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Relativity opens the door to a counterintuitive fact: A state can be stable to perturbations in one frame of
reference and unstable in another one. For this reason, the job of testing the stability of states that are not
Lorentz invariant can be very cumbersome. We show that two observers can disagree on whether a state is
stable or unstable only if the perturbations can exit the light cone. Furthermore, we show that, if a
perturbation exits the light cone and its intensity changes with time due to dissipation, then there are always
two observers that disagree on the stability of the state. Hence, “stability” is a Lorentz-invariant property of
dissipative theories if and only if the principle of causality is respected. We present 14 applications to
physical problems from all areas of relativistic physics ranging from theory to simulation.
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I. INTRODUCTION

Deterministic field theories (such as hydrodynamics,
classical electrodynamics, and general relativity) find
application in all areas of physics ranging from condensed
matter physics to string theory. Recently, the whole area of
classical field theory has been receiving a new boost due to
experimental advances, such as the discovery of the quark-
gluon plasma at the RHIC and LHC [1] and the now
commonplace detection of gravitational-wave mergers
from compact objects by LIGO, Virgo, and KAGRA [2],
which have driven the development of an ever-increasing
number of fluidlike theories to describe exotic phenomena
of all kinds [3–7]. Most notably, relativistic dissipative
hydrodynamics is becoming a standard tool in the study of
a host of physical problems, from high-energy physics [8]
to astrophysics [9–11].
The search for the “correct” field theory for describing a

given phenomenon typically involves formulating a large
number of alternative candidate theories, many of which
are then ruled out or proven to be equivalent to others.
Usually, there is so much freedom in the construction of a
phenomenological theory, that it is easy to get lost in the
landscape of alternative formulations. For example, there
are at least 11 different formulations of relativistic viscous
hydrodynamics [12–22], seven formulations of superfluid

hydrodynamics [23–29], and six formulations of radiation
hydrodynamics [30–35]. However, in a relativistic setting,
all this freedom comes at a price: Most of the theories that
one can formulate lead to completely unphysical predic-
tions [36]. For example, since flow of energy equals
density of momentum, in some (unphysical) theories, a
fluid can spontaneously accelerate, departing from equi-
librium, and pushing heat in the opposite direction to
conserve the total momentum [37,38]. Pathologies of this
kind constitute a serious problem for numerical simula-
tions, because unphysical artifacts cannot be separated
from physical effects.
Luckily, there is a standard procedure that allows us to

the test the reliability of a relativistic theory and rule out a
considerable fraction of candidate theories: the causality-
stability assessment. The idea is simple: A theory can be
considered reliable only if signals do not propagate faster
than light (causality [39]) and if the state of thermodynamic
equilibrium (or the vacuum, for zero-temperature theories)
is stable against (possibly large [49]) perturbations. For
decades, there has been a whole line of research devoted to
assessing these two properties [50–61]. Unfortunately, the
assessment procedure is complicated (especially for what
concerns stability), and the proposed theories are much
more numerous than those that are, then, effectively tested.
It is clear that a universal and easily applicable criterion that
can be used to quickly assess if a theory is stable or not
would be a breakthrough for the field (which is exactly
what this paper provides).
One aspect of the assessment is particularly problematic.

When we study the dynamics of small perturbations around
the vacuum state, the linearized field equations are the same
in all reference frames, because we are linearizing a
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Lorentz-convariant theory around a Lorentz-invariant state.
On the other hand, if the unperturbed state has finite
temperature (or chemical potential), its total four-
momentum defines a preferred reference frame, so that
the linearized field equations look different in different
frames. This opens the door to a counterintuitive fact: At
finite temperature, the equilibrium state may be stable in
one reference frame but unstable in another one. This
paradox is possible only because different observers
impose their initial data on different constant-time hyper-
surfaces and hence deal with different initial-value prob-
lems [38,62,63]. The result is that one needs to test the
stability of the equilibrium in all reference frames to be
sure that a theory really makes sense. This is unfortunate
because the stability analysis in a reference frame in which
the system is moving can be very cumbersome (the
background is anisotropic).
The goal of this paper is to finally resolve the paradox

of systems that are stable in one reference frame and
unstable in others. We prove that this can happen only if
the principle of causality is violated. The intuition behind
this fact is that two observers can disagree on whether a
perturbation is growing or decaying only if (by relativity
of simultaneity [64]) the perturbation can be chronologi-
cally reordered so that the two observers disagree on
which part of the perturbation is in the past and which is in
the future. Since this can happen only if the perturbation
propagates outside the light cone, it follows that one needs
to violate causality if one wants to have two observers dis-
agreeing on a stability assessment. This simple idea, once
formulated in mathematical terms, will result in two
theorems, according to which causal theories that are stable
in one reference frame are also stable in any other frame.
In the following, we first describe the physical setup of

the problem and the general physical mechanisms at the
origin of the instability of dissipative theories. We then
rigorously prove the main result in Sec. III. A reader not
interested in the technical details may, however, skip to
Sec. IV, where we provide a simple argument that summa-
rizes the essence of the whole paper, or directly to Sec. V,
where we present 14 examples of concrete applications of
our results to theories that are commonly used in a number
of fields.
In case some readers wish to have a brief summary of

how the relativistic stability assessment usually works, they
can see Appendix A for a quick overview. Particular
emphasis is given to the differences with the nonrelativistic
case. The mathematical and logical foundations of the
method are laid out in Ref. [36].
Throughout the paper, we adopt the signature

ð−;þ;þ;þÞ and work in natural units c ¼ 1. The space-
time is Minkowski, with metric g; we use global inertial
coordinates generically denoted by xa (so that ∇a ¼ ∂a).
Finally, all observers are inertial observers; i.e., they do not
accelerate and they do not rotate.

