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We demonstrate a new versatile building block for optical quantum technologies, enabling deterministic
quantum engineering of light by combining the advantages of two complementary approaches: cavity
quantum electrodynamics and interacting atomic ensembles. Our system is based on an intracavity
Rydberg-blockaded atomic ensemble acting as a single two-level superatom. We coherently control its state
and optically detect it in a single shot with 95% efficiency. Crucially, we demonstrate a superatom-state-
dependent π phase rotation on the light reflected from the cavity. Together with the state manipulation and
detection, it is a key ingredient for implementing deterministic photonic entangling gates and for generating
highly nonclassical light states.
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I. INTRODUCTION

Optical photons are a central physical resource in
quantum technologies. Necessitating neither vacuum nor
cryogenics to preserve their quantum features, they are
essential for connecting distant quantum nodes, and they
play a key role in quantum-enhanced sensing. However,
assembling a quantum system capable of performing
complex communication, calculation, simulation, or sens-
ing tasks requires strong coherent interactions between its
components, which photons do not easily provide.
For solving this longstanding issue, the most explored

route consists in coupling photons to a highly anharmonic
quantum system, most often epitomized by a single atom or
a quantum dot, with an optical response strongly dependent
on the number of photons it interacts with. This approach
is very successful in the microwave domain, where the
required anharmonicity is provided by circular Rydberg
atoms [1] or Josephson junctions [2] coupled to super-
conducting resonators with very high quality factors. At
optical wavelengths, to compensate for the relatively low
transition dipoles, light fields need to be enhanced by
confining the photons inside very low volume and high

finesse optical cavities [3–5]. A remarkable decades-long
research effort in this direction [6,7] recently led to the
first deterministic realizations of an optical two-photon
quantum logic gate and of highly nonclassical optical
Schrödinger’s cat states [8,9]. Besides the difficulties in
minimizing optical losses, reaching strong, steady, and
reproducible couplings in such structures remains very
challenging: By lack of optical access, real atoms are
difficult to position precisely and to keep steady, while
artificial atoms embedded in microstructures are strongly
influenced by the surrounding substrate.
An alternative approach consists in injecting the photons

in an atomic gas and transiently converting them into
highly polarizable Rydberg polaritons [10,11]. This con-
version is controlled by a laser beam driving the upper
branch of a two-photon transition, creating an electromag-
netically induced transparency (EIT) effect. Strong dipolar
interactions between Rydberg atoms shift the energy of a
pair out of the two-photon resonance. As a result, each
polariton becomes surrounded by a blockade sphere where
the EIT vanishes [12], which can be used to turn a coherent
light beam into a stream of antibunched photons [13–15]
and realize photon-controlled optical transistors [16,17].
Away from the single-photon resonance, this blockade
effect modulates not only the dissipation but also the optical
dispersion [18], allowing one to create bound photonic
states [19–21] and to perform two-photon quantum logic
operations [22]. Unfortunately, collisions between the
Rydberg electron and the surrounding ground-state atoms
[23] limit the maximal optical density per blockade sphere,
which defines the transmission or phase contrast created by
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a single Rydberg polariton. A conditional phase shift of π,
required for most quantum logic and nonclassical light
engineering tasks, is then accompanied by significant
losses [24].
Here, we experimentally demonstrate that this goal can

be reached with a platform combining the two previous
approaches and enhancing the Rydberg blockade in a small
atomic cloud with a single-ended medium-finesse optical
cavity. We show that the cloud acts as a single Rydberg
superatom with a collectively enhanced coupling to light,
which we can coherently manipulate and optically detect in
a single shot with 95% efficiency via the transmission
of the cavity. Most importantly, with respect to recent
experiments on Rydberg superatoms [25–28], where com-
parable efficiencies are reached, we successfully unlock a
qualitatively new regime where the phase of the light
reflected from the cavity is shifted by π by a single Rydberg
excitation, allowing us to detect the latter with 90%
efficiency via a homodyne measurement. This π phase
rotation, together with the coherent control and the single-
shot state detection, is crucial for implementing two-photon
quantum gates [29] and for generating nonclassical optical
resources for quantum sensing and communications.

II. STRONG SUPERATOM-PHOTON COUPLING

The central feature of our experimental setup is a small,
cold 87Rb ensemble in an in-vacuum, medium-finesse
cavity, depicted in Fig. 1(a). This ensemble, with a
Gaussian rms radius of σa ¼ 5 μm, containing approxi-
mately N ¼ 800 atoms at a temperature of 3 μK, is
prepared by sequentially cooling a background vapor in
a two-dimensional magneto-optical trap (2D MOT), load-
ing a 3D MOT, transporting atoms with a 1D moving
optical lattice towards the cavity mode, further cooling
by 3D degenerate Raman sideband cooling, loading in a
crossed dipole trap, and pumping to the ground level
G∶5S1=2; F ¼ 1; mF ¼ 1 (details in the Appendix A).
A 780-nm D2 and a 480-nm 109S beam resonantly drive
two-photon transitions to the Rydberg state R∶109S1=2;
J ¼ 1=2; mJ ¼ 1=2; I ¼ 3=2; mI ¼ 3=2, with a detuning
Δ=ð2πÞ ¼ −545 MHz below the intermediate state 5P3=2;
F ¼ 2; mF ¼ 2. Interactions between Rydberg atoms, char-
acterized at long range by the van der Waals coefficient
CRR ¼ 154 THz μm6, shift the resonance of a Rydberg pair
by CRR=r6 > 2.4 MHz for atoms separated by r < 4σa, a
condition satisfied by more than 95% of atom pairs. This
blockade of multiple Rydberg excitations makes the cloud
behave as a two-level superatom with a ground state jGi
and a state jRi corresponding to a single delocalized
Rydberg 109S excitation.
The atoms are positioned at the 21-μm waist of a

