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Under physiological conditions, ballistic long-range transfer of electronic excitations in molecular
aggregates is generally expected to be suppressed by noise and dissipative processes. Hence, quantum
phenomena are not considered to be relevant for the design of efficient and controllable energy transfer over
significant length scales and timescales. Contrary to this conventional wisdom, here we show that the
robust quantum properties of small configurations of repeating clusters of molecules can be used to tune
energy-transfer mechanisms that take place on much larger scales. With the support of an exactly solvable
model, we demonstrate that coherent exciton delocalization and dark states within unit cells can be used to
harness dissipative phenomena of varying nature (thermalization, fluorescence, nonradiative decay, and
weak intersite correlations) to support classical propagation over macroscopic distances. In particular, we
argue that coherent delocalization of electronic excitations over just a few pigments can drastically alter the
relevant dissipation pathways that influence the energy-transfer mechanism and thus serve as a molecular
control tool for large-scale properties of molecular materials. Building on these principles, we use extensive
numerical simulations to demonstrate that they can explain currently not-understood measurements of
micron-scale exciton diffusion in nanofabricated arrays of bacterial photosynthetic complexes. Based on
these results, we provide quantum design guidelines at the molecular scale to optimize both energy-transfer
speed and range over macroscopic distances in artificial light-harvesting architectures.

DOI: 10.1103/PhysRevX.11.041003 Subject Areas: Chemical Physics,
Condensed Matter Physics,
Quantum Physics

I. INTRODUCTION

Over the last decades, research into the role of coherent
excitonic delocalization in the dynamics in photosynthetic
membranes has shown that strong coherent coupling in
subunits of tightly coupled pigments can result in short-
ranged excitonic delocalization in the steady state [1–6].
Delocalization within these domains, typically restricted to
individual proteins termed antenna complexes, is essential
for modeling transient and steady-state optical spectra of
the full light-harvesting ensemble. Additionally, excitonic
delocalization within antenna complexes is a crucial
ingredient for a modular description of dynamics over

longer distances and timescales [7–9], which, as observed
experimentally [10–13], can be interpreted as a series of
incoherent transfer steps, described by simple rate proc-
esses. These energy-transfer rates depend on the properties
of the states involved and thereby rely heavily on the
steady-state excitonic delocalization within antenna com-
plexes, as has been shown by numerically exact calcula-
tions [4,5,14].
The modular architecture found in biological light-

harvesting membranes, whereby antenna complexes con-
taining a few pigments self-aggregate into larger structures,
offers the potential for artificial solar energy conversion and
molecular electronics based on such a modular design
[15–18]. This potential is made possible by the high degree
of experimental control that is available today for the
integration of synthetic and biological structures and for the
directed assembly of photosynthetic antenna complexes
isolated from living organisms [19–24] or of supramolecu-
lar dye arrays [25–31]. To facilitate the realization of these
devices, however, a theoretical understanding of the mech-
anisms involved in to-date unexplained observations of the
large diffusion lengths in several of these light-harvesting
architectures is needed. For instance, the observed micron-
scale diffusion of excitations in nanofabricated arrays of
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purple bacteria antenna complexes and phycobilisome
proteins [19–21] exceeds, by more than 1 order of
magnitude, the theoretical expectation for diffusion based
on experimentally determined parameters under physio-
logical conditions. On the one hand, this shows that an
important enhancement of the diffusion can be achieved
with hybrid technologies. On the other hand, it stresses the
necessity for theory to establish and verify physical design
principles by which delocalization of electronic excitations
over a few pigments can enable the observed long-range
energy transfer.
One viable strategy for improving the diffusion lengths

of excitons is to extend their lifetime, thus allowing them to
propagate across longer distances. Recent studies on the
role of dark states in solar energy conversion have provided
valuable insight into the potential advantages of protecting
excitations from losses due to fluorescence in order to
promote charge separation [32–36]. These models, though,
do not consider the microscopic origin of the interactions,
thereby omitting the conditions that enable or inhibit the
active participation of dark states in the dynamics. Because
dark states cannot be excited directly by light and typically
do not couple efficiently to the propagating bright states,
their participation in the exciton propagation is often
overlooked and requires a careful reconsideration of the
typical models used to describe resonant energy transfer
[37,38]. A further challenge is presented by the need for
accounting for nonradiative decay due to the interaction
between electronic excitations and vibrational motion of
pigment molecules, which is responsible for the usually
low fluorescence yield of light-harvesting complexes
[39,40]. In fact, the competition between radiative and
nonradiative decay channels can drastically modify the
dissipation landscape, leading to scenarios in which opti-
cally dark states have a much shorter lifetime than bright
states. Moreover, the dynamics of excitons can be influ-
enced by the presence of correlations between the local
vibrational environments of each pigment. Most research
on the topic has been focused on clarifying the extent to
which these correlations influence the ultrafast spectros-
copy of excitons, often leading to contrasting predictions
[41]. However, more relevant for our case, weak intersite
correlations can be expected to play a role on much longer
timescales, too, and thus influence nonradiative decay.
In the present work, we provide a theoretical model that

identifies the desirable features of spectral structures and
exciton delocalization within unit cells (subunits of tightly
coupled pigments) that support efficient energy transfer.
This model builds on the formation and participation of
dark states in the dynamics in order to achieve long-range
diffusion across arrays of these subunits. We show how this
is possible by a combination of excitonic delocalization
within unit cells and close proximity between unit cells.
Identifying each LH2 complex as a unit cell of the transfer
chain, we show that a model that can explain the long-range

energy propagation reported in LH2 arrays does not need to
resort to previously hypothesized [42–44], long-range
quantum coherence involving several LH2 complexes
[39,45–48]. Indeed, we demonstrate that a theoretical
description that is consistent with available experimental
data concerning structure and optical response of the LH2
antenna [39,45–47,49] can be developed, which reproduces
the experimentally observed exciton diffusion length [20].
This theoretical description therefore presents desirable
features for transport across photosynthetic membranes.
The low-energy part of the excitonic spectrum of a unit cell
comprises states that are protected against dissipation,
while high-energy excitons offer fast pathways for energy
transfer to neighboring units by virtue of their delocaliza-
tion. A combination of these two features allows for robust
long-range energy transfer.
The remainder of this work is organized as follows. In

Sec. II A, we present the exactly solvable model, which
contains the necessary features to discuss long-range
exciton propagation across a modular array of excitonic
unit cells. Here, we discuss several energy-transfer regimes
and their relation to the underlying excitonic properties. In
Sec. II B, we introduce the bacterial antenna complex LH2
and provide a thorough characterization of their excitons
relevant to energy transfer. In Sec. II C, we present the
results of our simulations of a linear array of LH2
complexes, and we discuss how the mechanisms presented
in Sec. II A apply to a real-world application, backed by
existing experimental findings. Section III summarizes the
main results of this work and sets a broader context in
which these can provide useful guidelines for energy-
transfer design in molecular materials.

II. MODEL, RESULTS, AND MAJOR INSIGHTS

A. Minimal model of a light-harvesting array

The beneficial role provided by exciton delocalization
and the formation of states protected against dissipation in
excitonic energy transfer can be readily understood in a
model system made up of dimeric unit cells [Fig. 1(a)]. Let
us consider a homogeneous linear array of unit cells, each
of them described by a Hamiltonian

ĤðnÞ ¼
X
i

εijinihinj þ
X
i≠j

Jijjinihjnj; ð1Þ

where the state jini describes an electronic excitation of the
ith pigment belonging to the nth unit cell. Energy transfer
across the full array is made possible by the interaction
between pigments of different unit cells, described by
V̂ðn;nþ1Þ ¼ P

i;j Vijjinihjnþ1j þ H:c:, where Vij are inter-
dimer dipole-dipole couplings.
If the single-pigment dephasing rate γ, the intradimer and

interdimer couplings J12, and the interdimer dipole-dipole
couplings Vij follow
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Vij < ℏγ < J12; ð2Þ

then delocalized intradimer excitons defined by ĤðnÞjαni ¼
Eαjαni form. These may be used to describe the (incoher-
ent) energy transfer between adjacent dimers [8]. We refer
to “incoherent” or “classical” transfer interchangeably,
meaning that interunit cell coherences of the density
operator of the full chain are negligible (hinjρjjmi ≈ 0
for n ≠ m), which then results in classical diffusion
across subunits exhibiting local coherent dynamics. The
hierarchy of interactions in Eq. (2) is commonly fulfilled in
photosynthetic membranes and nano-engineered arrays,
where pigments aggregate in antenna complexes within

subnanometer distances, while the intercomplex distances
can span several nanometers, as we will discuss later in
detail. For the configuration of antiparallel transition
dipoles (i.e., d1 ¼ −d2 ¼ de1) [indicated by red arrows
in Fig. 1(a)], the nth dimeric unit supports a dark (bright)
exciton jdni (jbni) given by the symmetric (antisymmetric)
coherent superposition jαni of single-pigment states,
namely, jαni ¼ jdnbni ¼ ðj1ni � j2niÞ=

ffiffiffi
2

p
when ε1 ¼ ε2.

Within this framework, a quantum master equation
description of the full chain Hamiltonian in the presence
of dephasing and relaxation mechanisms [50] can be
replaced by the classical rate equations

∂tpn
α ¼ −Γαpn

α −
X

β;m¼n�1

Wβαpn
α þ

X
β;m¼n�1

Wαβpm
β

−
X
α0ð≠αÞ

Rα0αpn
α þ

X
α0ð≠αÞ

Rαα0pn
α0 þ Inα; ð3Þ

for the population pn
α of the αth exciton on the nth dimeric

unit cell. Here, pairs of subindices αβ (αα0) label excitons
on different (the same) unit cells. The rates that describe the
transfer of excitations between unit cells,Wαβ, their overall
decay rate Γα, and their thermalization rate Rαα0 depend on
the characteristics of the quantum states and their environ-
ments within these cells. Injection of excitations into the
array occurs with rates Inα on site n. The rates Wαβ can be
obtained from the overlap between homogeneous line-
shape functions and depend on the coupling matrix
elements Vαβ ¼ hαnjV̂ðn;nþ1Þjβnþ1i between unit-cell
eigenvectors and the relative dephasing rate γαβ between
these states via

Wαβ ¼
8<
:

2jVαβ j2
ℏ2

1
γαβ

for α ¼ β

2jVαβ j2
ℏ2

γαβ
γ2αβþ4J2

12
=ℏ2 otherwise;

ð4Þ

as explained in more detail in the Appendix D. The
dephasing rate between nonoverlapping excitons γαβ ¼
γα þ γβ is the sum of the linewidths γα ¼

P
α0 Rα0α=2,

which are typically dominated by pure dephasing Rαα over
the intraunit-cell thermalization rates Rα0≠α. The thermal-
ization rate Rα≠α0 ∝ J ðjEα − Eα0 jÞjnðEα − Eα0 Þj is propor-
tional to the phonon spectral density J ðℏωÞ and to the
thermal boson occupation number nðℏωÞ across the exci-
tonic manifold, which leads to a Boltzmann distribution of
the excitons when injection, loss, and interunit-cell transfer
are much slower than thermalization. Excitonic pure
dephasing Rαα=2 ¼ P

i jhinjαnij4γ ≡ P−1
α γ is slower than

the pigment’s pure dephasing γ by a factor given by the
inverse participation ratio P−1

α [51]. Consequently, exci-
tonic delocalization (Pα > 1) results in slower dephasing
rates for unit-cell excitons in comparison to individual
pigments, which, based on Eq. (4), implies an enhancement

(a) (b)

(c)