II. SOME PERTINENT CONTEXT

The idea that there could be a connection between
causality violations and instabilities has a long history,
which may be summarized in the words of Israel [65]: “If
the source of an effect can be delayed, it should be possible
for a system to borrow energy from its ground state, and
this implies instability.” This argument is a restatement of
the Hawking-Ellis vacuum-conservation theorem [40],
according to which, if energy can enter an empty region
faster than the speed of light, then the dominant energy
condition is violated, and the energy density may become
negative in some reference frame. Unfortunately, these
ideas are not applicable to our case, because we are not
studying the stability of the vacuum state, but that of a
finite-temperature equilibrium state. More importantly,
causality violations can occur even in systems that obey
the dominant energy condition. For example, take a
barotropic perfect fluid with equation of state [66]

PðρÞ ¼ ρ

3
½1þ sinðρ2Þ�; ð1Þ

where P is the pressure, and ρ is the energy density, in some
fixed units. This fluid is consistent with the dominant
energy condition (ρ > jPj), but its equations are acausal
because the speed of sound dP=dρ is unbounded above.
Luckily, it is not so hard to modify the idea of Israel,

adapting it to our case of interest: We need only to replace
“energy” with “entropy” and “ground state” with “equi-
librium state” [61]. Let us see in more detail how this works
with a simple qualitative argument.

A. Acausality +dissipation= instability?

Imagine that a signal travels between two events p and q,
which are spacelike separated, i.e., gðp − q; p − qÞ > 0.
By relativity of simultaneity [64], we know that there are
some reference frames in which p happens before q, and
other reference frames in which q happens before p. Hence,
in some reference frames the signal is traveling super-
luminally from p to q, while in other frames it travels
superluminally from q to p.
Now, imagine repeating this experiment, placing

between p and q a dissipative medium, which absorbs
the signal along the way. Then, the signal is emitted from,
say, p. It travels in the direction of q, but it decays before
reaching q. But in those reference frames in which q
happens before p, we observe that the signal is sponta-
neously generated in the middle of the medium, it grows
without any external influence (nothing happens at q), and
travels to p. Thus, the medium is unstable to the sponta-
neous generation of perturbations. One may argue that this
type of perturbation is not really spontaneous, because still
we need an emitter or receiver at p for it to occur. However,
the argument still works if we send p at spacelike infinity,
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so that we are left with a medium that absorbs or emits a
spacelike beam, which travels from or to infinity.
The idea of the argument above is the same as that of

Israel [65]: If the cause of a signal (i.e., p) can be delayed,
then the system can spontaneously generate a perturbation,
borrowing entropy from the equilibrium state, and revers-
ing the dissipative processes that should, instead, damp the
perturbation. This implies instability.
In addition to this qualitative argument, what are the

concrete indications that causality and instabilities may be
related? Let us provide a brief summary of the present
understanding of the causality-stability problem.

B. Breakdown of causality and stability
in infrared theories

For deterministic field theories, the principle of causality
reduces to a mathematical condition on the field equations:
A variation of the initial data in a region of spaceR cannot
affect the solution outside the future light cone of R
[40–42]; see Fig. 1. If the equations are linear, causality
also means that the retarded Green’s function has support
within the future light cone [43,44]. It turns out that many
phenomenological equations in physics are not consistent
with this causality criterion and, therefore, allow for
superluminal propagation of signals. The best-known
example is the diffusion equation ∂tT ¼ D∂

2
xT, whose

Green’s function is

Gðt; xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p exp

�
−

x2

4Dt

�
; ð2Þ

whose tails extend far beyond the future light cone,
propagating energy and information at infinite speeds.
Such unphysical violations of the principle of causality
usually occur in theories that are the low-frequency limit of
some “more complete” causal theories [15,63,67]. This is
indeed the case of the diffusion equation that is (at least in
ideal gases [14,20,68]) the low-frequency limit of the
telegraph equation [69–71], which is known to be causal.
The same is true for the Schrödinger equation, which is the
acausal low-frequency limit of the Klein-Gordon equation
(with the field redefinition ϕ ¼ e−imtψ [72]):

ð3Þ

For the reason above, causality violations usually occur
only on very short timescales, where the predictions of the
acausal equation differ from those of its causal progenitor.
In other words, causality violations usually happen outside
the regime of validity of the “infrared approximation,” upon
which the acausal equation is built. Hence, one may argue
that as long as we manage to keep the high-frequency part
of the solutions small, the predictions of the acausal
equation should be reliable and the causality violations
negligible [73–76].
Unfortunately, in a relativistically covariant context,

keeping the acausal high-frequency part of the solutions
small is almost impossible (at least in some reference
frames) if the equation is acausal and dissipative. The
first authors who noticed this issue were Hiscock and