circularly polarized, running-wave, nearly Gaussian mode,
defined by a single-ended four-mirror nonplanar cavity
with a finesse F ¼ 590. This mode, driven by coherent

laser pulses, is resonant with the D1-line transition from
the ground state to the 5P1=2; F ¼ 2; mF ¼ 2 level [see
Figs. 1(b) and 1(c)]. The coupling mirror has a 0.95%
transmission, allowing 90% of the photons to leave the
cavity through this port. The atomic ensemble is collec-
tively coupled to the cavity mode with a constant
g ¼ 2π × 10 MHz exceeding the decay rates of both the
cavity field (κ ¼ 2π × 2.9 MHz) and the atomic dipole
(γ ¼ 2π × 3 MHz), leading to a vacuum Rabi splitting
visible on the transmission spectrum [Fig. 1(b), red curve].
By adding a control laser coupling the 5P1=2 state to the
R0∶78S1=2; J ¼ 1=2;mJ ¼ 1=2; I ¼ 3=2;mI ¼ 3=2 Rydberg
state, we open an EITwindow on resonance [Fig. 1(c), blue
curve)] and recover 90% of the bare cavity transmission for
theD1 probe beam. This EITwindow corresponds to a dark
polariton state mixing a photon in the cavity with a
Rydberg excitation jR0i in the cloud. Atoms in states R
and R0 interact strongly via their dipoles, in particular,
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FIG. 1. (a) Experimental setup, configured for transmission
measurement. (b) Level scheme. A small cloud of rubidium
atoms behaves as a two-level superatom thanks to the Rydberg
blockade. The D2 drive and 109S drive beams allow the
excitation of the superatom to the jRi state. The atomic
ensemble is strongly coupled to a medium-finesse cavity,
resonant with the D1 line. The control beam enables the
transmission of the D1 probe through the cavity by Rydberg
EIT with the 78S state. (c) Cavity EIT spectra, where the
transmission of the D1 probe, as a function of the probe
detuning, is measured with a single-photon counting module
(SPCM) and normalized to the maximum transmission of the
empty cavity (light gray). With the strongly coupled atomic
ensemble, we observe the vacuum Rabi splitting of the two
transmission peaks, located at �g=ð2πÞ ¼ �10 MHz (red).
Adding the EIT control beam opens a transmission window
at resonance (blue).
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because this pair of states is close to a Förster resonance
with the 110P3=2 þ 77P3=2 pair. The asymptotic van der
Waals scaling coefficient CRR0 ¼ 18 THz μm6 overesti-
mates the interactions in our parameter regime, but a
complete diagonalization [30] gives an interaction-induced
frequency shift of 3.4 MHz at the most likely distance
r ¼ 2σa. Therefore, a superatom in jRi efficiently shifts
jR0i out of resonance, destroying the EIT and strongly
changing the response of the system to theD1 probe, which
drives the photonic component of the jR0i polariton.

III. CONTROL AND SINGLE-SHOT DETECTION

Figure 2 illustrates the single-shot detection of the
superatom’s state via the transmission of the D1 probe
through the cavity. When the superatom is driven from jGi
to jRi, the EIT vanishes, and we observe a clear drop in the
transmitted photon flux, detected with a fiber-coupled
SPCM with a total detection efficiency of 47% [insets of
Figs. 2(a) and 2(b)]. This flux can then be used to monitor
Rabi oscillations of the superatom’s state, driven with time-
centered D2 and 109S beam pulses [Fig. 2(c)]. The former,
which is shorter than the latter by 0.2 μs, set the effective
excitation duration td. One microsecond after the excitation
is completed, we switch on the D1 cavity probe and
integrate the transmitted photon detections over a time
ti, optimized as discussed below. From these single-shot
results, we infer the statistic jRi population plotted in
Fig. 2(c), where the probe power is set to obtain a 350-kHz
count rate for a superatom in jGi and ti ¼ 24 μs. The
dashed curve is the best fit by a sine function with a
Gaussian decaying envelope, yielding the two-photon Rabi
frequency Ω=ð2πÞ ¼ 1.5 MHz and the e−1 Gaussian decay
time τd ¼ 2.8 μs. The value of the Rabi frequency matches
the expected behavior Ω ¼ ffiffiffiffi

