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We report the coherent coupling of two electron spins at a distance via virtual microwave photons. Each
spin is trapped in a silicon double quantum dot at either end of a superconducting resonator, achieving spin-
photon couplings up to around gs=2π ¼ 40 MHz. As the two spins are brought into resonance with each
other, but detuned from the photons, an avoided crossing larger than the spin linewidths is observed with an
exchange splitting around 2J=2π ¼ 20 MHz. In addition, photon-number states are resolved from the shift
2χs=2π ¼ −13 MHz that they induce on the spin frequency. These observations demonstrate that we reach
the strong dispersive regime of circuit quantum electrodynamics with spins. Achieving spin-spin coupling
without real photons is essential to long-range two-qubit gates between spin qubits and scalable networks
of spin qubits on a chip.
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I. INTRODUCTION

There is tremendous interest in the realization of quan-
tum computers, and architectures based on solid-state
devices offer significant advantages to achieve this goal.
Circuit quantum electrodynamics (QED) leverages high-
quality-factor superconducting resonators at cryogenic
temperatures to enable the coupling and readout of super-
conducting qubits [1–3]. Meanwhile, spin qubits in gate-
defined semiconductor quantum dots (QDs) are also
promising for quantum computing [4,5], having achieved
high-fidelity quantum operations, long coherence and
relaxation times, and operation above 1 kelvin. Spin qubits
in silicon could eventually leverage the advanced manu-
facturing capabilities of the microelectronics industry,
which is a compelling argument towards their development.
Significant research efforts have been dedicated to

bringing the benefits of circuit QED to the platform of
spin qubits [6–8], in order to leverage different character-
istics of each system. Experiments have first incoherently

coupled photons to QD charges or spins in various
materials [9–13]. Following multiple theory proposals
[14–21], experiments using spin-charge hybridization have
reached the strong coupling regime of circuit QED with
single electron spins in silicon [22,23], with multispin
qubits in GaAs [24], and with carbon nanotubes [25] (albeit
not resonantly). Concerning distant interactions, many
works have demonstrated the coupling of combinations
of gallium-arsenide qubits and transmons qubits [26–29].
Recently, resonant spin-spin-resonator coupling has been
demonstrated in silicon [30]. However, the resonant spin-
spin-resonator regime does not allow a straightforward
two-qubit gate [31].
Despite these groundbreaking realizations, some impor-

tant hallmarks of circuit QED experiments have remained
elusive for spins, in part due to the insufficient spin-
resonator interaction strength, in combination with
decoherence and fabrication challenges. These hallmarks
include dispersive interaction between two spins mediated
by virtual resonator photons [3] and photon-number-de-
pendent spin dispersive shifts [32], both requiring a higher
level of interaction-to-decoherence ratio than previously
achieved [30]. The former is required for most two-qubit
gate schemes and arguably represents the next frontier of
the field, while the latter enables higher signal with
dispersive readout, and photon state measurement [33]
and universal control [31,34].
In this work, we overcome previous challenges and

demonstrate both spin-spin interaction mediated by virtual
photons and photon-number-dependent spin dispersive
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shifts using single spins at either end of a high-impedance
superconducting resonator. Each single spin is trapped in a
double quantum dot (DQD) formed in a 28Si=SiGe hetero-
structure, and tunable spin-charge hybridization is enabled
by a micromagnet. We first reach the resonant strong spin-
photon-spin coupling regime; then, we bring both spins in
resonance with each other but detuned from the resonator
photons, and we observe a spin-spin avoided crossing
showing coherent remote interaction. This differs from
previously reported work where the virtual coupling could
not be achieved [30]. Finally, we resolve the photon-number
states from the discrete shifts they induce in the spin
transition frequency.

II. METHODS

The device is shown in Fig. 1. A 5-to-7-nm-thin film
of NbTiN is deposited on the surface of a 28Si=SiGe
heterostructure and patterned to form the superconducting
resonator, ground planes, gate filters [35,36], and gate
fan-out lines (Fig. 5). The sheet kinetic inductance
(around 140 pH=□), the narrow width of the resonator
center conductor (170 nm), and the retracted ground
planes combine into a high effective resonator impedance,
Zr ≈ 3.0 kΩ [36,37]; this results in a fixed coupling
gc=2π ¼ 192 MHz to the DQD charge degree of
freedom (“charge qubit”) at a resonator frequency of
ωr=2π ¼ 6.916 GHz for the half-wave mode [Fig. 1(a)].

Achieving a large gc ∝ αcVzpf (approximately 5 times
larger than Ref. [30]) is a result mostly of the increased
voltage zero-point fluctuations Vzpf ∝ ωr

ffiffiffiffiffi
Zr

p
of the high-

impedance resonator, and of the (0,1)-(1,0) interdot tran-
sition lever arm αc [17]. A combination of loss mitigation
strategies (Appendix A) results in an undercoupled reso-
nator with a linewidth κr=2π ¼ 1.8 MHz, limited by
resistive or dielectric losses near the DQDs. Each end of
the resonator terminates as one of the dot plunger gates and
is biased through a dc tap. The resonator is only 250 μm
long, which is a consequence of the substantial kinetic
inductance that translates to a high effective magnetic
permeability [36]. The DQD potential is shaped by apply-
ing suitable voltages to surface gate electrodes, as shown in
Figs. 1(b) and 1(c). Cobalt micromagnets provide a trans-
verse magnetic field difference ΔB⊥ ¼ 42 mT between the
two dots while minimizing magnitude differences ΔBk
(ΔB⊥ is taken as constant; see Appendix D for details).
Unlike gc, which is, to a large extent, fixed by the device
structure, the spin-photon coupling gs=2π at zero charge
detuning approximatively scales as

gs ≈ gc
geμBΔB⊥

4ð2tc − ℏωrÞ
ð1Þ

for 2tc ≫ fℏωs;ℏωrg, and it is therefore tunable via the
DQD tunnel splitting 2tc [22,23]. Here, ge ¼ 2 is the

(a)

(c)

(d)

(b)