FIG. 1. Exciton propagation across a chain of dimerized units.
(a) Linear chain of dimerized unit cells separated by a distance l
consisting of interacting transition dipole moments, and a sketch
of the geometry and level diagram of two neighboring unit cells.
Energy transfer between subunits is considered to be incoherent.
(b) Distance dependence of the couplings between unit-cell
excitons. For large distances (far field, l=l0 ≳ 3.2), the coupling
between bright states Vbb dominates (red line). At short distances,
dark states are mainly involved in the energy transfer, which
proceeds through the couplings Vdd and Vbd (blue and purple
lines). Because of these couplings, the stationary populations p̄b
and p̄d deviate from those in the thermal equilibrium regime
that characterizes the far-field limit (gray dotted line).
(c) Effective decay rate Γ̄ (left) and diffusion length ldiff (right)
as a function of the local exciton-phonon coupling, quantified by
R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RbdRdb
p

. The interdimer distance is fixed to l=l0 ¼ 1.78,
corresponding to the yellow line in (a). For low fluorescence yield
and antiparallel dipoles (blue line), the coupling to local phonons
is beneficial for long-range energy transfer as a consequence of a
reduced decay rate. A larger fluorescence yield (red line) or a
change in exciton symmetry (green line) leads to an unfavorable
scaling with respect to R: Coupling to local phonons hinders
long-range energy transfer. The model parameters take the
values γ ¼ ð30 fsÞ−1 ¼ 177 cm−1=ℏ, l0 ¼ 1 nm, d ¼ 5D, Γth ¼
ð1 nsÞ−1, e−l0=rc ¼ 0.9, and kBT ¼ J12 ¼ 252 cm−1.
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of the transfer rates between excitons in neighboring units
with increasing unit-cell delocalization. For this dimeric
system where Pα ¼ 2, delocalization over two pigments of
states jbni and jdni results in a twofold speedup on the
interdimer transfer Wdd and Wbb, as compared to unit
cells where strong dephasing γ or mild coupling J12
prevents the formation of delocalized excitons jαni.
Excitonic delocalization within unit cells also redistributes
the optical transition dipole strength of individual pig-
ments, resulting in a fluorescence rate of excitons χαΓrad,
where Γrad is the single-pigment fluorescence rate and χα ¼P

ijhαnjiniχijhjnjαni characterizes the optical brightness
of an exciton. The brightness quantifies the number of
sites participating in the fluorescence from exciton α [52]
and is determined by χij ¼ ðei · ejÞj0ð2πrij=λÞ − 1

2
½ei·

ej − 3ðei · nijÞðej · nijÞ�j2ð2πrij=λÞ, where jν are spherical
Bessel functions of the first kind, λ is the wavelength
associated with the pigment’s Qy transition, and rij ¼
rijnij is the relative position of pigments i and j. In the limit
rij ≪ λ, the brightness reduces to the usual measure of
superradiance jDαj2=d2, i.e., the relative dipole strength,
where Dα ¼

P
ihijαidi, leading to a superradiant jbi

(χb ≈ 2) and a subradiant jdi (χd ≈ 0) exciton for the
dimeric unit cells of Fig. 1(a).
Two ideas that will play a major role later are worth

stressing at this point. First, we note that, while dark states
do not couple significantly to electromagnetic fields, they
still play a central role in the energy-transfer dynamics
across different unit cells. Intuitively, one expects that, if
the distance between unit cells is much larger than their
internal size (l ≫ l0), two neighboring dimers couple via
their global dipoles Dα. However, if the dimers are placed
sufficiently close such that their distance becomes compa-
rable to their spatial extent (l≳ l0), the dipole approxima-
tion for their mutual interaction breaks down, and states
with vanishing dipole strength can start to interact via their
higher moments, thus gaining some coupling strength Vdd.
This interaction can even exceed the one of bright states
Vbb in certain configurations, as shown in Fig. 1(b), where
the coupling strengths Vαβ are plotted against the inter-
dimer distance, for the arrangement shown in Fig. 1(a). For
distances l≲ 3.2l0, dark states couple more strongly than
bright states. As a result, energy transfer through the dark
manifold can be achieved much faster than through its
bright counterpart. Second, we note that typical light-
harvesting complexes show a rather low quantum yield
of fluorescence ϕ; i.e., most of the optically generated
excitations are lost through nonradiative decay channels.
Thus, dark states, although protected against fluorescence,
could easily be more dissipative than bright states, as we
show below. As discussed in Appendixes B and C, non-
radiative decay rates are influenced by the presence of
correlations in the vibrational environments of single pig-
ments. When these correlations are taken into account, the

nonradiative decay rate is distributed to different excitons,
analogously to what happens to the radiative rates (i.e.,
superradiance). In fact, static correlations between local
vibrational environments can be interpreted as arising from
the presence of delocalized vibrations coupling to different
sites (see Appendix C for a detailed explanation). Under
these circumstances, the excitonic decay rates gain a
prefactor κα, which depends on the phase with which each
site contributes to the excitonic wave function. Depending
on the specific exciton, localized excitations can interfere
constructively (destructively) to yield nonradiative rates
that can be larger (smaller) than their single-pigment
counterpart. In our case, the nonradiative decay rate of
the symmetric (antisymmetric) state jdni (jbni) is enhanced
(reduced) by a factor κdðbÞ ¼ 1� e−l0=rc with respect to its
single-pigment value Γnonrad, where rc is the correlation
length of the pigment’s vibrational environment. Thus, the
decay rate from exciton jαni is given by

Γα ¼ χαΓrad þ καΓnonrad: ð5Þ

Note that, for large correlation lengths, the nonradiative
decay from the bright state can be significantly reduced
compared to the one from the dark state, i.e., κb ≪ κd.
Since both radiative and nonradiative decays in light-
harvesting complexes are typically much slower than
exciton thermalization, the decay of photoexcitations in
a single light-harvesting unit occurs from a thermalized
exciton distribution with the average rate

Γth ¼
X
α

pth
α Γα; ð6Þ

where pth
α ∝ e−Eα=kBT . This average decay rate is an

experimentally accessible quantity, as is the quantum yield
of fluorescence,

ϕ ¼
P

αχαp
th
α Γrad

Γth
: ð7Þ

The latter only determines the overall relative contribution
of radiative and nonradiative decays, whereas the factors χα
and κα determine how these rates are distributed across the
excitonic manifold.
So far, we have discussed how delocalization, transition

dipole geometry and environmental correlations determine
the dissipation properties of the excitonic states within unit
cells, radiative and nonradiative alike, and how the finite
size of the unit cell in densely packed arrays opens up the
possibility to engage dark states into the propagation
dynamics. We now have all the necessary ingredients to
determine how all these properties influence the diffusion
length of excitons across the light-harvesting array. As we
are interested in diffusion over macroscopic distances, it is
useful to describe the position of a dimeric unit cell in terms
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of a continuous variable x ¼ nl as l → 0. Thus,
bright- and dark-state populations at discrete sites pn

αðtÞ
are replaced by the respective densities pαðx; tÞ, and Eq. (3)
takes the form of two, coupled, continuous diffusion
equations, which allow for an analytical solution of the
steady-state density pαðx;∞Þ, as detailed in Appendix A.
If we assume that the injection and decay happen on a
much slower timescale than transfer and relaxation, the
solutions for local driving at x ¼ 0 take the simple form
pαðx;∞Þ ¼ ½p̄α=ð2ldiffÞ�e−jxj=ldiff , with p̄b þ p̄d ¼ 1. The
diffusion length is given by ldiff ¼ l

ffiffiffiffiffiffiffiffiffiffi
W̄=Γ̄

p
, introducing the

effective transfer and decay rates

W̄ ¼ p̄bðWbb þWdbÞ þ p̄dðWdd þWbdÞ; ð8Þ

Γ̄ ¼ p̄bΓb þ p̄dΓd; ð9Þ

as weighted averages on the populations p̄α. These pop-
ulations are determined by the ratio

p̄d

p̄b
¼ Rdb þ 2Wdb

Rbd þ 2Wbd
; ð10Þ

which only depends on the rates that provide mixing
between bright and dark manifolds. In particular, we
observe that the presence of symmetric interdimer
bright-to-dark transfer Wdb ¼ Wbd causes a deviation of
the steady-state populations from thermal equilibrium
Rdb=Rbd ¼ e−ðEd−EbÞ=kBT , resulting in an increase of the
stationary dark-state population. Thus, the onset of this
nonequilibrium state, which can be observed at short
interdimer separations lwhen the ratesWbd ¼ Wdb become
comparable to Rbd and Rdb [Fig. 1(b), gray dotted line],
leads to a modification of effective transfer and decay rates
with respect to their equilibrium values.
In order to study the effect of dark states on

energy transfer, we focus on the dependence of the
diffusion length ldiff on the average intradimer relaxation
rate R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RbdRdb
p

, quantifying the strength of local
electron-phonon coupling, at a fixed lattice spacing l such
that bright-to-dark transfer and relaxation take place on a
similar timescale and exciton transfer through dark states is
faster than through bright states [Fig. 1(b), yellow verti-
cal line].
First, we consider the ideal situation in which the main

decay channel is radiative (ϕ ¼ 0.9): Most of the dissipa-
tion takes place at the low-energy bright state, which
propagates more slowly than the higher-energy dark
exciton. In this scenario, long-range energy transfer clearly
benefits from the establishment of a nonequilibrium state
with more population in the dark state. In fact, when
reducing R, e.g., by decreasing the local exciton-phonon
coupling, we are moving population from the slow, dis-
sipative bright state to the fast, less-dissipative dark state.
Furthermore, at the same time, we are reducing the effective

decay rate Γ̄ and increasing the effective transfer rate W̄,
resulting in a larger diffusion length ldiff [Fig. 1(c),
red line].
In a more realistic scenario, we expect nonradiative

decay to play a much bigger role. Let us then set ϕ ¼ 0.1,
closer to values observed for biological light-harvesting
complexes. In doing so, we also adjust the single-pigment
decay rates Γrad and Γnonrad to ensure that the effective
decay rate at thermal equilibrium Γth from Eq. (6) remains
the same as in the case just considered. Since the main
decay pathway is now the nonradiative decay from the fast
high-energy exciton, an increase in the relaxation rate R
would lead to a longer-lived excitation but also to a slower
propagation. However, the former prevails: The reduction
of effective decay Γ̄ is large enough to ensure a longer-
ranged propagation [Fig. 1(c), blue line]. In other words, by
increasing the coupling to local phonons, we counter-
intuitively increase the spatial extent of energy transfer,
at the price of making it slower. This energy-transfer regime
can be seen as a natural extension to systems with realistic
nonradiative decay channels of the dark-state protection
scheme proposed in the context of quantum photocells
[32–36] and recently applied to energy transfer [53]. Our
generalized “dark” state protection mechanism makes use
of states that are protected against nonradiative decay (and
are therefore “dark”) to extend the lifetime of the excitons,
which can diffuse across longer distances.
Lastly, we observe that, while nonradiative decay path-

ways seem to fundamentally limit the transport efficiency
of light-harvesting architectures, one can work around this
constraint by exploiting the symmetry of the excitonic
wave function. Let us consider an arrangement in which the
dipoles within each dimeric unit cell are now parallel. In
this situation, the intradimer coupling J12 becomes neg-
ative, and the low-energy exciton is now the symmetric
state ðj1ni þ j2niÞ

ffiffiffi
2

p
. While most of the optical dipole still

resides in the low energy level, this state also becomes the
most sensitive to nonradiative decay. Thus, we are left with
a high-energy exciton, which shows little dissipation and
fast transfer. As shown in Fig. 1(c) (green line), this
situation is similar to the one that we considered with
ϕ ¼ 0.9. The important difference, however, is that, in this
case, nonradiative decay is fully taken into account, but its
effect is mitigated by exploiting excitonic delocalization
within a unit cell and the ensuing redistribution of decay
pathways.