N
p

ΩD2Ω109S=ð2jΔjÞ, where
the respective single-photon Rabi frequencies of the D2
and 109S drives ΩD2=ð2πÞ ¼ 6 MHz and Ω109S=ð2πÞ ¼
10 MHz were determined independently and the

ffiffiffiffi
N

p
scaling [31] was verified by partially depumping the atoms
to the dark manifold 5S1=2; F ¼ 2 and determining N from
the vacuum Rabi splitting. The decay time τd is consistent
with a motional dephasing of the polariton at 3 μK
combined with 4%-rms fluctuations of Ω dominated by
fluctuations on N, with calculated Gaussian decay times of
3.8 μs and 3.7 μs, respectively.
Once the Rabi π pulse is calibrated, we can optimize the

state detection. We first observe that the jRi state has a
limited lifetime, visible as quantum jumps on individual
SPCM records [see Fig. 2(b), inset] at 42 μs and as an
exponential evolution on the mean rate [Fig. 2(d), red]. This
effect limits the detection duration ti because a quantum
jump before ti may induce a false-negative error. Increasing
the input photon flux could make the detection faster, but
we observe that the excited-state lifetime decreases propor-
tionally (see Appendix B). This decrease may result from

light-assisted collisions, which are difficult to model since
each 109S atom has about 13 other atoms within the 2.8-μm
LeRoy radius below which the 109S and 78S wave
functions overlap significantly. This inverse proportionality
relation effectively limits the number of photon counts
providing a sufficiently low false-positive error probability
ϵr. The photon flux will ultimately be limited by the
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FIG. 2. Detection in transmission. The photon flux, detected
with a SPCM, switches from (a) a high one without 109S Rydberg
excitation to (b) quasizero with a single 109S excitation blockading
the EIT (blockade sphere depicted in yellow). The insets show
examples of single-shot measures with 2-μs binning. (c) The 109S
Rabi oscillations visible on the averaged SPCM counts in the
detection windows (black), and the 109S population deduced from
single-shot detections (cyan). Each data point represents 200
detections. The dashed line is a best-fit Gaussian decoherence
model. (d) SPCM count rate since the beginning of the probe D1
pulse without (blue) and with (red) a 109S Rydberg drive π pulse.
The dark-red line is a best-fit exponential decay with a lifetime
τR ¼ 42 μs. The dashed vertical line marks the end of the
optimized detection window ti. (e) Histograms of the number of
photons, without (blue) and with (red) the π pulse. The dark curves
represent modeled histograms. The dashed vertical line shows the
optimized detection threshold nt. (d,e) Data averaged over 400
repetitions. All error bars represent the standard error.
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self-blockade of jR0i polaritons (CR0R0 ¼ 3 THz μm6) and
saturate towards about 1=ð2τpÞ ¼ 6 MHz, with τp ¼ 85 ns
the polariton lifetime, extracted from the EIT linewidth
in Fig. 1(c).
The self-blockade makes the transmitted flux sub-

Poissonian, with a measured zero-delay autocorrelation
function gð2Þð0Þ ¼ 0.15, but we recover gð2ÞðτÞ ¼ 1 for
τ ≫ τp. As we integrate the photon counts for at least a few
microseconds, their statistic is quasi-Poissonian. Therefore,
in Fig. 2(e), the histogram of single-shot SPCM counts n in
a ti ¼ 12 μs window with a ground-state superatom (blue)
obeys Pðn; tiϕGÞ ¼ e−tiϕGðtiϕGÞn=n! (dark blue) with a
mean count number of tiϕG ¼ 8.7, where ϕG is the average
flux. When we apply a π pulse to excite the superatom to
jRi, the corresponding histogram (red) shows that most of
the single-shot detections result in zero SPCM counts, as
expected from the EIT blockade. The residual transmission
results from three effects. First, finite-strength atom-light
couplings and Rydberg interactions leave a residual trans-
mitted flux ϕR. Second, even though the jRi lifetime
τR ¼ 42 μs largely exceeds ti, quantum jumps to jGi occur
within the detection window with a 25% probability. Third,
the preparation efficiency ηR of jRi, limited to e−t

2
π=τ2d ¼

99% by the duration tπ of the π pulse, contributes to the
measured histogram. Thus, on the fitted model (dark red,
see Appendix C) that accounts for these effects, we leave
ϕR and ηR as free parameters, yielding the best-fit values
ϕR=ϕG ¼ 4.5� 0.4% and ηR ¼ 100þ0

−5%.
Setting a detection threshold nt ¼ 5 (dashed line) in

between the two distributions, with and without a π pulse,
allows us to infer the most probable state of the superatom
from a single-shot SPCM count n: jGi if n ≥ nt or jRi if
n < nt. The integrals of the histograms, taken over n ≥ nt
with a π pulse and over n < nt without, give, respectively,
the false-negative error ϵR ¼ 4.8� 1.1% and the false-
positive error ϵG ¼ 5.3� 1.1%. A conservative definition
of the detection fidelity gives F ¼ 1 −maxðϵG; ϵRÞ ¼
94.7� 1.1%, optimized by varying ti and nt. The resulting
ti ¼ 12 μs is a trade-off: Short times avoid errors induced
by quantum jumps, while long times reduce errors through
a lower uncertainty on the photon flux.