Lindblom [36], who verified that any Fick-type diffusion
law becomes unstable in some reference frame, due to the
fast growth of some unphysical high-frequency modes (see
Appendix A for a quick overview of their methodology).
A similar mechanism has been observed in several other
systems of equations [51–56]: If causality is violated, and
the system is dissipative, there is some reference frame in
which the system becomes unstable, due to the appearance
of fast-growing modes.
The fact that these instabilities usually depend on the

frame of reference (i.e., the growing modes exist in some
reference frames but not in others) is deeply counterintui-
tive. Hence, it seemed natural to regard the unphysical
growing modes as a mere “mathematical pathology” of the
equations. Indeed, acausal field equations often do not

FIG. 1. Geometric visualization of the principle of causality.
Take an arbitrary spacelike Cauchy 3D surface Σ. The simplest
example of such a surface is the hyperplane ft ¼ 0g. Divide Σ
into two regions:R (dark blue) andRc (light blue). “Paint in red”
all the timelike and lightlike curves that originate from R and
propagate toward the future. The red paint will cover a set JþðRÞ
called the “domain of influence of R” or “causal future of R” or
“future light cone of R.” Causality demands the following: If we
compare two arbitrary solutions (of the field equations) whose
initial data differ on R but coincide on Rc, such solutions can
differ only inside JþðRÞ. This is equivalent to saying that
information coming from R can never exit JþðRÞ.
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present a good Cauchy problem for arbitrary data on
spacelike 3D surfaces [43]; hence, it is not surprising that
there is some reference frame in which an acausal theory
“misbehaves” [19]. However, this does not explain why
dissipative systems are so exceptionally problematic: While
nondissipative acausal theories (like that considered by
Aharonov et al. [43]) are singular only when the initial data
are imposed on a characteristic surface, dissipative acausal
systems are usually unstable in a continuum of reference
frames [36]. Hence, one may wonder whether acausality
and dissipation are fundamentally incompatible. This is
what we aim to understand here.

III. CAUSALITY-STABILITY RELATIONS

We finally reach the central part of the paper. This
section is arranged into three subsections, each of which is
a separate, stand-alone, result. In particular,
(1) In Sec. III A, we present a more rigorous version

of the argument given in Sec. II A, according to
which, if a system is acausal and dissipative, then
there is a reference frame in which it is unstable.
Although linearity of the equations is never invoked
explicitly, this argument is expected to be particu-
larly useful for linear stability analyses (we also
provide a concrete example in the Supplemental
Material [77]).

(2) In Sec. III B, we present the following theorem: If a
localized deviation from equilibrium decays over
time uniformly in one reference frame, and its
support does not exit the light cone, then it decays
over time in all reference frames. This theorem is
valid for both linear and nonlinear field equations.

(3) In Sec. III C, we present another theorem: If (in the
linear regime) a causal theory predicts the existence
of a growing sinusoidal plane-wave solution in one
reference frame, then this theory is linearly unstable
in all reference frames.

Combined, these results should lead us to a simple stability
criterion: A dissipative theory which is stable in one
reference frame is causal if and only if it is stable in all
reference frames. Note that this “causality-stability rela-
tion” is strongly corroborated by all the explicit stability
analyses that have been performed till now (which
the author is aware of) for many different theories,
including the Israel-Stewart theory (both in the Eckart
[51] and in the Landau [52] flow frame), divergence-type
theories [53], Geroch-Lindblom theories [54], inviscid
theories for heat conduction [78], first-order viscous hydro-
dynamics [18,56], second-order viscous hydrodynamics
[55], third-order viscous hydrodynamics [59], and Carter’s
multifluid theory [79].
Since the three arguments presented in this section are

stand-alone, in each subsection we work under slightly
different assumptions (e.g., in Sec. III B, we deal with
nonlinear deviations from equilibrium with compact

support, whereas in Sec. III C, we study a linear plane
wave with infinite support). However, there are three
fundamental ideas that remain the same across the
whole paper:

(i) “Causality”: Information cannot exit the light cone
[40–44].

(ii) “Instability”: There is a reference frame in which
deviations from equilibrium can grow in time [36].

(iii) “Dissipation”: There is a reference frame in which
deviations from equilibrium decay in time.

Eventually, this fact will allows us to construct a simple
“unified argument” (in Sec. IV), which combines the three
main results of this section.