B. Bacterial light-harvesting units

The simple dynamical model considered so far allows for
analytical expressions that facilitate the identification of the
different mechanisms on which we base our explanation of
the to-date unexplained experimental observations of long-
range energy transfer in nano-engineered arrays of LH2
photosynthetic complexes of purple bacteria Rb. sphaer-
oides [20]. These complexes consist of a protein holding
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two concentric bacteriochlorophyll (Bchl) rings [Fig. 2(a)]
with the inner B850 ring consisting of 18 strongly
interacting Bchl pigments, which at room temperature
exhibit an excitonic delocalization across about 3–6 pig-
ments, determined by superradiance measurements [39,45–
48]. This subunit mediates the transfer between LH2
complexes under physiological conditions, whereas the
B800 pigments support localized excitations that extend the
absorption range of the LH2 complex and regulate oxida-
tion [54].
We consider the full B850 Hamiltonian ĤðnÞ describing

the interactions among Qy transitions of its 18 BChls,
sketched with red arrows in Fig. 2(a), and study the
delocalization properties of the single-ring excitons jαi,
with α ¼ 1;…; 18. For realistic LH2 complexes, we need
to consider different excitonic energies Eα from realiza-
tions of pigment energies εi in order to describe the
inhomogeneities (static disorder) arising from local protein
configurations. Our choice of spectral density, nearest-
neighbor couplings, static disorder, geometry, and
magnitude of the transition dipoles are justified by a
previous independent analysis of experimental observa-
tions [6,39,51,56–59], and when incorporated into our

model, they reproduce observed absorption spectra
and superradiance enhancement as shown in Figs. 2(b)
and 2(c) (for details of calculations and parameters, see
Appendixes D and E).
This parametrization of the B850 ring results in co-

operative fluorescence from hPα χαp
th
α i ≈ 3 pigments on

average (where h·i represents the average over static
disorder), which is consistent with the experimental obser-
vations of superradiance in LH2 [39]. Moreover, fixing the
decay rate for an isolated LH2 complex and the quantum
yield of fluorescence to the experimentally observed values
of Γth ¼ ð1 nsÞ−1 and ϕ ¼ 0.1 allows us to obtain the
distribution of decay rates Γα across the exciton manifold.
A modest value of rc ¼ 5 Å for the correlation radius of the
pigment’s vibrational environments [1,60] is sufficient to
generate a significant redistribution of the dissipation
rates to the higher-energy part of the excitonic manifold
[Fig. 2(c)], as we would expect for an antiparallel arrange-
ment of neighboring dipoles. The participation ratio shown
in Fig. 2(c) exhibits a maximum hPαi ≈ 8, also consistent
with previous estimates [39], which underlie excitonic
delocalization constrained to small portions of the B850
ring [Fig. 2(a)].

(a)

(b)

(c)
(d)

(e)

FIG. 2. Excitons in bacterial light-harvesting units. (a) Pigment arrangement in a LH2 antenna from Rps. acidophila [49]. B850
(violet) and B800 (blue) rings are composed, respectively, of 18 and 9 BChls, whose Qy transition dipoles are indicated by red arrows.
Electronic excitations are partially delocalized and undergo relaxation within the exciton manifold; they decay to the ground state or
transfer to neighboring rings. (b) Experimental absorption spectrum [55] (gray dots) and theoretical fit of the B800 and B850 bands of
LH2. The inclusion of coherent inter-ring couplings in an LH2 pair (green to violet dashed lines) only leads to small deviations from the
single-ring absorption (yellow line). (c) Energy distribution of the participation ratio (top), brightness (center), and decay rates (bottom)
of B850 excitons, for a single ring (yellow line) and for a coherently coupled B850 pair for different inter-ring distances (green to violet
dots). For a single ring, the underlying distribution is shown (yellow shading). Most delocalized states lie in the midenergy range;
superradiant excitons (χα > 1, above the gray dashed line) occupy the low-energy end of the spectrum, whereas the states with stronger
dissipation are high-energy dark states. Two-ring excitons are slightly more delocalized, but all two-ring quantities lie within the single-
ring distributions. (d) Steady-state density matrix of two coherently coupled B850 rings undergoing local relaxation and dephasing in
the single-ring exciton basis, for l ¼ 6.5 nm (green) and 8.5 nm (violet). Excitons are organized in ascending energy and grouped
according to the ring to which they belong. Populations are set to zero to increase contrast. (e) Average energy-transfer rates hWαβi
between two B850 rings for l ¼ 6.5 nm (green) and 8.5 nm (violet). Thicker and darker lines correspond to faster transfer. The three
fastest transfer pathways are highlighted (red dashed lines). For short l, the excitons in the mid-high-energy range are mostly involved in
energy transfer. Averages are performed over 104 realizations of static disorder.
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We should note that for realistic LH2 center-to-center
distances l, the aggregation into arrays does not disrupt the
excitonic manifold of single rings, as can be expected from
the similarity of optical spectra of diluted and densely
packed arrays [20]. Typical physiological conditions and
lipid-reconstituted membranes exhibit a center-to-center
distance l ≈ 8 nm, with increasing intercomplex distances
for larger lipid concentration [61–63]. On the other hand,
the process of nanofabrication of LH2 arrays exploits host-
guest interactions on a nano-imprinted substrate and does
not involve lipids [20], which allows us to assume the
6.2-nm diameter of LH2 β helices of Rb. sphaeroides [64]
as the absolute minimum for l. Hence, it is reasonable to
consider center-to-center separations of l≳ 6.5 nm in the
nano-engineered arrays.
To assess the robustness of the single-ring excitonic

manifold against the coherent interaction between
neighboring LH2s, we proceed to diagonalize the full
two-ring Hamiltonian ðĤð1Þ þ Ĥð2Þ þ V̂ð1;2ÞÞjμ̃i ¼ Eμ̃jμ̃i
and present, in Fig. 2(c), the average over static disorder
of the participation ratios, relative dipole strengths, and
dissipation rates. Notice that even though the participation
ratio in the LH2 pair Pμ̃ is slightly larger, very minor
changes occur in the distributions of optical brightness χμ̃
and dissipation rates Γμ̃ with respect to the single-ring
eigenstates. As a consequence, optical absorption spectra
are only slightly affected by the coherent interaction
between LH2 rings [Fig. 2(b)]. This result confirms that
the coherent electronic interaction for realistic values of l
does not significantly perturb the excitonic structure of
isolated rings. The robustness of the single-ring excitonic
manifold can be understood by noticing that the maximum
coupling between any two LH2 excitons residing on
different rings (averaged over static noise and relative
rotations on coplanar rings) is below 40 cm−1 even for
l ¼ 6.5 nm, which is much smaller than the nearest-
neighbor interactions within each ring, approximately
250–350 cm−1 [51,57]. One last argument in favor of
the robustness of the single-ring excitonic manifold to
the coherent coupling between rings is provided by looking
at the residual inter-ring coherence after exciton thermal-
ization. To do so, we set up a Lindblad equation describing
the coherent interaction between two rings and local
thermalization and dephasing,

∂tρ¼−
i
ℏ
½Ĥð1Þ þ Ĥð2Þ þ V̂ð1;2Þ;ρ�þðDð1Þ þDð2ÞÞρ; ð11Þ

and solve for the steady state ρss. Since both radiative and
nonradiative decays take place on a much slower timescale,
we neglect them here. The constant of proportionality
between the thermalization rates Rαα0 and the spectral
density J ðjEα − Eα0 jÞ estimated via fluorescence line-
narrowing experiments [60] is such that the approximately
200-fs timescale of equilibration in LH2 [56] is reproduced.

As we are interested in demonstrating that the stationary
inter-ring coherence is typically negligible, we average the
absolute value of the matrix elements jρssαβj over static
disorder to avoid ensemble dephasing. The results are
shown in Fig. 2(d) for two inter-ring distances. Even for the
shortest distance (l ¼ 6.5 nm), the average steady-state
coherence hjρssαβji between any two single-ring excitons
jα1i and jβ2i is much smaller than 1=2, which is the value it
would take for a maximally coherent superposition of two
states ðjα1i þ jβ2iÞ=

ffiffiffi
2

p
.

At this point, we have established that for center-to-
center distances l ≥ 6.5 nm, the incoherent energy transfer
between neighboring B850 rings can be treated based upon
the single-ring eigenstates. Now, we proceed to analyze the
mechanisms that underlie this incoherent energy transfer
between neighboring LH2s. In Fig. 2(e), we show how
different single-ring excitons residing on two neighboring
LH2 rings are connected via the average transfer rates
hWαβi. As we saw in the previous section, a shorter
separation between unit cells leads to a substantial partici-
pation of optically dark states in the energy process, which
can surpass the bright states in terms of transfer speed. In
fact, also in this case, when reducing the distance l from
8.5 nm to 6.5 nm, the fastest transfer pathways (red dashed
lines) shift from the low-energy part of the spectrum, where
most of the dipole strength resides, to higher-energy
excitons, which show larger delocalization. This finding
underlines that the interaction in densely packed arrays
does not depend on the exciton transition dipoles but rather
on their delocalization, as quantified by the participa-
tion ratio.

C. Nano-engineered LH2 arrays

Armed with these facts, we now proceed to discuss the
origin of the long-range diffusion observed in Ref. [20]. In
this experiment, simultaneous excitation with a continuous-
wave diffraction-limited laser beam and imaging of the
spatial profile of emission through confocal fluorescence
detection enabled the readout of exciton propagation
lengths of up to 2 μm in quasi-1D assemblies of LH2
complexes. To the best of our knowledge, theoretical
models could only explain such a diffusion by ignoring
static disorder and underestimating dephasing [6,65,66],
resulting in long-range excitonic delocalization across
approximately 40 pigments [42–44], a value that is in
conflict with the experimental observations [39,45–48].
In order to examine this experiment, we determine the

rates of the Pauli master equations, Eq. (3), for stochastic
realizations of the pigment energies εi and relative ori-
entations of a 1D array of 1001 coplanar LH2 complexes,
as shown schematically in Fig. 3(a), and study the sta-
tionary exciton distribution p̄n

α. For moderate excitation
power, which allows us to remain in the single excitation
sector, driving can be modeled to take place on a single
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ring via incoherent B800-to-B850 energy transfer
(Appendix F). Exciton distributions arising from a
Gaussian laser profile can then be obtained by convolution
of the driving profile with the solution for localized driving
(Appendix A).
Despite the presence of static disorder and the multilevel

structure of each unit cell, the stationary population
distribution across the LH2 array is still characterized by
an exponential distribution around the ring at which driving
takes place [Fig. 3(a)]. Thus, we can characterize the
population profile by a single parameter ldiff. When con-
sidering an initial Gaussian beam that is 400 nm wide (full
width at half maximum), our model is able to reproduce the
experimentally observed micron-range exciton propagation
lengths if l ¼ 6.5 nm [Fig. 3(b)], while natural distances of
8.0–8.5 nm yield a barely noticeable spread of the exciton
density. This result suggests that the LH2 packing density is
a key factor in determining the spatial extent of energy
transfer. With a distance of l ¼ 6.5 nm, a competition
between thermalization and transfer leads to the establish-
ment of a nonequilibrium steady-state exciton population
within antenna units p̄α, which has a larger weight on high-
energy dark states than the thermal distribution, as shown in

Fig. 3(c). This case is a clear signature that the non-
equilibrium transfer across these arrays partially proceeds
via high-energy dark states, which, as explained above, rely
on excitonic delocalization within each ring unit cell.
Despite being optically dark, these high-energy excitons

are more sensitive to nonradiative decay than their low-
energy bright counterpart, as shown in Fig. 2(c). Therefore,
energy transfer and decay dynamics have competing effects
on the diffusion length: Local exciton-phonon interactions
leading to exciton thermalization slow down the transfer of
excitons by moving population away from fast propagating
high-energy states, while at the same time granting them
more time to propagate, since low-energy excitons are less
sensitive to nonradiative decay. Whether this leads to a
larger diffusion length or not depends on the specifics of the
system under consideration. In order to test this possibility,
we artificially slow down the exciton thermalization time-
scale from 200 fs to 2 ps, which corresponds, in practice, to
forcing the steady-state exciton distribution in a given ring
p̄n
α to be further away from thermal equilibrium pth