IV. OPTICAL π PHASE SHIFT

A cavity is optically far-overcoupled when the trans-
mission of the input/output coupler greatly exceeds all
other losses, and it is far-undercoupled in the opposite limit
case. A resonant impinging beam is efficiently reflected in
both cases, but with a π phase difference. In our case, for a
superatom in jGi, the EIT is good enough for the system to
be overcoupled, while in jRi, the blockade is sufficiently
strong to switch the optical impedance to a far-under-
coupled regime. We observe the expected π phase flip on a
D1 probe reflected from the cavity using a balanced
homodyne detection (HD) (see Fig. 3). The overall 75%

homodyne detection efficiency includes the optical losses
outside the vacuum chamber, the mode-matching with
the local oscillator, and the quantum efficiencies of the
photodiodes, but it excludes all losses intrinsic to the
cavity-superatom system. The phase of the probe relative
to the local oscillator (LO) is stabilized by a lock-and-hold
technique and referenced to a far-off-resonant cavity.
For a superatom in jGi, the system is resonantly excited,
and we extract a phase θG ¼ πð0.91� 0.02Þ rad; for jRi,
the system becomes off-resonant, and we obtain θR ¼
πð−0.045� 0.013Þ rad, yielding a phase shift θG − θR ¼
πð0.96� 0.03Þ rad.
As a first application, we use this phase flip to detect the

superatom’s state, via single-shot homodyne measurements
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FIG. 3. The π phase shift in reflection. The reflected probe is
combined with a local oscillator beam on a beam splitter, whose
output intensity difference is measured by a HD setup. With the
addition of a 109S Rydberg excitation blockading the EIT, the
reflected probe phase changes from π (a) to 0 (b), resulting in a
sign flip of the measured HD signal. The insets show examples of
single-shot measures with a 2-μs binning. (c) In-phase quadrature
X since the beginning of the probe D1 pulse without (blue) and
with (red) a 109S Rydberg drive π pulse. The dashed lines
indicate the quadrature means, and the colors represent the
measured probability densities. The dashed vertical line gives
the upper limit of the optimized detection window. (d) Histograms
of the field X quadrature values, without (blue) and with (red) the
π pulse. The dark curves represent modeled histograms. The
dashed vertical line shows the optimized detection threshold. In
panels (c) and (d), data are averaged over 400 repetitions. All
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of the in-phase quadrature X̂ shown in Fig. 3(c), with the
vacuum noise variance normalized to 1=2. The input
photon rate is at 580 kHz, on the edge of self-saturation
effects, for which we observe a 38-μs Rydberg lifetime. We
reach a 89.9� 1.5% fidelity from the two measured density
distributions in Fig. 3(d), for a 10-μs integration time and a
threshold set to Xt ¼ 0.27. The fidelity is limited by the
false-negative errors, while the false-positive probability
value is 6.9� 1.3%. We model these distributions as
previously done (see Appendix B), taking into account
the Rydberg state decay, and leaving as free parameters
the preparation efficiency ηR ¼ 99þ1

−2% and the reflectivity
level for the superatom in the Rydberg state (red),
RR ¼ 51� 2%. The distribution for jGi is fitted by a
Gaussian centered on the measured mean value (blue). This
approach is more sensitive to probe self-saturation effects,
directly decreasing the HD signal. Here, the self-blockade
yields about a 7% effective reflectivity for jGi compared to
RG ¼ 43� 3% in the low-intensity linear regime (see
Appendix D).

V. CONCLUSION AND PERSPECTIVES

In conclusion, the demonstrated coherent state control,
the two single-shot state detection methods, and the condi-
tional optical π phase shift confirm that combining a
Rydberg superatom with a medium-finesse cavity is a
viable route towards deterministic optical quantum engi-
neering. The state detection efficiencies match those
recently obtained in Rydberg-based experiments operating
in free space or in low-finesse resonators [26,27]. Unlike
for single atoms, where intracavity absorption imaging
provides much higher photon collection efficiencies than
fluorescence imaging in free space, large scattering
cross sections of Rydberg atoms enable absorption imaging
in all circumstances: Here, the cavity enhances the contrast
between the photon fluxes ϕG and ϕR but only weakly
influences the detection efficiency. On the other hand, the π
phase flip is a unique feature, relying on an excellent EIT
combined with a strong Rydberg blockade, which would
require postselection for free-space beams [24,32] and
would vanish for a low- or high-finesse cavity. Indeed, a
cavity with a lower finesse would require adding more
atoms inside the Rydberg-blockade volume to keep the
same level of optical undercoupling in jRi. Ultimately, their
number will be limited by the collisions between the
Rydberg electron and ground-state atoms, which put an
upper bound on the atomic density, and by the finite laser
power and stray electric fields, which set a limit on the
Rydberg principal quantum number and hence on the
blockade volume. Conversely, for higher finesse cavities,
the optical undercoupling in jGi will eventually be limited
by finite mirror imperfections. Maintaining this undercou-
pling will also require improving the EIT by decreasing the
number of atoms: A larger relative uncertainty on the latter
will then result in larger fluctuations of the Rabi frequency.