FIG. 1. Spin-spin coupling device. (a) Optical image of the resonator and QD areas with colored overlays. The ground plane,
resonator, microwave (MW) in and out ports, and dc tap are thin superconducting NbTiN. The substantial kinetic inductance and
resonator impedance result in a 6.916-GHz resonator that is only 250 μm long. (b) Colorized angled scanning electron microscope
image of a (nominally identical) DQD gate structure and micromagnets. The NbTiN resonator end is contacted with an Al plunger
electrode of the DQD, which is biased through the dc tap. (Image rotated 90°.) (c) Schematic of the DQD heterostructure and gate stack
using the same color scheme as in panel (b). A photon couples to an electron spin through spin-orbit (micromagnet) and orbital-photon
(voltage zero-point fluctuations Vzpf ) interactions. (d) Micromagnets are tilted �15°, allowing one to fine-tune each spin’s Zeeman
energy through the external magnetic field angle ϕ. Here, Bext ¼ ðBr; θ ¼ −90°;ϕÞ.
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electron Landé g-factor, μB is the Bohr magneton, and
ωs=2π is the spin transition frequency. In any case, gs ≤ gc.
These device characteristics combine to enable values of
gs=2π up to around 40 MHz in this work. The micro-
magnets are tilted �15° relative to the vertical direction
[Fig. 1(d)], allowing one to fine-tune each spin’s Zeeman
energy by rotating the in-plane external magnetic field of
magnitude Br ¼ jBextj by an angle ϕ [30] using a vector
magnet. Device fabrication and experimental setup details
are given in Appendixes A and B, respectively.

III. RESULTS

First, the system is tuned to the regime where both spins
are resonant with the photons [30], which happens at a
field angle of ϕ ¼ 10.5° due to a 6.5-mT difference in
the micromagnet fields at ϕ ¼ 0°. In the main panels of
Figs. 2(a) and 2(b), DQD1 and DQD2 are set separately to
zero charge detuning, ϵ ¼ 0 μeV, allowing each spin to
interact with the photons while the other is decoupled. For
what follows, it is useful to keep in mind that the effective
charge-photon coupling (and therefore the effective spin-
photon coupling) can be switched off simply by biasing the
DQD charge detuning (ϵ ≫ tc) such that the electron is
confined to one dot. Sweeping Br results in a vacuum Rabi
splitting measurement for DQD1 and DQD2. The device
used in this experiment has slow drift of the (0,1)-(1,0)
interdot charge transitions. Hence, for every magnetic field

setting (Br or ϕ), an automated fitting procedure is used to
extract a data cut along ϵ ¼ 0 μeV and reconstruct the two-
dimensional data. This procedure ensures that the mea-
surements are protected against long-term drift, and it is
further detailed in Appendix C. A series of measurements is
used to successively constrain and extract system param-
eters, and the calculated transition frequencies are then
plotted over the measured data. The model parameters
include the resonator frequency ωr=2π, the charge-photon
coupling gic=2π, and the DQD charge detuning and tunnel
coupling ϵi=h and tic=h (respectively). Here, h is the
Planck constant, and i is an index identifying the DQD.
Full details about the model are given in Appendix D.
Experimentally, we observe that there is a high level of
symmetry between the two DQDs, and unless mentioned
explicitly, we omit the DQD index and take the dot
parameters to be the same. From the vacuum Rabi splitting
measurements of Figs. 2(a) and 2(b), we extract a spin-
photon coupling of ðg1s ; g2sÞ=2π ¼ ð11.8; 11.0Þ MHz for
DQD1 and DQD2, respectively, with tunnel splittings
ð2t1c; 2t2cÞ=h ¼ ð13.2; 13.7Þ GHz. Both DQDs achieve the
strong spin-photon coupling regime, i.e., gs > fκ0r;Γsg,
where Γs ≤ 6 MHz is the spin linewidth. When both DQDs
are set to zero charge detuning simultaneously [Fig. 2(c)],
both spins interact with the resonator, yielding a larger
resonator dispersive shift due to the additive effects of the
two DQDs, as well as an enhanced vacuum Rabi splitting

(a) (b) (c)

FIG. 2. Resonant spin-photon-spin coupling. (a,b) Spin-photon vacuum Rabi splitting of DQD1 (a) and DQD2 (b) for tunnel splittings
ð2t1c; 2t2cÞ=h ¼ ð13.2; 13.7Þ GHz and a field angle of ϕ ¼ 10.5°. When the gate voltage is set on the zero-charge-detuning point, which
corresponds to the middle of the (0,1)-(1,0) interdot charge transition, the charge-photon interaction gc=2π ¼ 192 MHz between the
DQD charge and the resonator dispersively shifts the resonator frequency (insets) and enables the spin-photon interaction through the
artificial spin-orbit interaction. The dashed lines are the Hamiltonian model transitions. The probe power is −117.5 dBm. (c) When both
dots interact simultaneously with the resonator, the dispersive shifts are additive, and the vacuum Rabi splitting is enhanced by a factor
of approximately

ffiffiffi
2

p
, an effect of the coherent collective spin-photon interaction. Model transitions are adjusted to the individual

interaction data and used to predict the simultaneous interaction data.
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2g12s =2π ¼ 32.3 MHz from the two-spin ensemble.
The enlarged splitting matches well the predicted
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg1sÞ2 þ ðg2sÞ2

p
=2π value, very close to a factor

ffiffiffi
2

p
larger than for single spins in this case. The Hamiltonian
model transitions, which are calibrated solely on the one-
at-a-time interaction data, predict very well the outcome of
the simultaneous interaction. The

ffiffiffi
2

p
enhancement indi-

cates simultaneous, coherent, and resonant interactions of
both spins with the resonator, as demonstrated in prior
work [30].
To resolve the spin-spin exchange splitting 2J=2π

mediated by virtual photons, a larger spin-photon coupling
is needed than in the resonant case (see, e.g., Fig. 9). Given
a fixed ratio gs=Δs, where Δs ¼ ωs − ωr is the spin-photon
detuning, and given that J ≈ ðgsÞ2=Δs in the dispersive
regime, increasing gs should allow J to become larger than
the spin linewidth. The spin-photon coupling strength is
increased by reducing the DQD tunnel splitting to
2tc=h ≈ 8.8 GHz, yielding gs=2π ≈ 33 MHz. Insight into
how the two spin states hybridize is gained by measuring
the spin transition frequencies as a function of the external
magnetic field angle ϕ using two-tone spectroscopy. A
pump tone at frequency fpump is sent down a gate line to
each DQD to generate an excited spin-up population, while
the transmission coefficient S21 is probed at a fixed
frequency fprobe set to the dispersively shifted resonator
frequency for each DQD at zero charge detuning (e.g., as in
the insets of Fig. 2). Line cuts along the charge zero-
detuning axis of data like those of Fig. 8 are assembled in a
two-dimensional diagram, resulting in Fig. 3. The spin
transition of the independently interacting DQD1 and
DQD2 is visible as a dip in the S21 signal magnitude.