A. Acausal dissipative systems are not
covariantly stable

We consider a small perturbation that is traveling super-
luminally across a medium, disturbing the equilibrium state
and violating causality. We assume that such a perturbation
can be modeled as a localized wave packet (like a sound
pulse), which moves along a spacelike worldline. If the
wave packet is highly oscillating (ultraviolet limit), such a
worldline is a characteristic of the field equations. Let us
also assume that there is an observer A (say, Alice), in
whose reference frame the system exhibits a dissipative
behavior. Since the unperturbed state is the equilibrium
state, a reasonable definition of “dissipative behavior” is
that all localized perturbations eventually decay to zero for
large times. Hence, we can require that, in the reference
frame of Alice, the intensity of the perturbation is a
decreasing function of time. The Minkowski diagram of
this process is presented in Fig. 2 (left panel).
Now we immediately see the problem: Since the per-

turbation is traveling along a spacelike path, which part of
this path happens “earlier” and which happens “later”
depends on the frame of reference. Hence, we can surely

FIG. 2. Minkowski diagrams of the argument outlined in
Sec. III A. Reference frame of Alice (left panel): the perturbation
moves superluminally from the left to the right, and its intensity
decreases with time as a result of dissipation. Reference frame of
Bob (right panel): the perturbation moves from the right to the
left, and its intensity grows with time. The two points of view are
connected by a Lorentz boost. The shades of red are a color map
of the intensity of the perturbation (red large, white small); the
arrows have the orientation induced by φ (see the main text); the
blue dashed lines are the light cone.
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find a second observer B (say, Bob) in motion with respect
to Alice, in whose reference frame the perturbation is
growing in time (Fig. 2, right panel). Let us show it
analytically.
At each point p of the spacelike worldline drawn by the

center of the wave packet, we may quantify the intensity of
the perturbation using a Lorentz scalar φðpÞ [80]. The
inverse of the relation φðpÞ defines a Lorentz-invariant
parametrization on the worldline: pðφÞ. Using this para-
metrization and approximating the worldline to a straight
line passing through the origin, we can write a relation of
the form xAðφÞ ¼ wtAðφÞ, with w > 1 (spacelike condi-
tion). If we boost this relation to Bob’s frame, we obtain

tBðφÞ ¼ γð1 − vwÞtAðφÞ; ð4Þ

where v and γ are the boost’s velocity and Lorentz factor.
Taking the derivative of Eq. (4) and inverting the result, we
find

dφ
dtB

¼ 1

γð1 − vwÞ
dφ
dtA

: ð5Þ

We see that if w−1 < v < 1, then the sign of dφ=dtB is
opposite that of dφ=dtA. Thus, if the perturbation is
damped in the reference frame of Alice (dφ=dtA < 0), it
grows in the reference frame of Bob (dφ=dtB > 0), mean-
ing that the equilibrium state is unstable in Bob’s frame.
We can draw several conclusions from the argument

above. First of all, we see that the instability can occur only
if the system is both acausal and dissipative. In fact, if it
were causal, then w ≤ 1, and the factor 1 − vw would
always be positive; if it were nondissipative, then
φ ¼ const, and Eq. (5) would reduce to the identity
0 ¼ 0. It is also immediately explained why the reference
frames in which the system is unstable form a continuum:
They are all those reference frames in which the chrono-
logical order of the events inside the perturbation is inverted
with respect to the chronological order perceived by Alice.
Finally, by looking at Eq. (5), we see that the instability is
most violent close to v ¼ w−1, namely, at the unstable-to-
stable transition frame, where one has dφ=dtB ¼ ∞. This is
a well-known feature of this kind of instability: Rather than
the growth rate, it is the growth time (the inverse of the rate)
that changes sign smoothly as we move from an unstable to
a stable frame of reference [36,38,63]. In the Supplemental
Material [77], we apply this argument to the superluminal
telegraph equation, showing that one can correctly predict
the onset and the quantitative aspects of the instability
without performing the whole stability analysis explicitly.
We can also make some additional comments:
(i) When v > w−1, the perturbation grows with time in

Bob’s frame (dφ=dtB > 0); hence, we may say that
the system looks “antidissipative” in Bob’s frame.
On the other hand, the obedience to the second

law of thermodynamics (∇asa ≥ 0, where sa is
the entropy current) is a Lorentz-invariant property
of the system. This implies that the entropy
grows also in the reference frame of Bob
(dSB=dtB ≥ 0). It follows that, in Bob’s frame,
the entropy is an increasing function of the inten-
sity of the perturbation:

dSB
dφ

¼ dSB
dtB

dtB
dφ

≥ 0: ð6Þ

In other words, the equilibrium state is not the
maximum entropy state in Bob’s frame [81]. The
recently discovered connection between instabil-
ities and violations of the maximum entropy prin-
ciple [38,60,61] can be understood in light of this
simple argument.

(ii) It is evident from Fig. 2 that for the argument to be
rigorous, the whole shape of the perturbation, and
not just its peak, must be drifting superluminally.
Hence, our argument cannot be extended to causal
systems whose group velocity happens to be super-
luminal for some specific frequency (like those
studied in Refs. [84–86], which can be stable [55]).
Only genuinely acausal systems [43] are affected by
the present instability mechanism.

(iii) Since the high-frequency wave packets travel on the
“acoustic cone” (also known as the characteristic
cone) of the field equations [45], we can conclude
that the instability appears whenever the hyperplane
ftB ¼ constg is more sloping than the acoustic cone,
so that part of the future acoustic cone sinks below
the hyperplane. Therefore, if the material is isotropic
in the reference frame of Alice, the acausal dis-
sipative theory is unstable in Bob’s frame if the
hyperplane ftB ¼ constg is “timelike” with respect
to the acoustic metric

g̃ab ¼ gab þ ð1 − w2ÞuaAubA
ðuaA ¼ Alice’s four-velocityÞ: ð7Þ

We explore this point in more detail in Sec. IV.
(iv) The instability mechanism described here differs

profoundly from the condensation instability of the
tachyon field. In fact, the tachyon field is a causal
system [43], which is unstable in all reference
frames, whereas here we are dealing with acausal
systems, which are stable in some reference frames
and unstable in others.