In comparison with the well-explored, single-atom
cavity QED route, our approach is still in its infancy.
Nevertheless, it already offers a similar photon extraction
efficiency [9] while having a considerable margin for
improvement, even more so as in our setup we choose
versatility over performance. For instance, cavity losses
could be reduced by at least an order of magnitude by using
superpolished mirrors with less broadband coatings and
by cleaning the deposits that formed during the initial
testing of the setup. Taking all sources of decoherence into
account, we estimate that this improvement alone should
increase the expected Choi-Jamiołkowski fidelity of a two-
photon control-Z gate feasible with this setup from approx-
imately 80% to approximately 95% [29]. The strong
collective couplings of Rydberg-blockaded atomic ensem-
bles allow the use of large cavities with nontrivial cavity
geometries such as ours, which recently led to the first
observation of optical Laughlin states [33]. The Rydberg-
blockade mechanism could also be used to make neighbor-
ing superatoms interact with each other [34,35], opening
countless possibilities for multimode quantum optics and
quantum simulations.
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Note added.—Recently, an experimental demonstration of a
two-photon quantum logic gate using a setup very similar
to ours was made public [36].

APPENDIX A: ATOMIC CLOUD PREPARATION
AND DRIVING

The source of atoms is a sample of metallic rubidium
heated at 37°C, providing a vapor pressure on the order of
10−7 mbar in a side vacuum chamber. In this side chamber,
we create a two-dimensional magneto-optical trap (2D
MOT) to cool 87Rb with 50 mW of cooling laser light (red
detuned by −10 MHz from the transition 5S1=2; F ¼
2 → 5P3=2; F ¼ 3) and 0.4 mW of repumping laser light
(resonant with the transition 5S1=2;F¼1→5P3=2;F¼2).
With part of the cooling light, we push the cold atoms
through a differential pumping tube into the main vacuum
chamber containing the rest of the setup at a pressure of
2 × 10−9 mbar. The atomic beam loads a 3D MOTat a rate
of 7 × 105 atoms per ms. The 3D MOT is formed by three
pairs of orthogonal beams, each with a waist of 7.5 mm,
12 mW of cooling light (detuned by −18 MHz), and
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0.2 mW of repumping light. The 8 G=cm magnetic field
gradient is generated by a pair of in-vacuum coils in an
anti-Helmholtz configuration. After 50 ms of loading, we
compress the 3D MOT for 1 ms by ramping up the
magnetic field to 21 G=cm. We follow this with a molasses
phase for 2 ms, during which we ramp down the magnetic
field and the beam intensities while increasing the detuning
of the cooling light to −70 MHz.
The center of the 3D MOT is located 33 mm below the

waist of the cavity mode. To transport atoms over this
distance, we use a 1D-optical-lattice dipole trap as a
conveyor belt for atoms [37]. The lattice is formed with
two vertical counterpropagating laser beams at an identical
wavelengthof approximately782.9nm, eachwith apowerof
0.25Wand awaist of60 μmlocatedmidwaybetween the 3D
MOTand the cavitymode.Westart by loading the latticewith
atoms at the 3DMOT position during the molasses step. By
linearly sweeping the frequency of one of the beams up and
then down, we displace the interference fringes and thus the
atoms trapped in maxima of light intensity. In 10 ms, we
transport to the cavity center an ensemble of about 1 million
atoms with a temperature of about 40 μK.
The thermal atomic motion has several detrimental

effects. First, the Doppler broadening increases the tran-
sition linewidth to Rydberg levels, which reduces the EIT
transparency. Second, the higher the temperature, the
deeper a dipole trap has to be; thus, the differential light
shift over the trapped cloud also broadens the transition
linewidth to Rydberg levels. Third, the coherence of the
Rydberg excited state of the superatom relies on the relative
phases k⃗GR · r⃗i impinged by the exciting lasers, with a
summed wave vector k⃗GR, onto the atom i at position r⃗i.
The thermal motion thus induces a Gaussian decay

of the coherence e−t
2=τ2d;T at a characteristic time

τd;T ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
=kk⃗GRk, where m is the mass of the atom,

kB is the Boltzmann constant, and T is the temperature of
the cloud.
In order to limits these effects, we implement degenerate

Raman sideband cooling [38,39] once the atoms are at the
cavity position. For this, we use a 3D optical lattice formed
on the vertical axis with the conveyor belt lattice and in
the horizontal plane by two independent and orthogonal
interference patterns. The latter two are formed by two laser
beam pairs whose waists are 0.17 mm and whose frequen-
cies differ by 440 MHz and are blue detuned by 16 GHz
from the transition 5S1=2F ¼ 2 → 5P3=2F ¼ 3. For one
pair, the angle between the beam’s wave vectors is 90°,
while for the other pair, the angle is only 43°. Nevertheless,
by adjusting the beam powers to approximately 3 mW and
10 mW, respectively, we obtain isotropic trapping sites
whose oscillation frequency is 0.2 MHz. To do so, we
measure the oscillation frequencies of each of the three
orthogonal lattices by observing parametric heating losses
when we modulate the beam intensities. The isotropic

