk2G ¼ hAen; AeniG ¼ hA†Aen; eniG
¼ λn ¼ ρðA†AÞ; ðB14Þ

and we can finally conclude

kAkG ¼ (ρðA†AÞ)12: ðB15Þ

3. Characterization of the pseudospectrum

Given an invertible matrix A ∈ MnðCÞ and a nonvanish-
ing eigenvalue λ, then 1=λ is an eigenvalue of A−1 and

max
λ∈σðA−1Þ

fjλjg ¼
�
min
λ∈σðAÞ

fjλjg


−1
: ðB16Þ

Then, for an invertible M ∈ MnðCÞ, we can write for the
squared norm k·kG of its inverse M−1,

kM−1k2G ¼ ρ(ðM−1Þ†M−1) ¼ ρ(ðMM†Þ−1)
¼

�
min

λ∈σðMM†Þ
fλg



−1

¼
�

min
λ∈σðM†MÞ

fλg


−1
; ðB17Þ

where in the passage from the first line to the second, we
have used Eq. (B16) and the definition (B7) of the spectral
radius, whereas in the last equality, we have used that a
matrix AB has the same eigenvalues as a matrix BA.
We now consider the ϵ-pseudospectrum characterization

in Definition 2, namely, Eq. (32), applied to the discretized
energy norm k·kG,

σϵGðAÞ ¼ fλ ∈ C∶kðλId − AÞ−1kG > 1=ϵg: ðB18Þ

Using Eq. (B17), with M ¼ λId − A, we can write

kðλId − AÞ−1kG > 1=ϵ ⇔ ϵ >
�

min
λ∈σðM†MÞ

fλg

1

2: ðB19Þ

Finally, σϵGðAÞ can be written as

σϵGðAÞ ¼ fλ ∈ C∶smin
G ðλId − AÞ < ϵg; ðB20Þ

where smin
G ðMÞ is the minimum of a set of generalized

singular values of M, related to the h·; ·iG scalar product

smin
G ðMÞ ≔ minf

ffiffiffi
λ

p
∶λ ∈ σðM†MÞg: ðB21Þ

When choosing the energy scalar product in Sec. IV, that is,
with G ¼ GE (see explicit expression in Appendix C), we
recover expression (43) for σϵEðAÞ. When using the canoni-
cal L2 product, we recover the standard σϵ2ðAÞ in Eq. (40),
where

smin
2 ðMÞ ¼ minf

ffiffiffi
λ

p
∶λ ∈ σðM�MÞg≕ σmin ðB22Þ

is the smallest of the singular values σiðMÞ ¼ ffiffiffiffi
λi

p
,

λi ∈ σðM�MÞ, in the standard singular value decomposi-
tion of M.

APPENDIX C: ELEMENTS IN THE
CHEBYSHEV DISCRETIZATION

1. Chebyshev spectral decomposition

The Chebyshev’s polynomial of order k is given by

TkðxÞ ¼ cos ðk arccos xÞ; x ∈ ½−1; 1�: ðC1Þ

Chebyshev’s polynomials provide an orthogonal basis for
functions f∈L2ð½−1;1�;wðxÞdxÞ, with wðxÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
,

so we can write the spectral expansion

fðxÞ ¼ c0
2
þ
X∞
k¼1

ckTkðxÞ: ðC2Þ

For sufficiently regular functions fðxÞ, coefficients ck
decay exponentially in k. An fNðxÞ approximate of fðxÞ
is obtained by truncating the series to order N,

fNðxÞ ¼
c0
2
þ
XN
k¼1

ckTkðxÞ: ðC3Þ

The function f is therefore approximated by the vector
ðc0; c1;…; cNÞ inCn, with n ¼ N þ 1. In particular, we can
evaluate the integral of f in the interval ½−1; 1� as
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Z
1