The slope in the spin transition frequency as a function of ϕ
is caused by the relative angle of the field and each
micromagnet, which allows one to tune each spin’s
transition energy, as explained earlier. The DQD2 slope
is smaller than the one of DQD1 because ϕ ∈ ½9; 13�° is
almost aligned with the DQD2 micromagnet angle 15° and
farther from the one of DQD1. When both spins interact
simultaneously [Fig. 3(c)], an avoided crossing is observed,
while the upper transition becomes dark close to spin-spin
resonance [3]. With ð2t1c; 2t2cÞ=h ¼ ð8.82; 8.80Þ GHz and
Br ¼ 52 mT, we extract ðg1s ; g2sÞ=2π ¼ ð32.4; 32.7Þ MHz,
2J=2π ¼ 19.0 MHz, and Δ2s=2π ¼ −79 MHz (here,
Δ2s is for two spins since each DQD contributes an
additive charge dispersive shift χc to ωr, as explained in
Appendix D). In Fig. 3(d) and Appendix F, additional spin-
spin hybridization results show that the exchange inter-
action is reduced when either jΔsj is increased or gs is
decreased, as expected. The full width at half minimum
of the dip, 2Γs=2π, is 2Γ−

s =2π ¼ ð11.7� 3.6Þ MHz for
the two-spin lower branch on resonance (the upper
branch’s visibility is too low for a reliable fit). While this
is the most relevant linewidth, for completeness, we also
report ð2Γ1

s ; 2Γ2
sÞ=2π ¼ ð10.4� 3.0; 13.0� 3.2Þ MHz for

the individual spin-interaction case on resonance (ϕ¼10.5°),
and ð2Γ1

s ; 2Γ2
sÞ=2π ¼ ð8.8� 4.1; 13.2� 4.2Þ MHz for the

simultaneous interaction away from resonance (ϕ ¼ 13°).
Since 2J > ð2Γ1

s þ 2Γ2
sÞ=2, the two spins are coherently

hybridized through virtual photons, achieving a long-stand-
ing goal for the field. Arguably, the data presented in this
figure are not very deep into the dispersive regime. In
Appendix F, we present additional data at larger Δs where
2J is still larger than 2Γs. The ratio of interaction strength to

(a) (b) (c)

(d)

FIG. 3. Spin-spin coupling via virtual photons. (a,b) Dependence of the independently interacting spin transition frequencies as a
function of the external magnetic field angle ϕ at Br ¼ 52 mT. See Appendix C for the reconstruction procedure responsible for the
vertical stripes. (c) When both spins interact simultaneously with the resonator, an avoided crossing is observed. The spin states
hybridize with a splitting 2J=2π ¼ 19.0 MHz, larger than any of the transition widths 2Γs=2π ≤ ð13.2� 4.2Þ MHz. A dark state is
observed along the upper branch, an effect caused by the symmetry of the coherently hybridized spin states. (d) Plot showing how the
exchange interaction is reduced when the spin-photon detuning is increased.
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decoherence should be sufficient to enable two-qubit gates
[18–21] in future experiments.
The photon-number-dependent dispersive shift, where

a single (probe) photon will shift the qubit frequency
by more than its linewidth, is also a hallmark of circuit
QED [32]. The shift 2χs=2π is expected to scale as
χs ≈ ðgsÞ2=Δs in the dispersive regime, a dependence
reminiscent of the qubit-qubit exchange interaction J. It
therefore seems reasonable to observe both effects if the
linewidths are sufficiently narrow. However, while virtual
spin-spin coupling requires zero photons and therefore
has lower sensitivity to photon losses, this effect requires
finite photon population, which exposes the spin to
measurement broadening [see the ΓðnÞ formula below].
The photon-number-dependent dispersive shift of DQD1 is
shown in Fig. 4. A larger probe power is used (−119 dBm,
0 MHz detuning) than for the data of Fig. 3 (−123 dBm,
−1.2 MHz detuning), which populates the resonator with
more photons. An extra dip appears below the main
transition, and its frequency shows good agreement with
the prediction of the Hamiltonian model for the j↓; 1i ↔
j ↑; 1i spinlike transition. In Fig. 4(b), a line cut from
Fig. 4(a) is extracted, and the dip areas and separations
are fit to a sum of Lorentzian dips with widths 2ΓðnÞ=
2π ¼ 2γs=2π þ ðnþ n̄rÞκ0r=2π. A value of 2χs=2π ¼
−13.1� 2.2 MHz is extracted from the fit (with parameters
κ0r=2π ¼ 3.0� 0.2 MHz, n̄r ¼ 0.62), slightly larger than
the linewidths (2Γð0Þ; 2Γð1Þ)=2π ¼ ð8.6; 11.6Þ MHz.
The Hamiltonian model yields gs=2π ¼ 33.4 MHz and
Δs=2π ¼ −102 MHz. The dressed linewidth κ0r accounts
for exact experimental conditions at the time of the
measurement, including Purcell decay caused by the charge
qubit, which could otherwise change slightly over time
and conditions. The area under the photon-number dips
should be proportional to the probability of each photon

number n [32,38]. The relative areas are plotted in Fig. 4(c)
and compared with thermal- and coherent-state distribu-
tions. The coherent state with n̄r ¼ 0.62 shows better
agreement. This is consistent with the observation that
the areas of the extra photon-number dips are reduced when
using lower probe powers. Additional analysis can be
found in Appendix G.
The ability to resolve quantized photon-number shifts in

the qubit spectrum is a feature of the so-called strong
dispersive regime of circuit QED, χs > fΓs; κ0rg. It enables
the preparation and detection of quantum photon states such
as number states or cat states [33] and therefore paves theway
towards bosonic codes [34,39] with spin qubits. Reciprocally,
this also entails a shift of the resonator frequency larger than
its linewidth, enabling fast and strong qubit readout. Finally,
it dramatically highlights the consequences of residual
photons on the qubits’ dephasing.