B. Lorentz invariance of dissipation

We have seen that causality violations lead to instabil-
ities. Now we prove that frame-dependent instabilities
(namely, deviations from equilibrium that grow in Bob’s
frame while they decay in Alice’s frame) are forbidden if
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the principle of causality is respected. In this section, we
focus our attention on a localized (possibly large) “pertur-
bation,” namely, a compactly supported deviation of the
hydrodynamic fields from their equilibrium value.
Take an arbitrary spacelike Cauchy 3D surface Σ and

decompose it into two regions R and Rc, such that

R∪Rc ¼Σ; R∩Rc ¼∅; R is compact: ð8Þ

Using Σ as the initial-data hypersurface, suppose that there
is an initial (linear or nonlinear) displacement from equi-
librium confined within R. This is what we mean by
“localized perturbation.” Physically, such a perturbation
can be any kind of nonequilibrium phenomenon, like a hot
spot, a soliton, a vortex ring, a chemical imbalance, or even
an “explosion” (in R). We construct a non-negative scalar
field φ, which measures how far the system is from
equilibrium at each spacetime event, and vanishes wherever
the perturbation is absent (hence, φ ¼ 0 on Rc). If the
theory is well behaving, such a “perturbation-intensity
field” (namely, φ) can always be constructed; see
Appendix B (a rigorous mathematical definition of pertur-
bation is provided in Appendix B 1). The following
definition is natural [40–42]:
Definition 1. (subluminality). The perturbation is sub-

luminal if φðpÞ ¼ 0 for any event p ∈ DþðRcÞ, the future
Cauchy development of Rc.
An equivalent definition of subluminality is that φ ≠ 0 only
on JþðRÞ (the causal future of R); see Fig. 3, left panel.
Now, if uaA is Alice’s four-velocity, we can define Alice’s
time coordinate in a Lorentz-covariant fashion:

tA ¼ −xauaA: ð9Þ

Hence, interpreting tA as a scalar field, we can define the
sets

JþA ðtÞ ≔ fevents pjtAðpÞ ≥ tg: ð10Þ
Each set JþA ðtÞ is simply the causal future of the hyperplane
tA ¼ t. Then, we can make a second definition:
Definition 2. (dissipation). A subluminal perturbation is

dissipated in the reference frame of Alice if ∀ ε > 0 there
exists tε ∈ R such that φðpÞ< ε for any event p ∈ JþðRÞ ∩
JþA ðtεÞ.
This is a condition of uniform convergence of the

perturbation to zero: After a certain time tε (in Alice’s
rest frame), the intensity of the perturbation falls below ε
everywhere, and stays below ε for tA ≥ tε (see shades of red
in Fig. 3, left panel). Think of ε as the instrumental
resolution: At tε, the system is back in equilibrium within
resolution ε. Analogous definitions can be made for Bob:
just replace A with B. We can finally present our theorem:
Theorem 1. (Lorentz invariance of dissipation). If a

subluminal perturbation is dissipated in the reference frame
of Alice, it is also dissipated in the reference frame of Bob.
Proof.—Let us assume that the subluminal perturbation

is dissipated in Alice’s frame. Then, taken an arbitrary
ε > 0, we can find a time tε, future toR, such that φ < ε in
JþðRÞ∩ JþA ðtεÞ. Let C be the closure of JþðRÞ ∩ ½JþA ðtεÞ�c.
Since R is bounded, C is compact (see Fig. 3, right panel).
On the other hand, tB is a continuous function; hence, also
the image set tBðCÞ ⊂ R is compact. This implies that, fixed
an arbitrary η > 0, the real number

t̃ε ≔ ηþmax½tBðCÞ� ð11Þ
exists and is finite. Defined C̃ ≔ JþðRÞ ∩ JþB ðt̃εÞ, we have
that C ∩ C̃ ¼ ∅, because

min½tBðC̃Þ� ¼ t̃ε ¼ ηþmax½tBðCÞ� > max½tBðCÞ�: ð12Þ
Considering that, by definition, C̃⊂ JþðRÞ⊆ C ∪ ½JþðRÞ∩
JþA ðtεÞ�, it follows that

FIG. 3. Left panel: Minkowski diagram of a subluminal perturbation (in Alice’s coordinates). The blue segment is R, where the
perturbation is initially located; the black line is Rc, where the perturbation is absent. Together, R and Rc constitute the initial-data
hypersurface Σ. The shaded red region is JþðRÞ, where φ can propagate. The white region above Σ is DþðRcÞ, where φ ¼ 0. The
shades of red are a color map of φ (red large, white small). The hyperplanes at constants tA and tB are, respectively, the horizontal and
oblique lines. Right panel: visualization of the sets C and C̃ constructed in the proof of Theorem 1.
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C̃ ⊆ JþðRÞ ∩ JþA ðtεÞ: ð13Þ