α . The
shift of population towards the higher excitons results in a
shorter-ranged transfer [Fig. 3(d), orange dots], revealing
that these light-harvesting arrays operate in the generalized

(c)(a)

(b)

(d)

FIG. 3. Exciton propagation across a chain of LH2 units. (a) Energy transfer in a linear array of 1001 coplanar LH2 complexes subject
to local driving results in an exponential population distribution. Intercomplex distances can vary between roughly 6.5 nm in nano-
engineered arrays and 8.5 nm in biological membranes, resulting in inter-ring transfer ratesWαβ ≃ ð1–10 psÞ−1 in typical physiological
settings. Intracomplex dynamics is governed by interexciton dephasing and relaxation Rαα0 , with a typical timescale of 200 fs. (b) Spatial
exciton distribution for distances l ranging from 6.5 nm to 8.5 nm (green to violet lines), upon Gaussian driving with 400 nm full width
at half maximum (black dotted line). The simulations for l ¼ 6.5 nm agree with the experimental data taken from Ref. [20] (circles:
excitation profile; diamonds: fluorescence profile). (c) Nonequilibrium energy distribution of exciton population averaged across the
linear array for different distances l (dots). The shaded areas represent the range in which the distribution varies when moving from the
center to the ends of the array. The injection at the central ring takes place around 12 500 cm−1 from the B800 ring (pink shaded area). At
small l, the population deviates from the Boltzmann distribution (dashed line), and transfer effectively proceeds out of thermal
equilibrium. (d) Distance dependence of effective diffusion length ldiff (top), decay rate Γ̄ (center), and transfer rate W̄ (bottom). Their
full distributions (patches) are shown together with their average (dots). LH2 arrays take advantage of fast local exciton thermalization
(blue) to achieve longer-distance—albeit slower—energy transfer, compared to a hypothetical scenario with weaker coupling to local
phonons (orange). All averages are performed over 103 realizations of static disorder.
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dark-state protection regime. The relevance of such a
shelving mechanism is also confirmed by the behavior
of the effective transfer and decay rates,

W̄ ¼ 1

2

�X
n;α;β

Wðn;nþ1Þ
αβ p̄nþ1

β þ
X
n;α;β

Wðnþ1;nÞ
βα p̄n

α

�
; ð12Þ

Γ̄ ¼
X
n;α

ΓðnÞ
α p̄n

α: ð13Þ

(Note that the presence of static disorder in the array
forces us to keep track of the unit-cell index n and to
average over both forward and backward transfer rates.)
For faster relaxation, i.e., larger coupling to local phonons,
both effective transfer and decay rates are significantly
decreased, as captured by Fig. 3(d).
As noticed recently [67], the transfer rate W̄ benefits

from the engagement of dark states at small inter-ring
separations. Their participation allows for an increase in W̄
that exceeds the one predicted by interactions only medi-

ated by the collective dipoles DðnÞ
α and Dðnþ1Þ

β of two
neighboring B850 rings. The relevance of the finite size of
unit cells naturally makes the transfer more dependent on
their geometrical details and relative arrangement. Indeed,
we notice, for example, that a systematic out-of-plane angle
of just 5° as observed in lipid-reconstituted membranes
[64,68], which slightly increases the distance between the
closest pigments in neighboring rings, slows down the
effective transfer rate and therefore decreases the diffusion
length (Appendix F). However, the apparently beneficial
involvement of fast-propagating dark states in the dynamics
is countered by their sensitivity to nonradiative decay.
Thus, in any situation in which we are interested in
increasing the spatial extent of energy transfer rather than
its speed, we need to consider the presence of realistic
(radiative and nonradiative) decay channels and design the
energy-transfer process accordingly. Closely packed LH2
arrays seem to naturally operate in a parameter regime that
sustains a generalized dark-state protection mechanism,
where fast exciton thermalization causes a shielding against
nonradiative decay.
Finally, we notice from Fig. 3(d) that our model produces

energy-transfer rates that are in excellent agreement with
existing theoretical estimates obtained for larger inter-
ring separations (l≳ 7.5 nm) [67,69], matching the con-
ditions typically observed in reconstituted and biological
light-harvesting membranes [68,70]. In this regime, inter-
complex energy transfer proceeds from a completely
equilibrated excitonic manifold [Fig. 3(c)], far from the
nonequilibrium regime in which dark-state shelving
becomes relevant. Thus, the design guidelines discussed
in this work, while relevant for tightly packed nano-
engineered systems, might be of secondary importance
for more sparsely assembled biological LH2 membranes.

III. CONCLUSIONS

In conclusion, we have shown, with the help of an
analytically solvable model, that room-temperature excita-
tion energy transfer can benefit from quantum dynamics
within modular unit cells, and we demonstrated that the
resulting design principles apply in photosynthetic mem-
branes with realistic physiological parameters, as well as in
nanofabricated architectures. The resulting hybrid “quan-
tum-classical” design can increase both the speed and
propagation range thanks to the participation of the dark
states due to excitonic delocalization within unit cells. On
the one hand, improved speed can be achieved when the
packing density of unit cells is made sufficiently large for
the coupling of individual pigments on different unit cells
to benefit from contributions of high-lying dark states.
Crucially, close packing allows for exciton populations to
depart from a thermal distribution, increasing the overall
diffusion rate via nonequilibrium energy transfer. On the
other hand, the exciton propagation length is extended by
intraunit-cell relaxation, biasing electronic populations
towards low-energy excitons, which are less sensitive to
nonradiative decay and therefore increase the overall time
window over which energy transfer can take place. This not
only exemplifies the beneficial interplay of quantum
coherent dynamics and environmental noise [71–73] but
also provides basic mechanisms that underpin the micron-
range propagation of excitations observed in artificial
arrays of LH2 photosynthetic complexes. These results
can be explained by the speedup of intercomplex transfer
rates induced by dense packing of light-harvesting units
and the protection from nonradiative decay provided by
low-energy excitons. Although we do not expect this
transfer mechanism to be at play in biological LH2
membranes due to their large intercomplex separations,
it could be tested on nano-engineered platforms in experi-
ments where the exciton diffusion length is measured for
different light-harvesting arrays, prepared with different
LH2 packing densities. Further corroborating evidence for
the mechanism that we propose is derived from exper-
imental observation of reduced exciton lifetimes in recon-
stituted LH2 membranes compared to isolated complexes
[61]. Our model already captures this trend correctly in
terms of an increased population of the high-energy
excitons and thus could serve as a solid starting point
for a more thorough quantitative analysis of this effect.
While the multiscale model used in this work contains all
the necessary elements to discuss general energy-transfer
strategies in light-harvesting arrays, further improvements
could be achieved by employing more refined theoretical
descriptions of the light-harvesting units [74]. We plan to
do so in the future by applying some recently developed
numerical techniques, allowing for an exact treatment of
the non-Markovian exciton dynamics [75].
The fact that the speed and spatial extent of energy

transfer can be directly related to excitonic delocalization
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suggests the possibility of using partial delocalization
restricted to single unit cells (due to the magnitude of
noise in real room-temperature scenarios) as a resource to
optimize the range of propagation of electronic excitations
in technological applications with the goal of outperform-
ing the already extremely high efficiency of natural
photosynthesis. The general nature of these design princi-
ples hints that this energy-transfer scheme might find
applications in a broad class of excitonic materials, not
limited to the specific architecture explicitly discussed in
this work, although it will be the task of future research to
probe its technological feasibility.
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APPENDIX A: EXACTLY SOLVABLE MODEL

In this Appendix, we present the main steps leading to
the analytical solution of the minimal model describing
incoherent energy transfer across a linear array of dimer-
ized unit cells, which locally support quantum delocaliza-
tion. We start from Eq. (3) in the main text, i.e., the discrete
diffusion equation of a linear array composed of dimerized
unit cells, each hosting two levels, jbni and jdni (bright and
dark), which can hop to the neighboring cells and are
subject to intracell relaxation and fluorescence. Explicitly
writing both the equations for the bright and dark compo-
nents for local injection of excitations at site n ¼ 0, we
obtain

∂tpn
b¼Wbbðpnþ1

b þpn−1
b −2pn

bÞþWbdðpnþ1
d þpn−1

d Þ
−2Wdbpn

b−Rdbpn
bþRbdpn

d−Γbpn
bþ Ibδn;0; ðA1Þ

∂tpn
d¼Wddðpnþ1

d þpn−1
d −2pn

dÞþWdbðpnþ1
b þpn−1

b Þ
−2Wbdpn

dþRdbpn
b−Rbdpn

d−Γdpn
dþ Idδn;0; ðA2Þ

where pn
b (pn

d) denotes the population of the bright (dark)
state of the nth dimer. The continuum limit is achieved by
identifying pn

αðtÞ=l ¼ pαðx; tÞ (α ¼ b, d), with x ¼ nl, and
taking the interdimer separation l to be vanishingly small so
that x becomes a continuous variable. To simplify the
discussion, we assume that the cross-rates are equal, i.e.,
Wdb ¼ Wbd ¼ w, which is the case for the configuration

assumed in the main text. If Wbd ≠ Wdb, a drift term in the
diffusion equation is introduced, and the final exciton
distribution is not symmetric around the injection point
x ¼ 0. Thus, we obtain two coupled diffusion equations:

∂tpbðx;tÞ¼Wbbl2∂2
xpbðx;tÞþwl2∂2

xpdðx;tÞþ IbδðxÞ
− ð2wþRdbþΓbÞpbðx;tÞþð2wþRbdÞpdðx;tÞ;

ðA3Þ

∂tpdðx; tÞ ¼ wl2∂2
xpbðx; tÞ þWddl2∂2

xpdðx; tÞ þ IdδðxÞ
þ ð2wþ RdbÞpbðx; tÞ
− ð2wþ Rbd þ ΓdÞpdðx; tÞ: ðA4Þ

Introducing the vectors p ¼ ðpb; pdÞT, I ¼ ðIb; IdÞT and
the matrices

G2 ¼
�
Wbb w

w Wdd

�
;

G0 ¼
�
2wþ Rdb þ Γb −2w − Rbd

−2w − Rdb 2wþ Rbd þ Γd

�
; ðA5Þ

we can rewrite Eqs. (A3) and (A4) more compactly as

∂tpðx; tÞ ¼ ðG2l2∂2
x −G0Þpðx; tÞ þ IδðxÞ: ðA6Þ

Rewriting Eq. (A6) in terms of the Fourier transform
p̂ðq; tÞ ¼ R

dxe−iqxpðx; tÞ and considering the stationary
state at t → ∞, we obtain the solution as

p̂ðq;∞Þ ¼ 1

G0 þ q2l2G2

I ¼
X∞
k¼0

ð−q2l2G−1
0 G2ÞkG−1

0 I:

ðA7Þ

The solution can be brought to a much more transparent
form if we assume that the decay described byΓα takes place
on a much slower timescale than interdimer and intradimer
energy transfer. Within this approximation, which is typi-
cally satisfied in light-harvesting complexes, we have

G−1
0 ¼ 1

Γ̄

�
p̄b p̄b

p̄d p̄d

�
ðA8Þ

to leading order inΓα, where Γ̄ and p̄α are defined in Eqs. (9)
and (10). This simple form allows us to sum the series in
Eq. (A7) to

p̂ðq;∞Þ ¼ Ib þ Id
Γ̄

1

1þ q2l2W̄=Γ̄

�
p̄b

p̄d

�
; ðA9Þ

where W̄ is defined in Eq. (8). Taking the inverse Fourier
transform leads to the final form of the solution
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pðx;∞Þ ¼ Ib þ Id
Γ̄