IV. DISCUSSION

The strong backaction of the probe photons on the spin
observed here highlights the limits of continuous-wave
measurements, and the necessity for future work to include
time-domain control or dedicated readout and coupling
resonators, as is now standard with superconducting qubits.
Since the probe power needs to be much below n̄r ¼ 1
photons, this entails a low signal-to-noise ratio, especially
without a parametric amplifier. Because of slow drift in the
DQD interdot transition specific to this device (of the scale
of minutes), long averaging times become problematic.
However, this is not a fundamental problem for the plat-
form in the future, as spin-qubit devices can be much more
stable.
The fit to the formula for ΓðnÞ suggests a fundamental

spin linewidth γs=2π ¼ 3.4� 1.0 MHz when subtrac-
ting photon losses (κ0r=2π ¼ 3.0� 0.2 MHz) and for

(a) (b) (c) (d)

FIG. 4. Photon-number-resolved spin dispersive shift. (a) Spin transition frequency of DQD1 showing an extra dip below the main
transition for larger probe power. The dip matches well the prediction from the Hamiltonian model (dashed lines) for j↓; ni ↔ j ↑; ni
transitions, with the first two transitions visible in this plot. (b) Line cut of the data in panel (a) for ϕ ¼ 10.55°, and fit to four Lorentzian
dips (first three shown with dashed lines). A dispersive shift 2χs=2π ¼ −13.1� 2.2 MHz is extracted. (c) Relative area of the dips for
ϕ ¼ 10.55°, and comparison with thermal [PthermalðnÞ ¼ n̄nr =ðn̄r þ 1Þnþ1] and coherent [PcoherentðnÞ ¼ e−n̄r n̄nr =n!] photon-number
distributions. The error bar represents the 95% confidence interval. (d) Relative area for ϕ ¼ 11.6°. At this angle, the resonator has a
smaller κ0r, resulting in a larger steady-state photon number. The coherent-state distribution has better agreement.
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gs=2π ¼ 33.4 MHz. This linewidth value should be cited
with care given that there are many assumptions involved;
however, it compares favorably with literature values
[22–24] and especially when considering the large gs
achieved here. As with previous work, the spin linewidth
seems limited by charge noise coupling in through the
artificial spin-orbit interaction.
The large gs in this experiment is key to achieving coherent

spin-photon interaction in the dispersive regime. This would
not be possible without the large gc enabled by the high-
impedance resonator, considering that gs ≤ gc [20,21]. Other
contributing factors include the engineered spin-orbit inter-
action through the micromagnet’s ΔB⊥, and state-of-the-art
resonator losses despite the increased resonator coupling to
its environment [36]. Interestingly, the charge-qubit line-
width Γc=2π ≲ 60 MHz at 2tc=h ¼ 12 GHz is not particu-
larly small, suggesting that the good overall performance of
the device comes from other factors, like the low gs=gc
ratio [40], and could be improved further [41]. The coop-
erativity reaches a demonstrated value of ðgsÞ2=κ0rΓ1

s ¼ 72

(taking a conservative Γ1
s=2π ¼ 5.2 MHz) or a projected

ðgsÞ2=κ0rγs ¼ 109 (assuming photon-induced broadening
could be eliminated). Given that the exchange splitting is
larger than the spin decoherence rates, a two-qubit gate of
modest fidelity greater than or close to 75% [21] could
potentially be achieved with the current device. To fully
explore the optimal parameter space, a devicewith improved
long-term stability, larger resonator coupling rates for read-
out, and tailored gate filters to allow driving signals without
attenuation would be beneficial.

V. CONCLUSION

In summary, we have demonstrated coherent hybridiza-
tion of two spins mediated by virtual photons, as well as
spin dispersive shifts by single photons, both larger than the
spin linewidth. These experiments are more challenging
than previous demonstrations of circuit QED with spins
because they require a larger coupling-to-decoherence ratio
(i.e., cooperativity). Admittedly, the cooperativity in this
platform is not yet on par with contemporary supercon-
ducting qubits. The regime of circuit QED achieved here is
quite promising for the platform; it could enable two-qubit
gates between spin qubits mediated by resonators [20,21],
single-shot dispersive spin-qubit readout (without spin-to-
charge conversion) [40], bosonic codes through preparation
and detection of quantum photon states with spins
[33,34,42], coherent links between dense spin-qubit net-
works [5], or quantum simulation with spin QED net-
works [43]. For future improvements, we believe that
decoupling the spin from the charge noise is a promising
path. An increased charge-photon coupling would allow us
to further detune the charge qubit from the spin and photon
while preserving the spin-photon coupling, effectively
suppressing the effects of the charge linewidth. This is
because gs ∝ ð2tc − ℏωrÞ−1 while Γs ∝ ð2tc − ℏωrÞ−2 is

suppressed more quickly [20,21]. Furthermore, improved
longitudinal magnetic gradient symmetry (we measured
ΔBk ∼ 1 mT) could help reduce the spin’s noise sensitivity.
Finally, improvements to materials and fabrication could
help reduce the charge noise itself.

The data reported in this paper are archived online
at Ref. [45].
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APPENDIX A: DEVICE FABRICATION

The 10-nm-thick 28Si=SiGe quantum-well heterostruc-
ture is grown on a 100-mm Si wafer via reduced-pressure
chemical vapor deposition. The SiGe barrier thickness is
30 nm. Photolithography alignment markers are plasma
etched into the surface with a Cl/HBr chemistry. Doped
contacts to the quantum well are formed by 31P implanta-
tion masked with photolithography and activated with a
700°C rapid thermal anneal. The 5–7-nm superconducting
NbTiN film is deposited via magnetron sputtering, pre-
ceded by a hydrofluoric acid dip and Marangoni drying,
and followed by liftoff of the resist-covered quantum-dot
areas. The sheet inductance is targeted to be around
115 pH=□ (measured at 140 pH=□ for this device). The
10-nm Al2O3 gate oxide is grown by atomic-layer depo-
sition, followed by wet etching with buffered hydrofluoric
acid everywhere except for the resist-covered quantum-dot
areas. Contacts to implants, contacts to the NbTiN film, and
electron-beam-lithography alignment markers are patterned
with Ti=Pt evaporation preceded with buffered hydroflu-
oric acid dip and followed by liftoff. The wafer is diced
into pieces for further electron-beam-lithography steps.
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The 25-nm Al gates are deposited via evaporation followed
by liftoff. The NbTiN film is etched via SF6=He reactive
ion etching to define the resonator, inductors, capacitors,
and gate lines in a single electron beam lithography step,
leaving a 40-nm step after the etch. The thin-film capacitor
is patterned by first sputtering 30 nm of silicon nitride in a
conformal deposition, and then evaporating 5 nm of Ti and

100 nm of Au in a directional deposition, allowing for a
single patterning and liftoff step. The SiNz conformal
deposition covers the 40-nm steps created during the etch
of the NbTiN film. The micromagnets are patterned by first
sputtering 30 nm of silicon nitride in a conformal depo-
sition and then evaporating 5 nm of Cr and 200 nm of Co in
a directional deposition, allowing for a single patterning
and liftoff step. Pieces are diced into individual 4-mm-by-
2.8-mm device chips (Fig. 5) to be wire bonded onto a
printed circuit board for cryogenic measurements.
To reduce resonator losses due to resistive currents in the

gate structure, the gates are made of Al, and they maintain
superconductivity up to in-plane magnetic fields of around
0.5 to 0.6 T, sufficient for our spin-qubit experiments, while
the NbTiN structures maintain low losses up to several tesla
[37]. To mitigate the microwave losses through the gate
fan-out lines [35], microwave low-pass filters are patterned
on the gate fan-out lines using a combination of nanowire
inductors and thin-film capacitors [36].