oscillation frequency allows us to perform degenerate
Raman sideband cooling in 3D. A magnetic field of
0.2 G brings to degeneracy the states 5S1=2; F ¼ 2; mF ¼
2; n and 5S1=2F ¼ 2; mF ¼ 1; n − 1 with n the motional
quantum number. Small angles of about 10° between
the linear polarizations in each pair of beams induce
Raman transitions from 5S1=2; F ¼ 2; mF ¼ 2; n to
5S1=2; F ¼ 2; mF ¼ 1; n − 1. A σþ-polarized Zeeman
pumping beam with a 1-mm waist and 2 μW of power
drives the transition 5S1=2; F ¼ 2 → 5P3=2; F ¼ 2 and, in
the presence of a hyperfine repumper from F ¼ 1, brings
the atoms back to the dark mF ¼ 2 state. This transfer back
to mF ¼ 2 conserves the vibrational quantum number
because we operate in the Lamb-Dicke regime where the
recoil frequency of approximately 10 kHz is much smaller
than the trap frequency of the lattice. The combination of
Raman transitions and Zeeman pumping thus actively cools
the atoms along all three dimensions. By applying this
cooling for 5 ms to the atomic cloud inside the cavity,
we reach a temperature of 1 μK. Several elements are
crucial for minimizing this temperature. First, we pay
special attention to the efficiency of the Zeeman pumping
by using a clean, circular polarization and carefully align-
ing the magnetic field along the beam axis using microwave
spectroscopy between the F ¼ 1 and F ¼ 2 hyperfine
manifolds of the 5S1=2 ground state. Second, our horizontal
lattice beams are relatively close to the D2 transition in
order to get large dipole trapping frequencies with mod-
erate beam intensities. Here, blue-detuned beams prove to
be much more efficient for cooling than red-detuned ones,
mainly because the trapping sites are at light intensity
minima, thereby strongly reducing spontaneous emission.
In addition, when atoms are trapped in near darkness,
ac Stark shifts become negligible and do not affect the
frequency of the Zeeman pump.
To achieve an efficient Rydberg blockade, we reduce the

cloud’s size by loading it in a crossed dipole trap formed by
two orthogonal laser beams with approximately 20 mW of
power at a 1064-nmwavelength with a 220-MHz frequency
difference to avoid interference. Two in-vacuum aspheric
lenses with 50-mm focal lengths and numerical apertures of
0.2 focus the two beams to about 15-μmwaists at the cavity
mode center. The trap loading is performed by alternating
Raman cooling steps with compression steps, where we let
cold atoms fall towards the trap center. In between these
steps, we adiabatically ramp up or down the 3D lattice used
forRaman coolingwithin 0.1ms.After a final step ofRaman
cooling, wewait for 50ms to let the cloud thermalize, which
removes residual atoms with mechanical energies of the
order of the trap depth. We end up with a cloud having a rms
radius of 5 μm, containing about 800 atoms at a peak density
of 4 × 1011 cm−3 and a temperature of 3 μK.
Before performing the experiments presented in the

main text, the final step is to optically pump the cloud
into the state jGi where the atoms are in the state
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5S1=2; F ¼ 1; mF ¼ 1. At the beginning of this step, for
2 μs, we apply a beam resonant with the transition
5S1=2; F ¼ 2 → 5P3=2; F ¼ 2 that pumps the atoms to
F¼1. A Zeeman pumping beam pumps them to mF ¼ 1
during 100 μs by driving a σþ transition 5S1=2; F ¼
1 → 5P3=2; F ¼ 1. The Zeeman pumping beam is circu-
larly polarized and sent through the science cavity (about
200 MHz out of resonance) in the opposite direction to the
probing beam used later. A 3-G quantization magnetic field
is applied, with its direction quasialigned with the cavity-
mode wave vector at the position of the atoms; the residual
12° angle stems from our beam geometry and ensures
π-polarized transitions to Rydberg states. We perform
microwave spectroscopy within the 5S1=2 manifold and find
that the targeted mF ¼ 1 state is populated at 95� 2%,
while the population in mF ¼ 0 is 5� 2% and the pop-
ulation in mF ¼ −1 is negligible. With respect to mF ¼ 1,
the collective coupling strength of the population in mF ¼ 0
is reduced by an order of magnitude by the lack of collective
enhancement and because of a smaller transition dipole
moment. Thus, we can consider the ensemble as efficiently
described by a superatom in state jGi.
To excite the superatom to jRi, we use a D2-drive

circularly polarized beam that is spatially mode-matched
and spectrally 200 MHz out of resonance with the funda-
mental mode of the science cavity, with a power of 2 μW.
The 109S driving beam, with a waist of about 60 μm and a
power of 4 W, is produced in an in-vacuum build-up cavity
in a confocal configuration. The build-up-cavity funda-
mental transverse mode is located 0.5 mm below the atomic
cloud, and it allows us to lock the cavity on resonance with
a beam detuned by one free spectral range (0.5 GHz). The
109S driving beam axis is orthogonal to the 3-G quantiza-
tion magnetic field, and its polarization is aligned with
the field, thus driving π transitions only towards Rydberg
states. The D2 and 109S driving pulses are time centered
and switched on and off using acousto-optic modulators
(AOMs). Because the high-power 109S beam is less tightly
focused in the AOM than the D2 probe, its switching time
is slower. Therefore, we make the 109S pulse 0.2 μs longer
than theD2 pulse, which sets the variable effective duration
of the two-photon Rabi drive.
The 78S EIT control beam is produced with another in-

vacuum build-up cavity, with a similar locking scheme, a
similar waist, and a power of 5 W.