−1
fNðxÞdx ¼ c0 −

XbN2c
k¼1

c2k
4k2 − 1

: ðC4Þ

2. Collocation methods: Chebyshev-Lobatto grid

When dealing with the product of functions, as is the
case in our setting, the description in terms of spectral
coefficients ci is not convenient. Instead, one constructs a
Chebyshev’s interpolant fNðxÞ from the evaluation of fðxÞ
on points xi,

fNðxiÞ ¼ fðxiÞ; i ∈ f0; 1;…; Ng; ðC5Þ

where xi ∈ ½−1; 1� define an appropriately chosen n-point
quadrature grid. For concreteness, in the following, we
focus on the Chebyshev-Lobatto collocation grid including
the interval boundaries x ¼ �1, in the spirit of including
horizon and null infinity points in our compactified picture.
The Chebyshev-Lobatto (N þ 1) grid is given by the
extrema of TNðxÞ [i.e., the N − 1 zeros of T 0

NðxÞ] together
with both extreme points x0 ¼ 1 and xN ¼ −1, resulting in
the values

xi ¼ cos

�
πi
N

�
; i ∈ f0; 1;…; Ng: ðC6Þ

We can enforce Eq. (C5) on this grid by constructing an
fNðxÞ interpolant in the functional form (C3), with coef-
ficients [172]

ci ¼
2 − δiN
2N

�
fðx0Þ þ ð−1ÞifðxNÞ þ 2

XN−1

j¼1

fðxjÞTiðxjÞ
�
;

ðC7Þ

with i ∈ f0; 1;…; Ng. In the construction of our differ-
ential operator L, the interpolant of the product of two
functions f and g is obtained by multiplication on grid
points, that is,

ðfgÞNðxiÞ ¼ fNðxiÞgNðxiÞ: ðC8Þ

In addition, we need an expression for the interpolant of the
derivative f0NðxÞ ¼ ðdf=dxÞNðxÞ, which is determined by

f0NðxiÞ ¼
XN
j¼0

DN
ijfNðxjÞ; ðC9Þ

with

DN
ij ¼

8>>>>>><
>>>>>>:

− 2N2þ1
6

i ¼ j ¼ N

2N2þ1
6

i ¼ j ¼ 0

− xj
2ð1−xjÞ2 0 < i ¼ j < N

αi
αj

ð−1Þi−j
xi−xj

i ≠ j;

ðC10Þ

where

αi ¼
�
2 i ∈ f0; Ng
1 i ∈ f1;…; N − 1g: ðC11Þ

3. Energy scalar product: Gram matrix GE

Let us first consider the integral

Iμðf; gÞ ¼
Z

1

−1
fðxÞgðxÞdμ; ðC12Þ

with dμ ¼ μðxÞdx. We can get a quadrature approximation
INμ ðf; gÞ to Iμðf; gÞ by using expression (C4) for N-
interpolants fN and gN in Eq. (C3) combined with the
particular expression (C7) for coefficients in the
Chebyshev-Lobatto grid and the grid multiplication in
Eq. (C8). We then obtain

INμ ðf; gÞ ¼ ftN · CN
μ · gN; ðC13Þ

with ftN ¼ (fðx0Þ;…; fðxNÞ), gtN ¼ (gðx0Þ;…; gðxNÞ) the
(N þ 1)-grid approximates of f and g, respectively, and CN

μ

the diagonal matrix given by

ðCN
μ Þij ¼ ðCN

μ Þiδij;

ðCN
μ Þi ¼

2μðxiÞ
αiN

�
1 −

XbN2c
k¼1

T2kðxiÞ
2 − δ2k;N
4k2 − 1

�
; ðC14Þ

where we have used T0ðxÞ ¼ 1, Tkð1Þ ¼ 1, and Tkð−1Þ ¼
ð−1Þk. Then, dropping the indices N, we can write the
discrete version of the scalar product h·; ·iE in Eq. (22) as

hu1; u2iE ¼
��

ϕ1

ψ1

�
;

�
ϕ2

ψ2

�	
E

¼ 1

2
ðψ�

1 · Cw · ψ2 þ ðDϕ1Þ� · Cp · Dϕ1

þ ϕ�
1 · CṼl

· ϕ2Þ; ðC15Þ

which can be rewritten in matrix form as

hu1; u2iE ¼ u�1 · G
E · u2

¼ ðϕ̄1; ψ̄1Þ
�GE

1 0

0 GE
2

��
ϕ2

ψ2

�
; ðC16Þ
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with [here, the matrices CṼl
, Cp, and Cw are given

by Eq. (C14) for the respective functions μðxÞ ¼
ṼlðxÞ; pðxÞ; wðxÞ]