1

2ldiff
e−jxj=ldiff

�
p̄b

p̄d

�
; ðA10Þ

which is the exciton distribution discussed in the main text.
As one would expect, if interexciton conversion due to the
cross-rates Rbd, Rdb, and w is much faster than the decay
timescale, both bright and dark manifolds have the same
final distribution, differing only by the normalization con-
stant p̄α. It is easy to check that we would get the same
exponential distribution if we considered a diffusion process
involving unit cells containing a single level rather than two,
with transfer and dissipation rates W̄ and Γ̄. Therefore, a
dimeric unit cell results in the same type of diffusion as a
monomeric one, where the large-scale diffusion properties
can be tuned by changing the local dimer parameters.
A completely analogous procedure leads to the

solution of the case in which Wbd ≠ Wdb, which we do
not present in detail here. The imbalance between
these two rates does not change the definitions of p̄α,
W̄, and Γ̄ [which only depend on the average cross-rate
w ¼ ðWbd þWdbÞ=2] but leads to a drift coefficient pro-
portional to Δ ¼ ðWbd −WbdÞðp̄b − p̄dÞ. As a final result,
the exciton distribution is still exponentially localized
around the injection point x ¼ 0, but the diffusion lengths
for x < 0 and x > 0 are different. Thus, the diffusion is not
symmetric. As a possible application, this property might
be used to design excitonic wires that are able to switch the
dominant direction of diffusion by small changes of their
unit-cell properties, for example, implementing artificial
photoprotection.
Although in the case of the exactly solvable model we

consider a completely homogeneous system, it is possible
to show that the presence of moderate static disorder does
not modify the exponential shape of the stationary exciton
distribution but only leads to a reduction of the diffusion
length. This explains why, also in the case of the LH2 array
presented in the main text, we still obtain an exponential
distribution. To grasp the effects of static disorder, we
consider a linear array of monomeric unit cells with some
slight random inhomogeneity in the transfer rates. The
transfer rate from site n to site nþ 1 (and vice versa) is
given by Wn ¼ W̄ þ δWn, where we assume hδWni ¼ 0

and hδWnδWmi ¼ σ2δnm. The average population distri-
bution hpðxÞi for small disorder can be obtained by
expanding the solution in the form of Eq. (A7) to second
order in δWn and taking the ensemble average. This process
leads to an exponential average exciton distribution with
diffusion length l0diff ¼ ldiffð1 − σ2=2W̄2Þ, independent of
the specific distribution of the rate fluctuations δWn.
To conclude this section, we note that the stationary

solution pðx;∞Þ for local exciton injection δðxÞ is suffi-
cient to determine the exciton profile p0ðx;∞Þ for any other
(normalized) injection profile gðxÞ. In fact, defining ĝðqÞ,
the Fourier transform of gðxÞ, we immediately obtain that
the new solution satisfies

p̂0ðq;∞Þ ¼ ĝðqÞ
G0 þ q2l2G2

I ¼ p̂ðq;∞ÞĝðqÞ: ðA11Þ

Transforming back to real space, we obtain the new
solution for generic driving as a convolution between the
solution for local driving and the generic driving profile,
namely,

p0ðx;∞Þ ¼
Z

dx0pðx0;∞Þgðx − x0Þ: ðA12Þ

The same principle allows us to draw conclusions for
exciton propagation in a LH2 array upon driving with a
Gaussian laser profile, using only the results of simulations
for local driving.

APPENDIX B: MICROSCOPIC ORIGIN OF
NONRADIATIVE DECAY

In this Appendix, we derive a microscopic Hamiltonian
describing vibrationally induced nonradiative decay of a
photoexcited molecular state. We start from the ab initio
Hamiltonian of a single chromophore. We determine the
form of the nonadiabatic coupling at the basis of non-
radiative decay in the usual harmonic approximation for
intramolecular vibrations. We use this result to compute the
internal conversion rate for delocalized excitonic states of a
molecular aggregate.

1. Molecular Hamiltonian

The full Hamiltonian of a molecule is given by [50]

Hðr;p;R;PÞ ¼ TelðpÞ þ Vel-elðrÞ þ Vel-nucðr;RÞ
þ Vnuc-nucðRÞ þ TnucðPÞ; ðB1Þ

where T denotes the kinetic energy and V the Coulomb
interactions. The sets of electronic coordinates and
momenta are denoted by r and p, whereas the nuclear
degrees of freedom are described by R and P. The typical
challenge in condensed matter physics is to find approxi-
mate eigenstates and eigenvalues of this Hamiltonian. The
huge difference between electronic and nuclear masses
justifies the typical Born-Oppenheimer (BO) approach,
where the electronic degrees of freedom are treated on a
fully quantum level (i.e., r → r̂ and p → p̂), whereas the
nuclear coordinates are kept fixed and their momenta are
initially neglected. Thus, we can find the adiabatic elec-
tronic eigenstates by diagonalization of the electronic
Hamiltonian at fixed R:

½Telðp̂Þ þ Vel-elðr̂Þ þ Vel-nucðr̂;RÞ þ Vnuc-nucðRÞ�jϕi
Ri

¼ εiRjϕi
Ri: ðB2Þ

The eigenstates jϕi
Ri and eigenenergies εiR—which are

called potential energy surfaces (PES)—depend parametri-
cally on the nuclear coordinates. Now, we express the
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Hamiltonian (B1) in terms of these adiabatic electronic
states. Although their interpretation as physically relevant
states depends on whether the nuclear kinetic energy is
negligible or not, they always form a perfectly legitimate
orthonormal basis of the electronic Hilbert space at fixedR.
Making use of Eq. (B2), we see that

hϕi
RjHðr̂; p̂;R;PÞjϕj

Ri¼ δijεiRþhϕi
RjTnucðPÞjϕj

Ri: ðB3Þ

Note that the second term on the right-hand side does not
necessarily reduce to δijTnucðPÞ because of the parametric
dependence on R of the electronic states. However, if
nuclei are considered as classical particles, the nuclear
kinetic energy does not affect the electronic adiabatic wave
function in any way, and the full molecular Hamiltonian
(B1) takes the well-known BO form

ĤBOðR;PÞ ¼
X
i

jϕi
Rihϕi

RjðTnucðPÞ þ εiRÞ: ðB4Þ

The adiabaticity of this Hamiltonian is represented
by the fact that the nuclear motion does not couple
different electronic states: When the electrons are in the
state jϕi

Ri, the nuclei evolve according to the effective
Hamiltonian hiðR;PÞ ¼ TnucðPÞ þ εiR.
Introducing a diagonal nuclear mass tensor M and

expanding the ith PES for small deviations from its stable
equilibrium configuration Ri (i.e., close to its minimum
εiRi), the nuclear Hamiltonian hi becomes

hiðR;PÞ ¼ εiRi þ 1

2
½PTM−1Pþ ðR −RiÞTHðR −RiÞ�

¼ εiRi þ 1

2
½πTπ þ ðξ − ξiÞTDðξ − ξiÞ�; ðB5Þ

where H ≥ 0 is the Hessian matrix of the PES εiR atRi. On
the second line, we introduce the mass-rescaled normal
coordinates and momenta ξ ¼ UM1=2R and π ¼ UM−1=2P,
where U is the unitary transformation that diagonalizes the
mass-rescaled Hessian, i.e., UTDU ¼ M−1=2HM−1=2. Note
that D has only diagonal entries, corresponding to the
square of the normal frequencies ω2

k. As usual, we have
neglected the Duschinsky mixing; that is, we have assumed
that the Hessian H at the nuclear equilibrium configuration
is independent of the specific PES, so it is diagonalized by
the same transformation and yields the same eigenvalues
(i.e., vibrational frequencies) for the PESs in which we are
interested.
At this point, we can easily quantize the nuclear normal

modes by redefining them in terms of a set of bosonic
annihilation (creation) operators b̂k (b̂†k). Assuming ℏ ¼ 1
from now on, we have

ξ̂k ¼
1ffiffiffiffiffiffiffiffi
2ωk

p ðb̂k þ b̂†kÞ; ðB6Þ

π̂k ¼ −i
ffiffiffiffiffiffi
ωk

2

r
ðb̂k − b̂†kÞ: ðB7Þ

The quantized vibrational Hamiltonian (B5) becomes

ĥi ¼ εiRi þ
X
k

ωk

�
ðb̂k −

ffiffiffiffi
sik

q
Þ†ðb̂k −

ffiffiffiffi
sik

q
Þ þ 1

2

�
: ðB8Þ

Note that we have introduced the Huang-Rhys factors
sik ¼ ξik

2ωk=2, which, in general, depend on the PES under
consideration.
Since our ultimate goal is to describe the dynamics of

photoexcitations, we focus on two electronic states jϕg
Ri

and jϕe
Ri, describing the electronic ground state and the

first optically excited state. We neglect any further depend-
ence of these states on the nuclear coordinates and refer to
them simply as jϕgi and jϕei. If we refer all energies and
nuclear coordinates to the minimum of the PES of the
electronic ground state, the BO Hamiltonian (B4) takes the
usual spin-boson form with the pure dephasing interaction,

ĤBO ¼ εjϕeihϕejþ jϕeihϕej
X
k

gkðb̂kþ b̂†kÞþ
X
k

ωkb̂
†
kb̂k;

ðB9Þ
where ε ¼ εeRe þP

k skωk and gk ¼ −ωk
ffiffiffiffi
sek

p
. The adia-

batic electron-phonon coupling can then be described by
the spectral density

J ðωÞ ¼
X
k

g2kδðω − ωkÞ: ðB10Þ

2. Nonadiabatic electron-phonon coupling

Now, we return to Eq. (B3) and consider the effect that
the nuclear kinetic energy has on the adiabatic electronic
wave function. We take into account the quantum nature of
nuclei as well, i.e., considering R → R̂ and P → P̂ as
quantum mechanical operators. Note that the second term
on the right-hand side of Eq. (B3) acts nontrivially on both
electronic and nuclear degrees of freedom. To better
understand this, we consider how the nuclear kinetic energy
operator acts on a product state formed by jϕj

Ri and a
nuclear state jχνi. In the coordinate representation, P̂
becomes the differential operator −i∂R; therefore, we have

hr;RjTnucðP̂Þjϕj
R; χνi ¼

X
k

P̂2
k

2Mk
ϕj
RðrÞχνðRÞ

¼
X
k

1

2Mk
½ϕj

RðrÞ(P̂2
kχνðRÞ)

þ 2(P̂kϕ
j
RðrÞ)(P̂kχνðRÞ)

þ (P̂2
kϕ

j
RðrÞ)χνðRÞ�: ðB11Þ
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Using Eq. (B11), we can now compute the matrix element of the nuclear kinetic energy operator between two arbitrary
electronic-vibrational states as

hϕi
R; χμjTnucðP̂Þjϕj

R; χνi ¼
Z

dr
Z

dRhϕi
R; χμjr;Rihr;RjTnucðP̂Þjϕj

R; χνi

¼ δijh χμjTnucðP̂Þj χνi − i
X
k

1

Mk

Z
dRhϕi

Rj∂Rk
ϕj
Riχ�μðRÞP̂kχνðRÞ

−
X
k

1

2Mk

Z
dRhϕi

Rj∂2
Rk
ϕj
Riχ�μðRÞχνðRÞ ðB12Þ

where the three terms appearing on the second line of
Eq. (B12) directly originate from those appearing in
Eq. (B11). It is easy to spot the first of them as the one
giving rise to the BO Hamiltonian (B4). On the other hand,
the terms involving derivatives of the adiabatic electronic
wave function with respect to the nuclear coordinates are
not necessarily proportional to δij, and therefore, they
describe the nonadiabatic coupling between different PESs.
Within the BO framework, they are neglected by the merits
of the argument that the electronic wave functions depend
very weakly on the nuclear coordinates; therefore, their
derivatives are negligible. In fact, electronic wave functions
usually vary significantly over distances of 1–10 Å, cor-
responding to typical internuclear separations. On the other
hand, typical nuclei in organic molecules jiggle by about
0.01–0.1 Å around their equilibrium position. On this
length scale, therefore, electronic wave functions are
expected to be fairly smooth and almost constant. Thus,
the last two terms in Eq. (B12) can be regarded as higher-
order contributions of a perturbative expansion whose
zeroth-order term corresponds to the BO Hamiltonian.
For simplicity, let us focus only on the lowest nonzero

order of this nonadiabatic perturbation, i.e., the one
involving the first derivative of the adiabatic electronic
wave function. Let us define the quantity Aij

k ðRÞ≔
−ihϕi

Rj∂Rk
ϕj
Ri, which is closely related to the Berry con-

nection. Note that we can always assume the phase of the
adiabatic electronic wave functions to be independent ofR,
corresponding to a specific gauge choice for the Berry
connection. Together with the normalization condition
hϕi