APPENDIX B: EXPERIMENTAL SETUP

The device is cooled using an Oxford Instruments
Triton 400 dilution refrigerator with a base temperature

FIG. 5. Composite optical image of the device chip without
wire bonds.

FIG. 6. Schematic of the measurement setup.
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of approximately 8 mK. The refrigerator is equipped with a
(6,1,1)-T vector magnet. The equipment setup is shown
in Fig. 6.
The resonator probe tone is generated using a mixer to

allow for rapid sweeping of the probe frequency. The
heterodyne detection is performed with an IQ mixer and at
a variable intermediate frequency (IF) in the range
[10,110] MHz. Combined with voltage ramps on the
plunger gates or IQ modulation of the pump tone with
an arbitrary waveform generator (AWG), this configuration
allows for rapid acquisitions of two-dimensional data.

APPENDIX C: DATA RECONSTRUCTION
ALONG ZERO CHARGE DETUNING

The device used in this experiment has slow drift of the
(0,1)–(1,0) interdot charge transitions. Hence, for every
magnetic field setting (Br or ϕ), an automated fitting
procedure is used to extract a data cut along ϵ ¼ 0 μeV
of a data frame and to reconstruct the two-dimensional data.
This procedure ensures that the measurements are protected
against long-term drift.
Each data frame is acquired in a single digitizer call as in

Fig. 7(a). The fast axis is usually gate voltage, swept with
an AWG ramp. The slow axis is usually a pump or a probe
frequency, also controlled with AWG I or IQ modulation.
The waveforms are repeated with a period of 4 ms (typical)
and averaged into a frame consisting of 1000 to 3000
repetitions (4 to 12 s of cumulative integration time).

Data transfer overheads mean that the frames take between
20 and 60 s to acquire and process.
The empirical fitting functions can be found in the

source code files used for the data processing. The
algorithm works by extracting a line cut at or near the
bare resonator frequency, as in Fig. 7(b). The maximum
signal is always away from zero charge detuning, and it
is symmetrically centered on zero detuning in most
cases. For certain values of Br, the spin dispersive shift
(positive) compensates the charge dispersive shift (neg-
ative) and can lead to features inside the dip, which can
look asymmetric. Because these features are always
lower in amplitude than the main edges that set the
symmetry point, the algorithm is usually robust to this.
In some cases, we also improve the fit by accounting for
these artifacts, also empirically. The case presented in
Fig. 7 is one of those more difficult situations, which
works nonetheless (near the spin-photon resonance).
The consistency of the whole procedure is validated
by visual inspection of the zero-detuning fit results [e.g.,
by looking at plots like Fig. 7(a) one by one].
For data where both spins interact simultaneously with

the resonator, one of the dots is fixed at zero charge
detuning while the other dot detuning is rapidly swept, and
a similar fitting procedure as described above is applied.
This makes the acquisition tolerant of drift for the swept
detuning, but the other dot must remain fixed near zero
detuning long enough for the automated acquisition to be
completed. Certain validation procedures can be applied to
verify that the fixed dot did not drift after acquisition. For
example, the dispersive shifts must add to ðχ1c þ χ2cÞ=2π;
away from zero detuning, the shift is less. Conditions are
sometimes set to recenter the detuning and reacquire the
frame if some conditions are not met. These postvalidation
procedures are used best with dispersive spin sensing, but
they are harder to implement with vacuum Rabi splitting
reconstructions (near spin-photon resonance). They are not
always necessary and are only applied when too much drift
is observed.
Occasional bad data lines are caused by missed zero

charge detunings and can easily be seen in the recon-
structed data as vertical lines of poor or anomalous signal.
Although they are admittedly not pretty, we are confident
that they do not impact the validity or interpretation of the
results.
The full source data and analysis code is available in the

online repository.

APPENDIX D: SPIN-PHOTON
HAMILTONIAN MODEL

1. Model definition

The spin-photon system is modeled with the following
Hamiltonian to numerically calculate the exact transition
energies between eigenstates:

(a)

(b)

(c)

FIG. 7. Fitting of zero charge detuning. (a) Example of a single
frame of data used in a vacuum Rabi splitting reconstruction.
(b) Cut along the black line from panel (a) corresponding to the
bare resonator frequency to extract the zero-detuning gate voltage
x0. An empiric fitting function is used to find the center of the
signal dip due to the dispersive shifts. (c) Cut along the fitted
zero-detuning value x0 (white line) and fit to a single Fano
resonance.
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H ¼ ℏωra†aþ
X2
i¼1

½Hi þ ℏgicðaþ a†Þτiz�; ðD1Þ

Hi ¼
1

2
½ϵiτiz þ 2ticτix þ ðhi þ Δhiτiz=2Þ · σi�: ðD2Þ

Here, h (ℏ) is the (reduced) Planck constant, a is the photon
annihilation operator, ωr=2π is the resonator frequency,
i is a DQD index, gic=2π is the charge-photon coupling,
τiz ¼ jLiihLij − jRiihRij and σi are charge and spin Pauli
operators (respectively), with σi ¼ σixx̂þ σiyŷþ σizẑ a vec-
tor of Pauli operators, and ϵi=h and 2tic=h are the DQD
charge detuning and tunnel splitting (respectively). In cases
where the DQD parameters are the same, or in the context
of formulas that describe only one DQD, we omit the DQD
index. The external and micromagnet magnetic fields are
parametrized using the average and difference field ener-
gies hi and Δhi at the left (L) and right (R) dot positions,

hi=geμB ¼ ðBi
L þ Bi

RÞ=2 ðD3Þ

¼ Bext þ Bi
um; ðD4Þ

Δhi=geμB ¼ Bi
L − Bi

R ðD5Þ

¼ ΔBi
um; ðD6Þ

with ge ¼ 2 the electron Landé g-factor and μB the Bohr
magneton. Vectors like the external magnetic field Bext ¼
ðBr; θ ¼ −90°;ϕÞ are conveniently expressed in spherical
coordinates, with ϕ the polar angle. The micromagnet
average field is modeled with the empirical formula

Bi
um ¼ ðBi

um0 þ χiumðBext − Bi
ext0Þ · ûiumÞûium ðD7Þ

to account for the susceptibility (χ1um ≈ 0.67, χ2um ≈ 0.63),
and with û1um ¼ ð1; 90°; 15°Þ and û2um ¼ ð1; 270°; 15°Þ.
Empirical parameters are B1

um0 ¼ 152.6 mT, B2
um0 ¼

146.9 mT, and Bi
ext0 ¼ ðBr0 ¼ −20 mT;−90°;ϕÞkBext.