GE
1 ¼ 1

2
ðCṼl

þ Dt · Cp · DÞ;

GE
2 ¼ 1

2
Cw: ðC17Þ

These expressions define the Gram matrix GE for the
discretized version of the energy scalar product (22), in
the basis determined from the Chebyshev-Lobatto spectral
grid.

a. Grid interpolation

An important aspect to observe when performing the
numerical integration is that Eq. (C4) is exact whenever the
original function fðxÞ is a polynomial of order less than or
equal to N. With this in mind, and assuming that fðxÞ and
gðxÞ are polynomials, Eq. (C13) is exact only for the case
where the product ðfgÞðxÞ yields polynomials of order less
than or equal to N. In practical terms, the procedure
described above hampers the accuracy of the scalar
product’s numerical integration whenever the order
becomes greater than N.
As an illustrative example, take fðxÞ ¼ PlðxÞ and

gðxÞ ¼ Pl0 ðxÞ, with PlðxÞ the Legendre polynomials.
Then, the integral (C12)—with μðxÞ ¼ 1 omitted from
the expression—yields Iðf; gÞ ¼ 2δl;l0=ð2lþ 1Þ. If we
now consider the discrete version INðf; gÞ given by
Eq. (C13), one observes that the exact result is obtained
only for the cases lþ l0 ≤ N, even though each individual
function fðxÞ or gðxÞ is exactly represented for l ≤ N and
l0 ≤ N, respectively.
To mitigate this issue, we modify the integration matrix

CN
μ —or, equivalently, the Gram matrix GE—by incorpo-

rating the following interpolation strategy.
Given an interpolant vector fNðxiÞ associated with a

Chebyshev-Lobatto grid fxigNi¼0, one can obtain a second
interpolant vector fN̄ðx̄iÞ associated with another
Chebyshev-Lobatto grid fx̄igN̄i¼0 with a resolution N ≠ N̄
via

fN̄ðx̄iÞ ¼
XN
i¼0

IīifNðxiÞ: ðC18Þ

Components Iīi of the interpolation matrix I are obtained by
evaluating Eq. (C3) at the grid fx̄igN̄i¼0, with the coefficients
fcigNi¼0 expressed in terms of fNðxiÞ via Eq. (C7). Then,

Iīi ¼
1

αiN

�
1þ

XN
j¼1

ð2 − δj;NÞTjðx̄iÞTjðxiÞ
�
: ðC19Þ

Note that the interpolation matrix I has size N̄ × N, which
reduces to a square matrix only if N̄ ¼ N. In this case,
Eq. (C19) is actually the identity matrix, as expected.
Then, for a fixed N, we consider the discrete integration

(C13) in terms of a higher resolution N̄ ¼ 2N and inter-
polate the expression back to the original resolution N. In
other words, defining IN

μ ðf; gÞ ≔ IN̄μ ðf; gÞ, we can con-
sider the new, grid-interpolated, discrete integration

IN
μ ðf; gÞ ¼ ftN · CNμ · gN; ðC20Þ

where CNμ ¼ It · CN̄
μ · I or, in terms of its components

ðCNμ Þij ¼
XN̄
ī¼0

XN̄
j̄¼0

ðItÞiīðCN̄
μ Þī j̄Ij̄j: ðC21Þ

Going back to the illustrative example where fðxÞ ¼
PlðxÞ and gðxÞ ¼ Pl0 ðxÞ, we now obtain INðf; gÞ ¼
2δl;l0=ð2lþ 1Þ exactly whenever l;l0 ≤ N.
In the same way, we grid interpolate the Gram matrices