Rjϕi
Ri ¼ 1, this immediately implies that Fii

k ðRÞ ¼ 0,
meaning that this term only connects different electronic
states and does not modify the vibrational Hamiltonian
within a given PES. In addition, the orthogonality condition
hϕi

Rjϕj
Ri ¼ 0 further imposes a hermiticity constraint

Aij
k ðRÞ� ¼ Aji

k ðRÞ. As usually assumed for optical transi-
tions, we neglect the dependence of the coupling between
different PESs on the nuclear configuration, which means
that Aij

k ðRÞ ≈ Aij
k ðRiÞ is practically constant in the integral

overR in Eq. (B12).We also neglect any further dependence
of the adiabatic states on the nuclear coordinates, aswedid in

the previous section in order to recast the BO Hamiltonian
(B4) into spin-boson form (B9). Thus, we can finally write
the initialmolecularHamiltonian (B1), including the lowest-
order nonadiabatic correction as ĤBO þ Ĥnonad, where

hϕijĤnonadjϕji ¼
X
k

Aij
k ðRiÞ P̂k

Mk

¼ −i
X
k

αijk

ffiffiffiffiffiffi
ωk

2

r
ðb̂k − b̂†kÞ; ðB13Þ

where, in the last step, we have rewritten the nuclear
momenta in terms of the normal modes defined above
and introduced the transformation αij ¼ UM−1=2AijðRiÞ on
the coefficients Aij

k ðRiÞ.
Thus, the nonadiabatic electron-phonon coupling can

lead to transitions between different electronic states jϕii
and jϕji initiated by the action of nuclear momenta. If we
consider only two electronic states, namely, the ground
state g and one optically excited state e, we can see that it
causes nonradiative transitions between g and e mediated
by the coupling constant fk ≔ αgek

ffiffiffiffiffiffiffiffiffiffi
ωk=2

p
. This process

goes by the name of internal conversion (IC) and is
therefore determined by the following spectral density:

J nonadðωÞ ¼
X
k

f2kδðω − ωkÞ; ðB14Þ

analogous to Eq. (B10).

3. Internal conversion in molecular aggregates

While it is generally true that the nonadiabatic couplings
are much weaker than the pure-dephasing electron-phonon
coupling, they still play a role on longer timescales, where
other phenomena such as fluorescence come into play.
Therefore, we should devise a way to treat IC on the same
footing as fluorescence in molecular aggregates. We con-
sider an aggregate of N interacting two-level chromo-
phores, each one described by the Hamiltonian (B13).
We focus on the subspace spanned by the global
ground state jgi ¼ jϕgi1…jϕgiN and the single excitations
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jii ¼ jϕgi1…jϕeii…jϕgiN . Assuming that the only site-
dependent parameters of our model are the electronic
excitation energies εi and couplings Jij, the Hamiltonian
of the aggregate is

Ĥaggr ¼
X
i

εijiihij þ
X
i≠j

Jijjiihjj þ
X
i

X
k

ωkb̂
†
ikb̂ik

þ
X
i

jiihij
X
k

gkðb̂ik þ b̂†ikÞ

− i
X
i

ðjgihij þ jiihgjÞ
X
k

fkðb̂ik − b̂†ikÞ: ðB15Þ

On the first line, we recognize the free Hamiltonian
of the excitonic system (diagonalized by excitons jαi ¼P

i jiihijαi with energy Eα) and the free Hamiltonian of
environmental vibrations. On the second and third lines we
find the system-bath interactions, mediated by the two bath
operators

Ĝi ¼
X
k

gkðb̂ik þ b̂†ikÞ; ðB16Þ

F̂i ¼ −i
X
k

fkðb̂ik − b̂†ikÞ; ðB17Þ

which, respectively, cause pure dephasing in the site basis
and nonradiative transitions between site excitations and
the global ground state. Postponing a more detailed
justification for later, we allow for correlations between
different vibrational environments to be present when the
bath is at equilibrium,

hĜiðtÞĜjð0Þieq ¼ κijGðtÞ; ðB18Þ

hF̂iðtÞF̂jð0Þieq ¼ κijF ðtÞ; ðB19Þ

where the time evolution is computed with respect to the
free bath Hamiltonian and the expectation value h·ieq is
taken on the stationary state of the bath. The correlation
functions GðtÞ and F ðtÞ are assumed to be site independent
and only depend on the temperature of the vibrational bath
and on the spectral densities J ðωÞ and J nonadðωÞ. We
assume that the internal timescale of the bath is sufficiently
fast and the system-bath coupling is sufficiently weak so
that the dynamics of electronic excitations can be described
by a Lindblad equation in the exciton basis.
We focus on internal conversion for now. Following the

microscopic derivation outlined in Ref. [76], we obtain a
Lindblad equation with jump operators jgihαj and rates

καΓnonrad ¼
X
i;j

hαjiiκijhjjαiΓnonrad ðB20Þ

appearing in Eq. (5). The rate Γnonrad is the single-pigment
nonradiative rate, determined by

Γnonrad¼
Z

dteiωtF ðtÞ¼ 2πJ nonadðjωjÞjnðωÞþ1j: ðB21Þ

In principle, it depends on the frequency at which the
specific transition to the ground state takes place (i.e., ω ¼
Eα for jgihαj). However, since optical frequencies are much
higher than vibrational and thermal energies, we can
assume J nonadðωÞ to be fairly small and constant across
the excitonic energies Eα.
The correlations introduced in Eqs. (B18) and (B19) are

crucial for the determination of the distribution of the IC rate
across the excitonic manifold, as shown in Fig. 4. For
example, if the correlations are absent, i.e., κij ¼ δij, then
Eq. (B21) predicts that the IC rate is essentially the same for
all excitons (blue line). If, instead,we allow for some positive
correlations decaying exponentially as a function of the
distance between chromophores with some characteristic
correlation length rc (i.e., κij ¼ e−rij=rc ), excitons that
delocalize over neighboring pigments show an increased
decay rate (green and yellow solid lines). Correlations of
such form are commonly used when modeling various
optical spectra of pigment-protein complexes [60]. If the
correlations are negative for neighboring pigments, the
opposite behavior is observed (dashed lines). Optical corre-
lations between transition dipole moments give the usual
fluorescence profile (red line), with a few bright excitons at
the bottom of the band. We will argue later in favor of the
correlations between local vibrational environments that we
have postulated by considering some experimental results.

4. Other nonradiative decay pathways

So far, we have seen how IC can be described micro-
scopically and how it influences the nonradiative decay of

FIG. 4. Excitonic decay rates. Normalized decay rates from the
excitonic manifold to the ground state for different processes in
the B850 band of LH2: radiative (red) and nonradiative with
increasing bath correlation length (blue, green, and yellow solid
lines). The dashed lines correspond to models with the same
correlation length but assuming anticorrelated bath fluctuations
for pigment couples that have opposite transition dipole mo-
ments. The decay rates are normalized such that, on average, they
all give the same decay rate from a thermal exciton distribution.
The results are obtained as ensemble averages over 104 realiza-
tions of static disorder.
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different optical excitations in a molecular aggregate.
However, there could be other processes that compete with
fluorescence and IC on the same timescale, which could
influence the effective decay rate from a given exciton. The
other decay channel typically present in molecular systems
is the intersystem crossing (ISC) [77]. During this process,
a singlet excitation S1 generated by optical absorption from
the singlet ground state S0 can be turned into an excited
triplet T1 by means of spin-orbit interactions. Since the
radiative transition from T1 to S0 is strongly suppressed, the
excitation is lost nonradiatively either by IC or by triplet-
triplet energy transfer to other pigments present in the
molecular aggregates (i.e., carotenoids) before it can flip
the spin of a neighboring oxygen molecule, thus forming
singlet oxygen, which can cause oxidative damage to the
photosynthetic apparatus.
If our focus is to follow the dynamics of excitons in a

narrow band (i.e., the B850 of the LH2 complex), we do not
want to take into account all of these processes: We are only
interested in the rate at which spin-orbit interactions
transfer excitations from one adiabatic PES to another.
As we explicitly worked out for IC, it has been shown that
the spin-orbit interaction also results in coupling between
adiabatic PESs mediated by the nuclear momentum [78],
which tells us that the effective Hamiltonian causing ISC
will exhibit couplings of the same form as Eq. (B13), with
properly redefined coupling constants. Therefore, the
resulting ISC rate has the same form as Eq. (B21); i.e.,
it depends on the density of vibrational states at excitonic
energies. Assuming that this density of states is sufficiently
flat, as done before, in this case, we also see that the
dependence of the rate on the excitonic state is dominated
by the pattern of correlations between local baths.
Therefore, ISC can be absorbed together with IC into a
single rate καΓnonrad, describing the nonradiative decay of
population from exciton α.

APPENDIX C: PHYSICAL ORIGIN OF
CORRELATED ENVIRONMENTS

In this Appendix, we argue in favor of the presence of
correlations between the vibrational environments of single
pigments belonging to the same pigment-protein complex,
which take place on the timescale of nonradiative decay.
First, we propose an estimate based on experimental
results, and later, we move on to discuss a physical
mechanism that can support intersite vibrational correla-
tions, relying on intermolecular vibrational modes.

1. Phenomenological view

Let us step back for a moment from the microscopic
derivation of internal conversion and follow another
approach. We start from experimental evidence and use
this knowledge to set up a phenomenological model of
nonradiative decay of a molecular aggregate. The most

valuable insight comes from comparing excited-state life-
times (τ) and fluorescence quantum yields (ϕ) of isolated
pigments with those of the aggregate. Table I shows theses
quantities in the case of bacteriochlorophyll a molecules
(Bchl-a) and LH2 complexes [39]. Since the fluorescence
quantum yield of LH2 is lower than the one of Bchl-a, there
must be some additional decay channels in LH2 that are not
present in the monomers and that can therefore be inter-
preted as an effect of aggregation.
To be more quantitative, let us define the quantum yield

of fluorescence,

ϕ ¼ # of photons emitted
# of photons absorbed

¼ Γrad

Γrad þ Γnonrad
¼ Γradτ;

and express the radiative and nonradiative decay rates as
Γrad ¼ ϕ=τ and Γnonrad ¼ ð1 − ϕÞ=τ. The values reported in
Ref. [39] allow us to determine radiative and nonradiative
decay rates for Bchl-a and LH2 (Table I). While the
difference in radiative lifetimes between the monomer
and the aggregate is easily explained by exciton delocal-
ization and superradiance, a clear molecular mechanism
underpinning the mismatch between nonradiative decay
rates is not known with certainty. Nonetheless, we can put
forward a simple argument. Since the nonradiative decay in
LH2 is about 3.5 times faster than in Bchl, we can imagine
the existence of additional dissipation channels. In fact, we
expect the same intramolecular decay channels present in
Bchl to be at play also in LH2. Thus, the additional
dissipation present in LH2 must come from some other
decay pathway that has no analogue in Bchl, which must
account for ðΓLH2

nonrad − ΓBchl
nonradÞ=ΓLH2

nonrad ¼ 71% of the non-
radiative dissipation. The first reasonable candidate is the
protein environment, which can offer other IC pathways
through vibrations and conformational changes. Since the
B850 ring of LH2 is composed of dimeric subunits bound
to the same protein, it makes sense to assume that the IC
channels offered by the protein can, in principle, be
correlated. Following this argument, we allow for correla-
tions between the vibrational environments that couple to
IC and ISC transitions. As a consequence, excitons that
delocalize on neighboring pigments can experience a
modified decay rate, as discussed above and shown
in Fig. 4.