However, the micromagnet difference field is taken as
constant because of practical difficulties in measuring its
response,

ΔBi
um ¼ ðΔB⊥; 180°; 90°Þ ¼ −ΔB⊥x̂; ðD8Þ

with ΔB⊥ ¼ 42 mT. We have not noticed discrepancies in
gs (through χs or J) that could be specifically attributed to
this approximation. An effect that is left out is the fact that
the Zeeman energy is not the same in the left and right dots.
Experimentally, we observe ΔBk ∼ 1 mT by tracking the
spin-photon resonance condition versus DQD charge
detuning. This is responsible for some asymmetry in plots
like the one of Fig. 7; however, we find that taking this into
account is not necessary to model the energy levels at zero

detuning. The parametrization described in this paragraph
is sufficient to capture the magnitude and angular depend-
ence of the spin Zeeman energies over the range of interest.
Some derived, effective, spin-photon quantities (such as

gs, Δs ¼ ωs − ωr, χs, J) are used by analogy to their
idealized versions, without the charge degree of freedom,
with, for example, a Tavis-Cummings Hamiltonian [31]

HTC ¼ ℏωra†aþ
X2
i¼1

�
ℏ
2
ωi
sσ

i
z þ ℏgisða†σi− þ aσiþÞ

�
ðD9Þ

or a dispersive Hamiltonian [31]

Hdisp ¼ ℏω0
ra†aþ

X2
i¼1

�
ℏ
2
ðω0

s
i þ 2χisa†aÞσiz

�

þ ℏJðσ1þσ2− þ σ1−σ
2þÞ: ðD10Þ

Here, ω0
r ¼ ωr − χs and ω0

s ¼ ωs þ χs. The spin frequency
ωs=2π and photon frequency ωr=2π depend strongly on
whether each dot interacts with the resonator (ϵ ¼ 0) or not
(ϵ → ∞). The spin frequency is lowered when the inter-
action is on because of the artificial spin-orbit coupling
[44], ωs → ωs þ χSO,

ℏχSO ¼ −
jΔhj2
8jhj −

1

16

jΔhj2
ð2tc − jhjÞ þ

1

16

jΔhj2
ð2tc þ jhjÞ < 0;

ðD11Þ

for Δh⊥ h, 2tc − jhj ≫ jΔhj and jhj ≫ jΔhj. The photon
frequency is lowered by the dispersive interaction with
the charge, ωr → ωr − χic, for 2tc > ℏωr. We find that the
charge dispersive shift is well predicted by taking into
account the counter-rotating terms (Bloch-Siegert shift),

χc ¼
ðgcÞ2

2tc=ℏ − ωr
þ ðgcÞ2
2tc=ℏþ ωr

> 0: ðD12Þ

Failing to do so can lead, for example, to an overestimated
gc=2π ¼ 220 MHz instead of 192 MHz. A schematic
representation of various shifts in the dispersive regime
is shown in Fig. 8(a). While the analytical forms are
insightful, we use exact numerical values calculated from
Eq. (D1) instead in this work. To avoid ambiguities, we
define Δi

s=2π as the bare (i.e., theoretical but including χc
and χSO) spin-photon detuning for spin i individually
interacting with the resonator [see Fig. 8(a)], and
Δi

2s=2π by taking the individually interacting bare spin
frequency and the simultaneously interacting bare photon
frequency (which we find to be a quite accurate proxy; see
ϕ ¼ 13° in Fig. 8). The dispersive approximations χs ≈
ðgsÞ2=Δs and J ≈ g1sg2sð1=Δ1

2s þ 1=Δ2
2sÞ=2 are insightful

but not quantitatively accurate because of various shifts in
the frequencies, rotating wave approximations, dressing
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by the DQD charge degree of freedom, or violations
of the dispersive approximation [requiring Δs ≫ gs or
n̄r ≪ ncrit ¼ ðΔs=2gsÞ2]. It is not within the scope of this
work to derive these quantities from system parameters, as
this has been tackled elsewhere [16,17,20,21]. Instead, and
in spite of Eqs. (D9) and (D10), we define 2gs=2π as the
vacuum Rabi splitting gap, 2χs=2π as the shift in the spin
frequency induced by one photon, and 2J=2π as the spin-
spin splitting; these quantities are extracted from the data or
from Eqs. (D1) and (D2). This avoids the approximation
pitfalls mentioned previously.

2. Parameter extraction from the data

Here, we describe the procedure to extract the model
parameters from the experiment. Parameters are successively
constrained using specific experiments for each DQD one at
a time. First, the resonator bare frequency and bare linewidth
are easily extracted from a probe frequency sweep while the
dots are in Coulomb blockade. These quantities are later
dressed by the interactionwith charge and spin. For example,
the resonator linewidth is significantly affected by Purcell
decay from the charge qubit, and this practically limits the

achievable spin-photon coupling and spin measurement
sensitivity. The DQD lever arm is extracted from bias
triangles. The charge-qubit transition frequency 2tc=h is
measured with two-tone spectroscopy, and the correspond-
ing resonator dispersive shift (away from spin-photon
resonance) then allows one to uniquely calibrate the value
of gc. Next, the micromagnet parameters are extracted by
simultaneously adjusting the spin-photon transition frequen-
cies to the experimental values of Fig. 9 (vacuum Rabi
splitting and two-tone spinmeasurement versusBr andϕ) for
each dot independently. Notably, the size of the spin-photon
gap (2gs=2π) in avacuumRabi splittingmeasurement ismost
affected by ΔB⊥. The micromagnet susceptibility χum and
offset field Bum0 are mainly fixed by the slope of the spin
transition frequency versusBr and the spin-photon resonance
condition, respectively. Then, Br0 is tweaked to get the best
simultaneous agreement with both dots and for various
angles.

3. Parameter table

A summary of the main model parameters for the key
results is given in Table I.