GE
1 ¼ It ·GE

1 · I; GE
2 ¼ It · GE

2 · I; ðC22Þ

which allows us to perform the scalar product (C16) via

hu1; u2iE ¼ u�1 · G
E · u2

¼ ðϕ̄1; ψ̄1Þ
�GE

1 0

0 GE
2

��
ϕ2

ψ2

�
: ðC23Þ

APPENDIX D: PÖSCHL-TELLER QNMs
AND REGULARITY

Here, we give the derivation of Pöschl-Teller QNM
frequencies (and QNM eigenfunctions in our setting),
which we do for completeness and, more importantly, to
illustrate, with an explicit example, the role of regularity in
the enforcement of outgoing boundary conditions in the
hyperboloidal scheme.
We start from the Fourier transform in time of the Pöschl-

Teller wave equation in Bizoń-Mach coordinates, i.e.,
Eq. (56),

�
ð1 − x2Þ d2

dx2
− 2ðiωþ 1Þx d

dx
− iωðiωþ 1Þ − 1

�
ϕ ¼ 0:

ðD1Þ

This equation can be solved in terms of hypergeometric
functions. Making the change x ¼ 1–2z, it is rewritten as
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�
zð1 − zÞ d2

dz2
þ ðð1þ iωÞ − 2ð1þ iωÞzÞ d

dz

− ðiωðiωþ 1Þ þ 1Þ
�
ϕ ¼ 0; ðD2Þ

namely, Euler’s hypergeometric differential equation

�
zð1− zÞ d

2

dz2
þðc− ðaþbþ1ÞzÞ d

dz
−ab

�
ϕ¼ 0; ðD3Þ

for the values

c ¼ 1þ iω;

a ¼ ð2iωþ 1Þ � i
ffiffiffi
3

p

2
;

b ¼ ð2iωþ 1Þ − a ¼ ð2iωþ 1Þ ∓ i
ffiffiffi
3

p

2
: ðD4Þ

For each choice of ω, this equation admits two linearly
independent solutions that can be built from the Gauss
hypergeometric function 2F1ða; b; c; zÞ. It is only when we
enforce some regularity in the solution that the spectral
parameter ω is discretized and we recover the QNM
frequencies. In this particular case, it is when we truncate
the hypergeometric series 2F1ða; b; c; zÞ to a polynomial
that we recover Pöschl-Teller QNM frequencies. Such
truncation occurs when either a or b is a nonpositive
integer. From Eq. (D4), we can write

ω ¼ ∓
ffiffiffi
3

p

2
þ i

�
−aþ 1

2

�
¼ �

ffiffiffi
3

p

2
þ i

�
−bþ 1

2

�
: ðD5Þ

Therefore, imposing either a ¼ −n or b ¼ −n, with
n ∈ N ∪ f0g, we finally get

ω�
n ¼ �

ffiffiffi
3

p

2
þ i

�
nþ 1

2

�
: ðD6Þ

Choosing the a ¼ −n version, the corresponding eigen-

vectors can be written as Jacobi polynomials Pðα;βÞ
n ðxÞ,

defined as

Pðα;βÞ
n ðxÞ ¼ ðαþ 1Þn

n! 2F1

�
−n; 1þ αþ β; αþ 1;

1 − x
2

�
;

ðD7Þ

with ðyÞn the Pochhammer symbol [i.e., ðyÞn¼
Q

n−1
k¼0ðy−kÞ].

Inserting, for a given n ∈ N ∪ f0g, the values in Eqs. (D4)
and (D6) into 2F1ða; b; c; zÞ, we get, upon comparison with
Eq. (D7),

α ¼ β ¼ iωn; ðD8Þ

so the Pöschl-Teller QNM eigenfunctions can be written, in
Bizoń-Mach coordinates, as

ϕ�
n ðxÞ ¼ Pðiω�

n ;iω�
n Þ

n ðxÞ; x ∈ ½−1; 1�: ðD9Þ

[1] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian Physics,
Adv. Phys. 69, 3 (2020).

[2] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A.
Driscoll, Hydrodynamic Stability without Eigenvalues,
Science 261, 578 (1993).

[3] L. N. Trefethen, Pseudospectra of Linear Operators,
SIAM Rev. 39, 383 (1997).

[4] E. B. Davies, Pseudospectra of Differential Operators, J.
Oper. Theor. 43, 243 (2000), https://www.jstor.org/stable/
24715241.

[5] J. Sjöstrand, Pseudospectrum for Differential Operators,
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