TABLE I. Single-pigment vs aggregate fluorescence. Quantum
yield of fluorescence (ϕ) and decay lifetime (τ) of isolated Bchl-a
molecules and LH2 complexes, together with their radiative (Γrad)
and nonradiative (Γnonrad) decay rates (adapted from Ref. [39]).

ϕ (%) τ (ns) Γrad (ns−1) Γnonrad (ns−1)

Bchl-a 18 3.140 0.057 0.26
LH2 9.86 0.986 0.10 0.91
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2. Microscopic mechanism

We have seen how, within a BO framework, a coupling
arises between (optical) electronic transitions and vibra-
tions of a molecule. A sudden change in the electronic state
leads to a different electrostatic potential experienced by
the nuclei, which therefore initiate their dynamics. For this
reason, this coupling involves only vibrations of the nuclei
over which the electronic states are delocalized. It is
therefore clear that intramolecular modes will experience
this type of direct coupling to the electronic dynamics.
However, if the chromophore is embedded in a protein
environment, the vibrational modes of the protein will also
influence electronic energies, leading to a direct coupling
between electronic excitations of the chromophore and
longer wavelength vibrational modes. This observation lies
at the heart of theoretical descriptions of electronic reso-
nances coupled to a shared phonon environment [79]. Thus,
the pure dephasing coupling in Eq. (B15) can be written
explicitly in terms of these protein vibrational modes ĉq
with frequency νq as

ĤSB ¼
X
i

jiihij
�X

k

gkðb̂ik þ b̂†ikÞ þ
X
q

ξiqðĉq þ ĉ†qÞ
�
:

ðC1Þ

By redefining the operators Ĝi in Eq. (B16) to also include
the protein modes ĉq, we obtain the following bath
correlation functions,

hĜiðtÞĜjð0Þieq ¼
X
k

g2k½e−iωktðnðωkÞþ1ÞþeiωktnðωkÞ�δij

þ
X
q

ξiqξjq½e−iνqtðnðνqÞþ1ÞþeiνqtnðνqÞ�:

ðC2Þ

While the term on the first line (corresponding to intra-
molecular modes) vanishes for i ≠ j, the second term
(arising from protein modes) is able to generate correlations
between sites. Moreover, since protein motion takes place
on a larger and slower scale than intramolecular vibrations,
it is reasonable to assume that two neighboring pigments i
and j couple to the protein motion with the same phase
(ξiqξjq > 0). This process results in positive intersite
correlations and thus can lead to the redistribution of the
nonradiative decay rates discussed in Appendix B.
Another possible mechanism able to generate positive

intersite vibrational correlations is based on the idea that the
vibrational motion of a chromophore can mechanically
couple to the slow vibrations of the protein environment. To
better formalize this idea, let us consider a slightly modified
version of the model described by the Hamiltonian (B15).
To simplify the discussion, we consider a molecular
aggregate composed only of two pigments, i.e., i ¼ 1, 2,

and we neglect the direct coupling between electronic
excitations and protein modes [Eq. (C1)]. If the two
pigments are bound to the same protein, it makes sense
to assume that their intramolecular modes b̂1;k and b̂2;k
couple to a set of common modes ĉq with frequency νq.
Since these shared modes are associated with the protein
structure, it is reasonable to assume that they are much
slower and effectively classical, meaning that their energy
νq is much smaller than thermal energy kBT. We assume
that the intramolecular modes of the two pigments couple
the protein vibrations with the same strength and phase.
This choice makes sense if we think that the two pigments
have opposite orientation and are embedded in an elastic
medium (see Fig. 5). The Hamiltonian of the vibrational
bath then reads

ĤB ¼
X
k

ωkðb̂†1;kb̂1;k þ b̂†2;kb̂2;kÞ þ
X
q

νqĉ
†
qĉq

þ
X
k;q

ηkqðb̂1;kĉ†q þ b̂2;kĉ
†
q þ H:c:Þ; ðC3Þ

where we have neglected the counterrotating coupling
terms to simplify the following treatment, although
they could be included. Defining the symmetric and
antisymmetric combinations of intramolecular modes
b̂k ¼ ðb̂1;k þ b̂2;kÞ=

ffiffiffi
2

p
and b̂−k ¼ ðb̂1;k − b̂2;kÞ=

ffiffiffi
2

p
, we

can rewrite the coupling as
P

k;q

ffiffiffi
2

p
ηkqb̂kĉ

†
q þ H:c:; i.e.,

the antisymmetric modes b̂−k are insensitive to the coupling
to the protein. The symmetric modes, on the other hand,
mix with the protein vibrations, yielding the new set of
normal modes

(a)

(b)

FIG. 5. Collective modes in a molecular dimer. (a) If the two
molecules immersed in an elastic medium (roughly modeling the
protein environment) have the same orientation, only the anti-
symmetric superposition of local vibrational modes causes
stretching or compression of the medium. (b) If the molecules
have opposite orientation (like two neighboring B850 pigments
in LH2), the symmetric superposition of local modes causes
stretching or compression of the medium.

MATTIONI, CAYCEDO-SOLER, HUELGA, and PLENIO PHYS. REV. X 11, 041003 (2021)

041003-16



ˆ̃bk ¼
X
k0
Ukk0 b̂k0 þ

X
q

vkqĉq; ðC4Þ

ˆ̃cq ¼
X
k

uqkb̂k þ
X
q0
Vqq0 ĉq0 ; ðC5Þ

with frequencies ω̃k and ν̃q. Thanks to its unitarity, the
transformation can be easily inverted, and the bath oper-
ators Ĝi defined in Eq. (B16) can be reexpressed as

Ĝ1ð2Þ ¼
1ffiffiffi
2

p
�X

k

gkb̂k �
X
k

gkb̂
−
k

�
þ H:c:

¼ 1ffiffiffi
2

p
�X

k

Gk
ˆ̃bk þ

X
q

gq ˆ̃cq �
X
k

gkb̂
−
k

�
þ H:c:;

ðC6Þ

where we have defined the transformed system-bath cou-
plings

Gk ¼
X
k0
gk0U�

k0k and gq ¼
X
k0
gk0u�k0q: ðC7Þ

Analogous expressions can be found for the operators F̂i
defined in Eq. (B17).
Let us now focus on the bath correlation functions for the

pure dephasing environment introduced in Eq. (B18),
evaluated on the thermal state ρeq ∝ e−ĤB=kBT . (The sys-
tem-bath coupling leading to internal conversion can be
treated in a completely analogous way.) Using the new
normal-mode decomposition of Ĝi [Eq. (C6)], we get

hĜ1ðtÞĜ1ð2Þð0Þieq
¼ 1

2

X
k

G2
k½e−iω̃ktðnðω̃kÞþ1Þþeiω̃ktnðω̃kÞ�

þ1

2

X
q

g2q½e−iν̃ktðnðν̃qÞþ1Þþeiν̃qtnðν̃qÞ�

�1

2

X
k

g2k½e−iωktðnðωkÞþ1ÞþeiωktnðωkÞ�: ðC8Þ

To lowest order in the intersite vibrational coupling ηkq, we
find the following perturbative expressions

Gk ≈ gk; gq ≈ −
X
k

ffiffiffi
2

p
gkηkq

ωk − νq
; ðC9Þ

ω̃k≈ωkþ
X
q

2η2kq
ωk−νq

; ν̃q≈νq−
X
k

2η2kq
ωk−νq

: ðC10Þ

Note that, in order to be perfectly consistent, we should also
keep the second-order correction to Gk. However, since the

protein modes generally have much smaller energies νq
than both kBT and intramolecular modes ωk, their thermal
occupation number is much higher, i.e., nðν̃qÞ ≫ nðω̃kÞ.
Therefore, the correction arising from the first line in
Eq. (C8) is negligible with respect to the one originating
from the second line. Taking into account all of these
assumptions, we obtain

hĜ1ðtÞĜ1ð0Þieq ≈
X
k

g2k½e−iωktðnðωkÞ þ 1Þ þ eiωktnðωkÞ�;

ðC11Þ

hĜ1ðtÞĜ2ð0Þieq≈
X
q

�X
k

gkηkq
ωk−νq

�
2

× ½e−iνqtðnðνqÞþ1ÞþeiνqtnðνqÞ�: ðC12Þ

Note that both of these equations can be rewritten in terms
of positive spectral densities: In the case of Eq. (C11), we
use the one defined in Eq. (B10), whereas for Eq. (C12), we
can define

ΔJ ðωÞ ¼
X
q

�X
k

gkηkq
ωk − νq

�
2

δðω − νqÞ: ðC13Þ

Taking the Fourier transform of these correlation functions,
we obtain the rates that allow us to write down a Lindblad
equation for the reduced dynamics of the excitons, which
are proportional to the spectral densities J ðωÞ and ΔJ ðωÞ.
At this point, we can see that our particular choice of

coupling the local intramolecular modes to the common
protein modes with the same phase leads to the establish-
ment of positive intersite correlations [ΔJ ðωÞ > 0]. If we
choose to couple local modes with the opposite phase
instead, we would end up with negative correlations
between the vibrational environments.

APPENDIX D: LINE SHAPES, LINEAR SPECTRA,
AND TRANSFER RATES

In this section, we determine the line shapes of an
excitonic system (i.e., our unit cells), which allow for the
calculation of both linear optical spectra and excitonic
transfer rates. Consider an excitonic system with
Hamiltonian Ĥ ¼ P

α Eαjαihαj, which we identify as our
unit cell, where Greek letters denote exciton states of the
unit cell jαi ¼ P

i jiihijαi. (Here, we relax the convention
used in the main text, according to which primed indices
refer to the same subunit.) Within a single unit cell, excited-
state population thermalizes because of the interaction
between electronic and vibrational degrees of freedom of
both intramolecular and intermolecular origin. The main
electron-phonon coupling mechanism is described by the
pure-dephasing interaction presented in the aggregate
Hamiltonian (B15). Under the conditions of weak
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electron-phonon coupling and fast vibrational relaxation,
this process can be described by a Lindblad equation. In the
presence of correlations κij between different local envi-
ronments, we can write down the resulting Lindblad
dissipator as

Dρ¼
X
α≠β

Rαβ

�
jαihβjρjβihαj−1

2
fjβihβj;ρg

�

þ2γ
X
α;β

ζαβ

�
jαihαjρjβihβj−1

2
δαβfjαihαj;ρg

�
; ðD1Þ

where the first line describes population transfer across
different excitons and the second describes pure dephasing
processes. The rates can be obtained, respectively, as

Rαβ ¼ 2πJ ðjωαβjÞjnðωαβÞj
X
i;j

hαjiihijβiκijhβjjihjjαi;

ðD2Þ

2γζαβ ¼ 2γ
X
i;j

hαjiihijαiκijhβjjihjjβi; ðD3Þ

where ωαβ ¼ Eα − Eβ, and γ is the single-pigment optical
dephasing rate. Note that, when the local vibrational
environments are not correlated, i.e., κij ¼ δij, the factors
involving excitonic amplitudes in Eqs. (D2) and (D3)
reduce to the spatial overlap between excitons and their
participation ratio. Lindblad dynamics in the exciton basis
results in an exponential decay of the optical coherences
between exciton α and the ground state g with a rate
γα ¼ γζαα þ

P
βð≠αÞ Rβα=2, whereas the interexciton coher-

ence decays with a rate γαβ ¼ γα þ γβ − 2γζαβ. This result
leads to simple expressions when computing optical
absorption and emission spectra. These expressions are
related to the absorption and emission tensors, AðωÞ and
EðωÞ, respectively, defined by their matrix elements

AαβðωÞ ¼
Z

dteiωthσ̂αðtÞσ̂†βð0Þig;