However, if C̃ ¼ JþðRÞ ∩ JþB ðt̃εÞ is a subset of
JþðRÞ ∩ JþA ðtεÞ, then φ < ε in JþðRÞ ∩ JþB ðt̃εÞ. ▪
The essence of the proof can be easily understood by

looking at the color map in Fig. 3 (left panel): If the
horizontal line tA ¼ const is far enough in the future, the
field φ becomes arbitrarily small in the shaded region above
it. Then, we can always find an oblique line tB ¼ const
which slices JþðRÞ above the horizontal line, as in the
figure. In this way, we are sure that φ is small also in Bob’s
frame for a given time tB (and for later times).
Figure 3 (left panel) also shows why the condition of

subluminality is needed: The lines tA ¼ const and tB ¼
const always intersect somewhere; hence, an infinite
portion of the line tB ¼ const lies in the past of
tA ¼ const, where there is no bound on φ. Therefore, if
φ → þ∞ in the lower left corner of the figure (which is
possible only if causality is violated), there is no limit on
how large φ can get in Bob’s frame. This is exactly what
happens in the argument of Sec. III A. On the other hand,
causality demands that φ ¼ 0 outside JþðRÞ, so that by
pushing up the oblique line, we can make sure that tB ¼
const is in the future of tA ¼ const within the support of φ.

C. Lorentz invariance of linear instability

Theorem 1 deals with nonlinear perturbations, which are
initially localized in space. However, in the linear approxi-
mation, it is usually convenient to study the evolution of
sinusoidal plane waves, which have infinite support. Is
there a straightforward analog of Theorem 1 for sinusoidal
plane waves?
We work with linear perturbations to a homogeneous

stationary state and call φ ≔ fδψ ig the array of perturba-
tion fields δψ i. We take a global solution (i.e., a solution
that is well defined across all Minkowski spacetime) of the
form

φ ¼ “periodic field” × eΓBtB ; ðΓB ∈ RÞ; ð14Þ

where the periodic part is periodic both in space and in time.
On hyperplanes ftB ¼ constg, we have φ ¼ periodic field,
which implies that the perturbation may be a plane wave
(i.e., a Fourier mode) in Bob’s frame. This is the type of
solution that one considers while performing a linear
stability analysis in Bob’s frame [36,62]. Depending on
the sign of ΓB, the perturbation grows (if ΓB > 0), decays (if
ΓB < 0), or has constant intensity (if ΓB ¼ 0) in Bob’s
frame. Working in Alice’s frame, φ is no longer a Fourier
mode (unless ΓB ¼ 0; see Appendix A 1), but it takes the
form

φ ¼ periodic field × eΓBγðtA−vxAÞ: ð15Þ

We can orient the xA axis in a way that v > 0. Now, let us
make two assumptions.

(i) The field equations are causal [40–42].
(ii) The perturbation grows in Bob’s frame ΓB > 0.

Our goal is to prove that the system is linearly unstable also
in Alice’s frame.
Consider an event p∈DþðRÞ¼ ftA ≥ 0g∩ fxA > tAg,

where R is the half hyperplane (see Fig. 4)

R ≔ ftA ¼ 0g ∩ fxA > 0g: ð16Þ

By causality, φðpÞ cannot depend on the initial state of the
system outside R. In particular, if we consider an alter-
native solution φ⋆, whose initial data (for tA ¼ 0) agree
with φ on R and vanishes outside R, i.e.,

φ⋆ðtA ¼ 0Þ ¼ ΘðxAÞφðtA ¼ 0Þ
ðΘ ¼ Heaviside step functionÞ; ð17Þ

then we must have φ⋆ ¼ φ on DþðRÞ. It follows that (for
any ε > 0, tA ≥ 0)

φ⋆jxA¼tAþε ¼ φjxA¼tAþε ∝ eΓBγð1−vÞtA ⟶
tA→þ∞

∞; ð18Þ

which means that both φ and φ⋆ have divergent amplitude at
future lightlike infinity (see Fig. 5).Now, it is not so surprising
that φ diverges somewhere in the future: In Alice’s reference
frame, one has φðtA ¼ 0Þ ∝ expð−ΓBγvxAÞ, which is diver-
gent at xA ¼ −∞. Indeed, it is well known that if a
perturbation has a divergent tail at tA ¼ 0, its later exponential
growth cannot be taken as an indication of instability of the
field equations [87]. On the other hand, φ⋆ has a much more
“innocent” initial state [88]:

φ⋆ðtA ¼ 0Þ ¼ periodic field × ΘðxAÞe−ΓBγvxA : ð19Þ

It is evident that if such a perturbation diverges for later times,
the system must be unstable in Alice’s frame. We have
therefore proven the following theorem:

FIG. 4. Left panel: an observer inside the red region DþðRÞ
cannot know what the initial state of the system was for xA < 0 (at
tA¼0). Right panel: therefore, both φðtA¼0Þ and φ⋆ðtA¼0Þ¼
ΘðxAÞφðtA¼0Þ are initial states which are consistent with the data
available to such observer; no experiment performed inside
DþðRÞ can tell φ and φ⋆ apart.
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Theorem 2. (Lorentz invariance of instability). If a
causal (linear) theory presents a growing Fourier mode in
one reference frame, then it is linearly unstable in all
reference frames.
Equivalently, if a causal theory is stable in one reference

frame, there cannot be any growing Fourier mode in the
boosted frames (analog of Theorem 1 for plane waves).
This result generalizes Theorem III of Bemfica et al. [18] to
linear systems with arbitrary linear field equations.
Theorem 2 is also a generalization of the “inverse argu-
ment” of Gavassino et al. [61] to theories that do not have
an entropy current with strictly non-negative divergence,
such as DNMR [20] and BDNK [58]. Note that for
Theorem 2 to hold, the unperturbed state does not need
to be the state of global thermodynamic equilibrium;
instead, it may just be a homogeneous and stationary
background state.
Finally, let us give a less rigorous but more intuitive

explanation of Theorem 2. Assume that, working in Alice’s
frame, we can split a given solution of the field equations
into the product

φ ¼ ðintrinsic growthÞ × ðdriftÞ ¼ eΓAtA × φDðxA − wtAÞ:
ð20Þ

Stability means ΓA < 0; causality requires jwj ≤ 1. If we
assume that φDðxAÞ ¼ periodic field × expð−αxAÞ, with
α > 0, we obtain

φ ∝ e−αxAþðΓAþαwÞtA : ð21Þ

Consistent with what we said before, we see that the fact
that the perturbation grows in Alice’s frame (ΓA þ αw > 0)
does not necessarily mean that the theory is unstable
(ΓA > 0) because a perturbation with an infinite tail
(namely, φ ¼ ∞ at xA ¼ −∞) can mimic an effective
growth by drifting its tail. However, since jwj ≤ 1, such
an effective growth cannot be too large in causal theories.
Indeed, if we rewrite the perturbation (15) in the form (21),
we find that

ΓA ¼ ΓBγð1 − vwÞ > 0 ðby causalityÞ; ð22Þ

signaling instability in Alice’s frame. The reader can see the
Appendix of Gavassino et al. [38] for a similar argument.

IV. ACOUSTIC-CONE ARGUMENT

There is one “global argument,” which unifies elegantly
all the previous results and gives a clear physical intuition
of the underlying mechanism relating acausality and
instability.
We start from a well-known fact: The outer character-

istics that pass through a spacetime point p bound the
domain of influence of p [43,62]. This implies that if we
perturb a system at p (e.g., by coupling the field equations
with an external source), the induced disturbance will be
confined within a conical-like region called the (future)
acoustic cone [45,89,90]. In addition, if the unperturbed
state is a state of global thermodynamic equilibrium, and if
the theory is dissipative, we can assume that the perturba-
tion will be more intense at the tip of the cone (i.e., closer to
p), and it will become smaller as we move far away from p.

FIG. 5. Minkowski diagram of the two solutions φ (left panel) and φ⋆ (right panel) in Bob’s coordinates. The shades of red are a color
map of the perturbation (the oscillatory behavior of the periodic part is averaged out). In the gray area, we do not know the actual
intensity of φ⋆. Left panel: φ is an unstable Fourier mode (i.e., a growing plane wave) in the B frame; it is well defined across the whole
spacetime; its oscillation amplitude is constant along hyperplanes tB ¼ const (horizontal lines) and grows exponentially for growing tB
(φ ∝ eΓBtB ). Right panel: φ⋆ is constructed on the half spacetime ftA ≥ 0g by “gluing” initial data at tA ¼ 0. On the right (onR), we take
φ⋆ðtA ¼ 0Þ ¼ φðtA ¼ 0Þ so that (by causality) φ⋆ ¼ φ on DþðRÞ. On the left, we set φ⋆ðtA ¼ 0Þ ¼ 0 (hence, φ⋆ ¼ 0 on the respective
Cauchy development). In this way, φ⋆ has a well-defined Fourier transform on ftA ¼ 0g, but it diverges on DþðRÞ (in the upper right
corner), signaling an instability in Alice’s frame.
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Let us first consider the case in which the theory is
causal. Then, the acoustic cone is contained within (or
overlaps) the light cone. Therefore, all observers experience
the events in the following order: first p (external source),
then the tip of the cone (“intense perturbation”), then the
rest of the cone (“damped perturbation”). Hence, all
observers will agree that the equilibrium state is stable
against perturbations. We recover Theorem 1 (at least
qualitatively). Furthermore, if we assume that the source
at p excites all the Fourier modes, it is easy to recover
Theorem 2.
Let us now move to the case in which the theory is

acausal. In this case, a portion of the acoustic cone exits the
light cone. Thus, there is an observer (Bob) who measures
the perturbation before p has occurred. In Bob’s frame, as
tB approaches tBðpÞ from below, the portion of the acoustic
cone that intersects the hyperplane ftB ¼ constg gets closer
to the tip of the cone; see Fig. 6. This implies that

(i) for tB ≪ tBðpÞ, the system is at equilibrium (the
hyperplane tB ¼ const is far from the tip of
the cone).

(ii) for tB < tBðpÞ, the perturbation grows for increas-
ing tB.