APPENDIX B: PROBE-DEPENDENT LIFETIME
OF THE SUPERATOM EXCITED STATE

The lifetime of the superatom excited state jRi is a
crucial parameter for the detection because quantum jumps
out of jRi during the detection windows increase false-
negative errors, thus reducing the detection fidelity. From
the data in Fig. 4(a), we observe that this lifetime is clearly
dependent on the transmission probeD1 intensity, which is

varied here while the EIT control Rabi frequency is
constant at a value of Ωc=ð2πÞ ¼ 14 MHz. Data are fitted
by an exponential decay function ϕG(1 − b expð−t=τRÞ),
where the steady-state value ϕG is the transmitted probe
SPCM rate with the jGi state, measured without applying a
π pulse on the superatom. The fitted parameters b; τR
account, respectively, for the initial transmission level
1 − b ∼ 10%, due to residual transmission flux and residual
preparation error of the jRi state, and for the lifetime τR of
the Rydberg excitation of state jRi.
The evolution of the decay rate 1=τR with the trans-

mission probe D1 intensity, quantified by the SPCM rate
ϕG, is well fitted by a linear function ϕG=aþ 1=τR;0 as
shown in Fig. 4(b). The residual lifetime at zero probe
τR;0 ¼ 0.31� 0.06 ms is close to the 0.426-ms calculated
[30] lifetime of the 109S state in our 300-K environment.
This fact indicates that the strong EIT control field, coupled
to the 78S state, weakly influences the 109S lifetime.
This contrasts with detection schemes using interactions
between neighboring Rydberg levels [26], which can be
mixed by residuals dc electric fields. However, in the
presence of probe light, we observe an increase of the decay
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FIG. 4. Probe-dependent lifetime. (a) SPCM count rates since
the beginning of the probe D1 transmitted detection pulse for
several probe intensities, after a π pulse preparing the jRi
superatom state. The dashed lines are the best-fit exponential
decay with a lifetime τR. (b) jRi decay rate 1=τR as a function of
the transmitted probe SPCM rate ϕG with the jGi state. Colored
data points correspond to the curves of panel (a) with identical
colors and markers. The dashed line shows the best linear fit to
the data. Error bars represent the standard error.
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rate. At probe intensity levels of ϕG ∼ 1 MHz—which
are necessary to obtain a low probability to detect zero
photons for the jGi state in a window of about 10 μs, much
shorter than the residual lifetime τR;0—the lifetime is
approximately inversely linear to ϕG with τR ≃ a=ϕG,
where a ¼ 29� 1 μsMHz.

APPENDIX C: MODELS FOR THE DETECTIONS

Here, we present expressions of the fitting functions of
the detection histograms.
We start with the model used to fit the data in Fig. 2(e)

of the detection in transmission measured by the SPCM.
When the superatom is in the ground state jGi, the
distribution of photon number n is a Poisson law,
PGðnÞ ¼ Pðn; tiϕGÞ ¼ e−tiϕGðtiϕGÞn=n!, parametrized by
the mean detected photon number tiϕG, with ϕG the photon
rate and ti the integration time. For the superatom in the
Rydberg state jRi, the distribution can be split into two
parts to take into account quantum jumps. First, the
probability distribution without a jump is also a Poisson
law Pðn; tiϕRÞ with a residual photon number tiϕR, where
ϕR is the photon flux with a blockade. The probability of
this event is e−ti=τR , where τR is the Rydberg lifetime. For a
quantum jump at t < ti, the distribution is the sum of two
Poisson laws—the first with a mean photon number tϕR
and the second after the jump with a mean value ðti − tÞϕG.
By the stability of the Poisson law under addition, this
probability distribution is also a Poisson law with a mean
photon number nJðtÞ ¼ tϕR þ ðti − tÞϕG. As a result, the
full distribution is

PRðnÞ ¼ Pðn; tiϕRÞe−ti=τR þ
Z

ti

0

P(n; nJðtÞ)
e−t=τR

τR
dt:

ðC1Þ

Finally, the probability distribution with a preparation
efficiency ηR is given by ηRPRðnÞ þ ð1 − ηRÞPGðnÞ.
We now move to the fitting functions for the data in

Fig. 3(d), where the superatom’s state is measured by
monitoring the field reflected off of the cavity using a
homodyne detector. When the superatom lies in the ground
state jGi, the X quadrature is a Gaussian, GGðXÞ ¼
GðX; X̄GÞ, with a rms width σ ¼ 1=

ffiffiffi
2

p
, centered on

X̄G ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tiϕRG

p
, where ϕ is the photon flux at cavity

input and RG is the reflectivity when the superatom is in
jGi. In the absence of a quantum jump, the distribution
associated with the superatom prepared in the Rydberg
state is also a Gaussian centered on X̄R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2tiϕRR
p