EαβðωÞ ¼
Z

dte−iωthσ̂†βðtÞσ̂αð0Þie: ðD4Þ

Here, σ̂μðtÞ denotes the Heisenberg time evolution
of the annihilation operator of exciton μ, σ̂μ ¼ jgihμj,
and h·igðeÞ denotes the average over the equilibrium ground
(excited) state. Evolving the transition dipole operator
through the dual of D results in the simple expression
σ̂μðtÞ ¼ jgihμje−ðγμþiEμÞt, which leads to diagonal absorp-
tion and emission tensors, with each exciton having a
Lorentzian line shape, i.e., AαβðωÞ ¼ δαβfαðωÞ and
EαβðωÞ ¼ δαβfαðωÞpth

α , where pth
α is the thermal population

of exciton α, and

fαðωÞ ¼
2γα

γ2α þ ðω − EαÞ2
: ðD5Þ

Once we have the line shape for each exciton, we weight
each individual line shape by its associated brightness
χα ≈ jDαj2=d2 and straightforwardly calculate the absorp-
tion spectrum of the unit cell as ω

P
α χαfαðωÞ. In the case

of the B850 subunit, once averaged over static disorder, this
expression gives excellent agreement with experimental
results, as shown in the main text [Fig. 2(b)].
If we introduce a second excitonic system, weakly

interacting (with respect to the timescales associated with
dephasing) with the first one via dipole-dipole couplings

Vii0 ¼ hijV̂ji0i ¼ 1

4πε0

d2

r3ii0
½ei · ei0 − 3ðei · nii0 Þðei0 · nii0 Þ�;

ðD6Þ
we can calculate the incoherent energy-transfer rate
between excitons α and α0 on the two subunits via
generalized Förster theory, according to which, we have

Wαα0 ¼
jVαα0 j2
2π

Z
dωfαðωÞfα0 ðωÞ

¼ 2jVαα0 j2
γαα0

ω2
αα0 þ γ2αα0

; ðD7Þ

where Vαα0 ¼
P

i;i0 hαjiiVii0 hi0jα0i, which reduces to Eq. (4)
from the main text in the case of dimeric unit cells, once ℏ
is reintroduced.

APPENDIX E: PARAMETRIZATION
OF THE B850 RING

Figure 6 and Table II summarize the geometry and the
parameters that have been used in the simulations of the
B850 rings. The ring structure is dimerized, meaning that
each pigment i is identified by two indices, one specifying
the dimer (n ¼ 1;…; 9) and the other the position within
the dimer (ν ¼ 1, 2). The two bacteriochlorophyll (Bchl)
molecules belonging to the same dimer are usually labeled
α and β. A single ring is described by the Hamiltonian

Ĥ¼
X
i

ðεþδεiÞjiihijþ
X
i≠j

Jijjiihjj

¼
X9
n¼1

½ðεþδεn;1Þjn;1ihn;1jþðεþδεn;2Þjn;2ihn;2j

þJ1ðjn;1ihn;2jþH:c:ÞþJ2ðjn;2ihnþ1;1jþH:c:Þ�
þ
X

i;j
0Jijjiihjj; ðE1Þ

where the primed sum indicates summation over all
couples of nonadjacent pigments and Jij stands, in this
case, for the dipole-dipole interaction between pigments.
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The fluctuations of the site energies δεi are given by the
sum of two Gaussian random variables: one with standard
deviation σp, completely uncorrelated for different pig-
ments, describing local energy shifts due to the slightly
different protein environments; one with standard deviation
σ0, which is the same for all pigments, describing global
shifts of the ground-state energy.

Throughout this work, the B800 ring enters the dynamics
only during the excitation process, as we describe in more
detail in the next section. However, we explicitly included
B800 rings in the calculation of the absorption spectra
shown in Fig. 2(b) for a better comparison with the
experimental data. We model the B800 ring as a set of
nine transition dipoles arranged on a circle of radius
3.1 nm, concentric to the B850 ring and vertically displaced
from it by 1.7 nm. We consider the B800 dipoles to be
perfectly coplanar and tangent to the circle. In accordance
with previous works [51], we set the ratio between
B850 and B800 pigment dipole strengths to 1.1. The site
energy of B800 pigments εB800 has an average value of
1.25104 cm−1, with Gaussian static disorder with standard
deviation σB800 ¼ 100 cm−1, whereas the single-pigment
optical dephasing rate is γB800 ¼ 70 cm−1 [51].
The B800 pigments couple to each other and to the B850

pigments via dipole-dipole interactions. As a result, one
may expect that excitons can, in principle, delocalize across
both rings. However, the presence of static disorder is
sufficient to destroy any inter-ring delocalization [51]. This
case can be seen in Fig. 7, where we plot the average
population of an LH2 exciton jα̃i (diagonalizing the total
B800þ B850 Hamiltonian) on site jii. The absence of
significant B800-B850 coherent mixing thus justifies the
approach adopted throughout the paper, where we only
consider the indirect effect of incoherent B800-to-B850
energy transfer to populate the B850 manifold after initial
laser excitation.

APPENDIX F: SIMULATIONS
OF AN LH2 ARRAY

In this section, we give more details on the simulations of
the full LH2 linear array. In analogy with the experiment of
Escalante et al. [20], we look at the stationary exciton

FIG. 6. Geometry of a B850 ring. We show projections on the
xy plane (top) and on the xz plane (bottom) of a B850 ring lying
on the xy plane. The z direction is magnified by a factor 10, and
the angles φ1 and φ2 are rescaled accordingly.

TABLE II. Model parameters for a B850 ring.

Value Parameter description

θ 10.06° Intradimer angle [80]
Δθ1, Δθ2 19.9°, 17.6° Dipole tilt away from the tangent [80]
φ1, φ2 6.24°, 4.81° Dipole tilt away from the ring plane [80]
r 3.0 nm Ring radius [64]
Δz 0.063 nm Vertical displacement between α and β Bchl [80]
d 6.4 D Qy dipole moment of Bchl [81]
ε 12 330 cm−1 Average site energy [51]
J1, J2 320, 255 cm−1 Intradimer and interdimer nearest-neighbor coupling [82]
γ ð20 fsÞ−1 Single-pigment optical dephasing rate [51]
R01 ð200 fsÞ−1 Relaxation rate between the two lowest excitons [56]
Γth ð1 nsÞ−1 Decay rate from thermalized exciton manifold [39]
T 298 K Temperature of the vibrational bath
ϕ 0.1 Quantum yield of fluorescence [39]
σp, σ0 265 cm−1, 33 cm−1 Standard deviation of uncorrelated or ground-state disorder [51]a

rc 0.5 nm Correlation radius of local pigment environments [60]
aThese values have been rescaled from Ref. [51] to match the B850 absorption linewidth.
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probability profile along the linear array upon continuous
wave driving; i.e., we numerically look for the steady state
of Eq. (3) (with all rates also dependent on the specific
subunit n since every subunit exhibits a different realization
of static disorder, i.e., different spectra and pigment
positions, affecting relaxation, fluorescence, transfer and
injection rates). In the experiment, the driving is provided
by an 800-nm laser with a spatial intensity profile with a
full width at half maximum of 400� 50 nm. In order to
simplify the numerics, we consider instead injection on a
single B850 complex at the center of the chain. In this way,
we can simulate shorter chains (up to 1001 subunits) and be
safely protected from systematic errors introduced by the
finite size of the array. The results for spatially broad
excitation can be recovered as shown in Appendix A in the
case of the exactly solvable model, i.e., by convolving the
result for local injection with the desired excitation profile.
We clarify that our injection profile is local, i.e.,

Inα ∝ δn0n, where n0 ¼ 501 is the central site of the chain,
but we have not specified yet in which states α of the ring
excitations are injected. Optical excitation at 800 nm cannot
be absorbed by the B850 subunit [as seen in Fig. 2(b)];
nevertheless, it can excite the B800 ring. We are not
explicitly considering the B800 subunit in our model.
However, excitations enter the B850 ring upon downhill
B800 → B850 energy transfer. Because of the small
coherent coupling between the two concentric rings, this
transfer process is largely controlled by incoherent rates of
the form of Eq. (D7); therefore, we can think of an indirect
excitation of the B850 excitons with an energy distribution
given by

In0α ∝
ðγα þ γB800Þ

ðEα − εB800Þ2 þ ðγα þ γB800Þ2
; ðF1Þ

where εB800 and γB800 are the optical gap and dephasing
rate of the B800 pigments, whose values are given in

Appendix E. The disorder-averaged injection profile (F1) is
shown in Fig. 8(a).
The resulting stationary probability profiles are shown in

Fig. 8(b) for different lattice steps l ranging from 8.5 nm to
6.5 nm, after averaging over 103 realizations of static
disorder. The probabilities p̄n

α, shown as a function of the
position x ¼ ðn − n0Þl, exhibit a clear exponential decay

FIG. 7. B800-B850 mixing in a LH2 ring. Disorder-averaged
populations of LH2 mixed B800-B850 eigenstates jα̃i on differ-
ent sites jii. The eigenstates are clearly divided into two blocks,
representing the fact that there is negligible coherent mixing
between B800 and B850 excitons. The ensemble average is
obtained from 104 realizations of static disorder.

(a) (b)

FIG. 8. Driving profile and excitonic stationary spatial distri-
bution. (a) Driving at the central ring takes place in the B800
pigments, with a distribution across the excitonic spectrum given
by Eq. (F1). The profile is averaged over 104 realizations of static
disorder. (b) Injection at a single site (at x ¼ 0) results in an
exponential exciton distribution along the light-harvesting array.
Results are shown for intercomplex distances ranging from
6.5 nm to 8.5 nm. The exciton distributions obtained numerically
(solid lines) fully agree with exponential distributions of different
diffusion length (dashed lines). Numerical results are obtained as
averages over 103 realizations of static disorder.

FIG. 9. Energy transfer between tilted B850 rings. Total
energy-transfer rate from exciton β to any other exciton α on
a neighboring ring (escape rate), as a function of the energy of the
initial excitonic state β. Results for coplanar (tilde) rings are
shown with solid (dotted) lines, for inter-ring distances ranging
from 6.5 nm (green) to 8.5 nm (purple). Even a slight tilt of 5°
outside the plane results in a significant reduction of the transfer
rate at short inter-ring distances. Results are obtained as averages
over 103 realizations of static disorder.
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around the injection site in the middle of the array. A
convolution of these exciton population profiles with a
Gaussian injection profile with 400-nm full width at half
maximum yields the distributions reported in Fig. 3(b).
All simulations are performed for coplanar arrangements

of B850 rings. As discussed in the main text, the nano-
engineered arrays analyzed here allow for coplanar B850
rings. However, in the main text, we also note that in
biological light-harvesting membranes, an angle of about 5°
relative to the aggregation plane is observed. This small tilt
leads to slower energy transfer, especially for short inter-
ring distances, as shown in Fig. 9.
Lastly, we note that all simulated LH2 arrays feature a

fixed intercomplex distance l throughout the length of the
array, which clearly represents an approximation since
every realistic macromolecular assembly will show fluc-
tuations in the lattice constant. While these large-scale
geometric defects are expected to severely limit the range of
ballistic energy transfer and eventually lead to diffusive
transport, they only act as an additional source of static
disorder in our model, which already describes energy
transfer in the diffusive regime. Thus, in our case, this
further noise source will lead to changes in the transfer rates
but will not affect the scaling of the diffusion length with
respect to the lattice constant, leaving our main conclusions
unaltered. Nevertheless, the effect of lattice constant
fluctuations can be estimated by analyzing the dependence
of the diffusion length ldiff on the intercomplex distance l,
shown in Fig. 3(d), which seems to be described by a
monotonically decreasing convex function. In other words,
the increase in diffusion length that we obtain by shortening
the lattice constant l by an amount δl exceeds the decrease
that we would obtain by expanding the lattice constant by
the same amount to lþ δl. Thus, when assuming a
symmetric distribution of lattice constants around l, the
averaging would lead to a slightly larger diffusion length.
However, we note that this effect might be too small to be
observed in our case because of the presence of other
sources of static disorder.
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