(a)

(b) (c) (d)

FIG. 8. Dispersive regime transitions, and spin-spin interaction versus DQD detuning. (a) Schematic representation of the transition
energy shifts in the dispersive regime. See Appendix D for details. (b,c) Measurement of spin transitions for DQD1 (b) and DQD2 (c) as
a function of the charge detuning ϵ with dispersive readout, with 2tc=h ≈ 8.7 GHz and Br ¼ 52 mT. A pump tone is sent down the gate
lines to excite the spins, resulting in a signal dip when the pump and spin frequencies match. Here, ðf1probe; f2probe; f12probeÞ ≈
ð6.9038; 6.9061; 6.8981Þ GHz for ϕ ¼ 10.8°. The spin transition frequency at ϵ ¼ 0 μeV is marked with a white dashed line for
comparison between plots. (d) When the spins are simultaneously interacting with the resonator, the spin states hybridize depending on
their energy difference. In the nonresonant case, ϕ ¼ 13.0°, their energies are minimally perturbed, as can be seen by the model lines and
the white guides. In the resonant case, ϕ ¼ 10.8°, the two spins hybridize due to the exchange interaction 2J=2π ¼ 20.2 MHz mediated
by virtual resonator photons. The upper state is hardly visible because its symmetry makes it dark to the resonator probe, which is
expected for a coherent spin-spin interaction.
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FIG. 9. Example of data used to extract model parameters. For this set, 2tc=h ¼ 13.5 GHz, Br ¼ 52 mT, and ϕ ¼ 10.5°. The first
column shows vacuum Rabi splitting reconstructions for individually and simultaneously interacting spins. The second column shows
dispersive spin sensing (the data near spin-photon resonance are scrambled because of the close proximity of the levels). The third
column shows the angular dependence of the spin levels with dispersive spin sensing. The two spinlike and the photonlike transitions are
shown together. These data, and more, are used to calibrate the micromagnet parameters for use in the Hamiltonian model Eq. (D2). For
these tunnel splittings and spin-photon detunings, the model predicts gs=2π ¼ 11.4 MHz and 2J=2π ¼ 3.3 MHz. Here, 2J=2π is too
small to be resolved. Note that transition linewidths are power broadened.

TABLE I. Summary of model parameters. The resonator linewidth is a relaxation rate (κr ¼ κ1), while the charge
and spin (the “qubits”) linewidths are dephasing rates, i.e., γ2 ¼ γ1=2þ γϕ, as is standard in the field [31]. In
general, the frequencies and shifts depend strongly on whether one, two, or zero of the DQDs are interacting with the
resonator (ϵi ¼ 0 μeV).

Quantity, symbol Units DQD1 DQD2 Resonator

Noninteracting resonator frequency, ωr=2π GHz 6.916
Noninteracting resonator linewidth, κr=2π MHz 1.8
Charge-photon coupling, gc=2π MHz 192 192
Charge-qubit linewidth (2tc=h ¼ 12 GHz), Γc=2π MHz ≲60 ≲60
Transverse magnetic field difference, ΔB⊥ mT 42 42

(Table continued)
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APPENDIX E: SPIN TRANSITIONS AS A
FUNCTION OF DQD DETUNING

The DQD tunnel splitting is set to 2tc=h ¼ 8.7 GHz,
yielding gs=2π ¼ 34.2 MHz. A pump tone at frequency
fpump is sent down a gate line to each DQD to generate an
excited spin-up population, while the transmission coef-
ficient S21 is probed at a fixed frequency fprobe set to the
dispersively shifted resonator frequency for each DQD at
zero charge detuning (e.g., as in the insets of Fig. 2). The
results are plotted in Fig. 8 for two values of the magnetic
field angle ϕ, corresponding to off-resonant and resonant
spin transition energies. The spin transition frequency is
reduced at zero charge detuning compared with the
localized dot states because of the spin-charge hybridiza-
tion shift χSO=2π. The signal shows a peak centered on
ϵ ¼ 0 μeV when the resonator frequency gets pushed down
by the charge dispersive shift χc=2π. When the pump
frequency matches the spin transition frequency, the excited
spin-state population is increased, and the resonator

frequency is pushed down further by the spin dispersive
shift 2χs=2π, visible as a dip in the transmission that
follows the spin transition energy. When the two spins are
not resonant (ϕ ¼ 13.0°), each spin can be independently
measured while interacting with the resonator one at a time.
When the two spins are simultaneously interacting, they
can both still be sensed, albeit with an adjusted probe
frequency to account for the dual charge dispersive shift,
and the spin transitions are mostly unperturbed from their
independent values, as seen from the white dashed line
serving as a guide. When the two spins are set to resonance
(ϕ ¼ 10.8° at this magnetic field), the two states avoid each
other when both spins are simultaneously interacting.
Comparing the simultaneous spin-interaction results in
the two cases, we see that the lower state has enhanced
visibility while the upper state has a reduced one. This is
consistent with the formation of a dark state, an effect that
results from the symmetry of the hybridized spin states and
is expected in the case of coherent spin-spin interaction [3].
As in the other cases, model transitions are adjusted to the

TABLE I. (Continued)

Quantity, symbol Units DQD1 DQD2 Resonator

Resonant coupling, Fig. 2
Tunnel splitting, 2tc=h GHz 13.2 13.7
Charge dispersive shift, χc=2π MHz 7.689 7.214
Spin-orbit shift, χSO=2π MHz −34.4 −33.6
Spin-photon coupling, gs=2π MHz 11.8 11.0
Half vacuum Rabi splitting (two spins), g12s =2π MHz 16.2
Spin linewidth, Γs=2π MHz ≤6 ≤6
Interacting resonator linewidth, κ0r=2π MHz 2.6 2.3

Dispersive coupling, (Fig. 3)
Tunnel splitting, 2tc=h GHz 8.82 8.80
Charge dispersive shift, χc=2π MHz 21.46 21.66
Spin-orbit shift, χSO=2π MHz −62.3 −62.6
Spin-photon coupling, gs=2π MHz 32.4 32.7
Spin-photon detuning, Δs=2π MHz −99 −101
Spin-photon detuning (two-spins), Δ2s=2π MHz −79 −79
Spin dispersive shift, χs=2π MHz −7.8 −7.8
Spin-spin coupling, J=2π MHz 9.5
Spin linewidth, Γs=2π MHz 5.2 6.6
Mean photon number, n̄r <0.5

Photon-number splitting, Fig. 4, ϕ ¼ 10.55°
Tunnel splitting, 2tc=h GHz 8.75
Charge dispersive shift, χc=2π MHz 22.18
Spin-orbit shift, χSO=2π MHz −63.7
Spin-photon coupling, gs=2π MHz 33.4
Spin-photon detuning, Δs=2π MHz −102
Spin dispersive shift (predicted), χs=2π MHz −8.0
Spin dispersive shift (measured), χs=2π MHz −6.6
Zero-photon-peak linewidth, Γð0Þ=2π MHz 4.3
One-photon-peak linewidth, Γð1Þ=2π MHz 5.8
Spin linewidth without photon losses, γs=2π MHz 3.4
Interacting resonator linewidth, κ0r=2π MHz 3.0
Mean photon number, n̄r 0.62
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individual interaction data and used to predict the
simultaneous interaction data. The simultaneous inter-
action is again well predicted by the Hamiltonian model,
as can be seen from the orange dashed lines. From the
model, we extract a minimum separation between the
spin states of 2J=2π ¼ 20.2 MHz, with Br ¼ 52 mT
and Δ2s ¼ −80 MHz.