, where
RR is the associated reflectivity. For a quantum jump
at t < ti, the mean value of the quadrature is then
X̄JðtÞ ¼ −ðti − tÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϕRG=ti
p þ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϕRR=ti

p
. Because it

is the sum of two Gaussian random variables, the distri-
bution remains Gaussian, with a mean X̄JðtÞ and a width of

1=
ffiffiffi
2

p
. The complete distribution for the superatom

in jRi is then

GRðXÞ ¼ GðX; X̄RÞe−ti=τR þ
Z

ti

0

G(X; X̄JðtÞ)
e−t=τR

τR
dt:

ðC2Þ

Finally, the probability distribution with a preparation
efficiency ηR is given by ηRGRðnÞ þ ð1 − ηRÞGGðnÞ.

APPENDIX D: EIT TRANSMISSION
AND REFLECTION SPECTRA

Many of the physical parameters of our system are
estimated from the EIT transmission and reflection spectra
in the weak-excitation regime, where interactions can be
neglected. The system can then be modeled by N atoms
with a ground state jg ¼ 5S1=2; F ¼ 1; mF ¼ 1i, an inter-
mediate state je ¼ 5P1=2; F ¼ 2; mF ¼ 2i, and a Rydberg
state jr ¼ 78S1=2; J ¼ 1=2;mJ ¼ 1=2; I ¼ 3=2;mI ¼ 3=2i,
with respective angular transition frequencies ωge and ωer.

The nth atom, described by operators σ̂ðnÞij ¼ jiinhjjn in this
basis, is coupled with a constant gn to the cavity mode. This
mode, described by the photon annihilation operator â, has
an angular frequency ωa near resonant with ωge and is
driven by a weak coherent probe with an amplitude α
and an angular frequency ω. A laser beam with an angular
frequency ω0 close to ωer and a Rabi frequency Ωc=ð2πÞ,
assumed to be the same for all atoms, couples jei and jri.
In the rotating frame, the Hamiltonian of the system is

Ĥ
ℏ
¼ −δaâ†â − δe

XN
n¼1

σ̂ðnÞee − δr
XN
n¼1

σ̂ðnÞrr

þ
XN
n¼1

gn
�
âσ̂ðnÞeg þ â†σ̂ðnÞge

�
þ Ωc

2

XN
n¼1

�
σ̂ðnÞer þ σ̂ðnÞre

�

þ iα
ffiffiffiffiffiffiffi
2κ0

p
ðâ† − âÞ; ðD1Þ

where δa¼ω−ωa, δe¼ω−ωge, δr ¼ ωþ ω0 − ωge − ωer,
and κ0 is the field decay rate through the output coupler.
Decay terms lead to the master equation

dρ̂
dt

¼ −
i
ℏ
½Ĥ; ρ̂� þD½

ffiffiffiffiffi
2κ

p
â�ρ̂þ

XN
n¼1

D½
ffiffiffiffiffi
2γ

p
σ̂ðnÞge �ρ̂

þ
XN
n¼1

D½
ffiffiffiffiffiffiffi
2γr

p
σ̂ðnÞGR�ρ̂; ðD2Þ

D½Â�ρ̂ ¼ Â ρ̂ Â† −
1

2
Â†Â ρ̂−

1

2
ρ̂Â†Â; ðD3Þ

where κ is the total cavity field decay rate while γ and γr are
the respective decay rates of the coherences σ̂ge and σ̂gr.
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In the linear response limit α → 0, we can neglect the
populations of the cavity mode and of the excited states. By
deriving and solving the steady-state Bloch equations, we
obtain the transmission T (normalized to the bare cavity
maximum) and the reflectivity R, involving the complex
detunings Δa ¼ δa þ iκ, Δe ¼ δe þ iγ, Δr ¼ δr þ iγr and
the collective coupling g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiP
n g

2
n

p
:

T ¼
���� κ

Δa − g2=½Δe −Ω2
c=ð4ΔrÞ�

����
2

; ðD4Þ

R ¼
����1 − i2κ0

Δa − g2=½Δe − Ω2
c=ð4ΔrÞ�

����
2

: ðD5Þ

Setting Ωc ¼ 0 or g ¼ 0 yields the vacuum Rabi splitted
spectrum or the Lorentzian bare cavity spectrum,
respectively.
These expressions are fitted to the spectra observed with

weak probes and presented in Fig. 1(c) for the transmission
and in Fig. 5 for the reflection. They provide the values of
cavity decay, coupling strength, Rabi frequencies, photon
extraction efficiency, transmission, and reflectivity given
in the main text. Additionally, they provide the intrinsic
linewidth of the Rydberg state γr=ð2πÞ ¼ 0.12 MHz.
Keeping this linewidth to a minimum by cooling the atomic
motion and compensating stray electric fields with a set of
electrodes is essential for achieving high transparency,
which is critical for our applications.
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