APPENDIX F: EXTENDED SPIN-SPIN
COUPLING DATA

In this section, we present additional data that demon-
strate the hybridization of the two spin states. Hybridization
as a function of spin-photon detuning (through Br) is
shown in Fig. 10. To speed up data acquisition, a larger
probe power is used than in the main text data of Fig. 3,
which, as a consequence, also significantly broadens the
width of the spin transitions due to the photon-number-
dependent spin dispersive shift. The apparent jitter of the
transition energy as a function of ϕ is caused by jitter of the
DQD2 tunnel coupling over the time it takes to reconstruct
all angles. As expected, the spin splitting is reduced at
larger jΔ2sj. The upper branch is also dark in all plots near
spin-spin resonance. These observations are consistent
with spin-spin hybridization mediated by virtual resonator
photons.

Next, hybridization of the two spin states is shown as a
function of the spin-photon coupling (through tc) in
Fig. 11. In this work, we have measured spin-spin inter-
actions (J) with values of spin-photon interactions gs=2π
up to 40 MHz. A practical limit on how large gs can be is
the broadening of κ0r at small charge-photon detunings,
mainly caused by Purcell decay from the charge qubit. At
some point, the resonator becomes too undercoupled and
the signal too small. This could be improved by using a
dedicated readout resonator with an optimized coupling, by
adding a near-quantum-limited amplifier at the mixing
chamber, or by reducing the charge linewidth. The setting
used in Fig. 3 is chosen empirically based on linewidth,
exchange coupling, and readout signal.
In the experiment of the main text Fig. 3, the critical

photon number ncrit ¼ ðΔ2s=2gsÞ2 ¼ 1.5 is quite low. This
number is often used to quantify the validity of the
dispersive regime, which requires the expectation value
of the photon number n̄r to be n̄r ≪ ncrit [31]. We use the
photon-number-dependent spin dispersive shift to establish
an upper bound of n̄r < 0.5 for the data of the main text
Fig. 3 (n̄r ≈ 0.4� 0.1). We can no longer distinguish
between the coherent and thermal distributions since
they converge and the data are too noisy. The ncrit could
be optimized for future qubit experiments. For instance, in

(a)

(d) (e) (f)

(b) (c)

FIG. 10. Extended spin-spin hybridization data versus spin-photon detuning. (a)–(e) Dispersive spin-spin hybridization measured for
different spin-photon detuning values. The probe power is larger for these data than for the data in Fig. 3; the shadow visible below the
main transition is caused by the photon-induced dispersive shift of the spin. The apparent jitter of the transition energy as a function of ϕ
is caused by jitter of the DQD2 tunnel coupling over the time it takes to reconstruct all angles. The 2tc=h ≈ 8.7 GHz is retuned between
plots and yields gs=2π ≈ 34 MHz for both spins. The model fully captures the observed transition frequencies within plots and between
the plots, and the only adjustment is the experimentally measured small variations in tc. (f) Splittings 2J=2π extracted from the model as
a function of spin-photon detuning (through Br). Comparison with the linewidth is impaired by the photon-number broadening of the
transitions. As expected, 2J=2π decreases as jΔ2s=2πj increases.
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Fig. 10(b), the ncrit ¼ 2 is already much higher while 2J=2π
is still 17 MHz. Time-domain control can also help reduce
n̄r by probing only during readout. The exact requirements
will depend on the target two-qubit gate and desired fidelity
(amongst other things).

APPENDIX G: EXTENDED PHOTON-NUMBER-
DEPENDENT SPIN DISPERSIVE SHIFT DATA

In this section, we extend the analysis of the photon-
number-dependent spin dispersive shift data by looking at
data for ϕ ¼ 11.6°. In Fig. 12(b), a line cut from Fig. 12(a)
is extracted, and the dip areas and separations are fit to a
sum of Lorentzian dips with 2ΓðnÞ ¼ 2γs þ ðnþ n̄rÞκ0r.

A value of 2χs=2π ¼ −12.5 MHz is extracted from the
fit (gs=2π ¼ 33.4 MHz, Δs=2π ¼ −122 MHz), slightly
larger than the average of the linewidths (2Γð0Þ;
2Γð1Þ)=2π ¼ ð10.1; 13.1Þ MHz. The coherent state has a
higher photon number, n̄r ¼ 0.82, than at ϕ ¼ 10.55° (see
main text, n̄r ¼ 0.62). This can be attributed to the
resonator’s higher dressed quality factor for ϕ > 11.2°
(which is independently verified), and it leads to a larger
probe photon population at a steady state. This is also
consistent with the background showing a larger relative
jS21j value at fixed probe power. The difference between
the coherent-state and thermal-state distributions is more
pronounced than in the main text.

(a) (b) (c) (d)

FIG. 11. Extended spin-spin hybridization data versus spin-photon coupling strength. (a)–(d) Dispersive spin-spin hybridization
measured for decreasing spin-photon coupling values. The gs is adjusted through its dependence on tc and is approximately the
same for both spins, while Br ¼ 52 mT is fixed. The Δ2s=2π ≈ 78 MHz is approximately unchanged between plots because
changes in χSO are approximately compensated by changes in χc. The model fully captures the observed transition frequencies
within plots and between the plots, and the only adjustment is the experimentally measured tc. As expected, 2J=2π decreases as
gs=2π decreases.

(a) (b)

FIG. 12. Extended photon-number-dependent spin dispersive shift data. (a) Photon-number-dependent spin dispersive shift of DQD1
(same as in the main text). (b) Line cut of the data in panel (a) for a different angle ϕ ¼ 11.6°, and fit to four Lorentzian dips (first three
shown with dashed lines). A dispersive shift 2χs=2π ¼ −12.5 MHz is extracted. The coherent-state distribution has better agreement
than the thermal distribution; see the main text for number distribution results.
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In Table I, a small discrepancy is observed between the
predicted and measured values of χs. This could be due to
driven system dynamics, which are known to modify the
splitting [32].
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