(iii) at tB ¼ tBðpÞ, the perturbation has a peak of
intensity.

On the other hand, on the spacetime region ftB < tBðpÞg,
the perturbation is a solution of the field equations without
sources because the only source is located at p. Therefore,

we have just shown that there is a solution of the sourceless
field equations, with initial data close to equilibrium [for
tB ≪ tBðpÞ], which departs from equilibrium at finite tB
[just before tBðpÞ]. This behavior is a signature of
instability in Bob’s frame. We recover the argument of
Sec. II A: If the source of a perturbation can be delayed,
then the system can spontaneously depart from equilibrium
in advance. But we also recover the argument of Sec. III A:
Just identify the wave packet of Fig. 2 with the front of the
perturbation induced by p (like a discontinuity, the front
travels along the boundary of the acoustic cone [51]).
At this point, we need to make a clarification. Babichev

et al. [45] suggested that, if the acoustic cone is larger than
the light cone, then one should just use the acoustic cone in
place of the light cone to define the causal structure of the
spacetime and treat observers like Bob (Fig. 6) as “inap-
propriate” observers because they are not free to set the
initial data at will. In this way, all paradoxes are avoided,
and one has a new notion of causality. Their reasoning is
valid, but we are working in different contexts. They are
interested in what would happen in a universe in which
there was some physical field which breaks the general-
relativistic notion of causality at the fundamental level: For
them, the limitations of Bob are real. On the other hand,
here we are assuming that general-relativistic causality is
fundamentally valid in our Universe (hence, Bob is
physically capable of shaping the system), but we are
using a field theory that contradicts such a principle. This
is the actual origin of all paradoxes: not equations
that break causality, but Cauchy problems that combine
acausal theories with initial data on arbitrary spacelike
surfaces [62].

A. Example: The boosted heat equation antidiffuses

Using the acoustic-cone argument outlined above, we are
finally able to show that the instability of the heat equation
in moving reference frames [62] is a consequence of its
acausality. To this end, we consider the following thought
experiment. A heat-conductive medium is at rest in Alice’s
frame. For tA < 0, the temperature is everywhere zero. At
tA ¼ 0, Alice injects a Dirac delta of energy in the location
xA ¼ 0. For tA > 0, the spike of energy diffuses across the
medium, according to the heat equation. The temperature
field is therefore given by [91]

TðtA; xAÞ ¼
ΘðtAÞffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDtA

p exp

�
−

x2A
4DtA

�
: ð23Þ

It can be easily verified (see Rauch [92], Sec. I.7,
Problem 3) that this function is indeed a C∞ solution of
the heat equation for all values of tA and xA, except at the
point p ¼ ð0; 0Þ, which is where the spike of energy is
injected by Alice. Thus, when we boost to Bob’s frame
(treating T as a scalar field [93]),

FIG. 6. Minkowski diagram of the “acoustic-cone argument.”
An external source at p (yellow star) generates a perturbation in
the medium, which propagates within the outermost character-
istic cone of the field equations (acoustic cone) and decays by
dissipation as we move away from the source. If the field
equations are acausal, the acoustic cone extends outside the light
cone. Hence, there is an observer Bob in whose frame the
perturbation exists before p has occurred. On the region
ftB < tBðpÞg, Bob observes a solution of the sourceless field
equations, which is at equilibrium for tB ≪ tBðpÞ but grows
spontaneously as tB approaches tBðpÞ from below.
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TðtB;xBÞ¼
ΘðtBþvxBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πDγðtBþvxBÞ

p exp

�
−
γðxBþvtBÞ2
4DðtBþvxBÞ

�
;

ð24Þ

and we restrict our attention to the spacetime region
ftB < 0g, we obtain a C∞ solution of the boosted heat
equation. In Fig. 7, we show some snapshots of such a
solution.
As we can see, the qualitative behavior of TðtB; xBÞ is

consistent with our acoustic-cone argument. Before Alice
injects the spike, the temperature is already nonzero in
Bob’s frame: Heat travels to the past. The characteristic line
xB ¼ −tB=v (which is just the line tA ¼ 0 expressed in
Bob’s coordinates) defines the acoustic cone and plays the
role of a superluminal wave front. There is a “temperature
wave” on the right of such a front, which is initially
infinitesimal (for tB ≪ 0) and grows with time, “antidiffus-
ing,” and becoming more and more peaked. In the end, T
develops a singularity at tB ¼ 0−. The very existence of a
solution of this kind tells us that the boosted heat equation
is antidissipative and unstable.
But there is more. Let us focus on the infinite strip

ftB; xBg ∈ ½−1; 0Þ × R. As we said, T is C∞ on such a
strip. In addition, the right tail of T decays faster than
exponentially, while the left tail is identically zero.

Therefore, we have constructed a solution of the boosted
heat equation, whose initial data at tB ¼ −1 are regular
(i.e., smooth and with well-defined Fourier transform),
which nevertheless develops a singularity as tB → 0. It
follows that the boosted heat equation must be ill-posed
[62]. This fact is not surprising. The boost has inverted the
chronology of the heat equation (see Sec. III A), converting
it from diffusive to antidiffusive. Hence, the boosted heat
equation should share some similarities with the “backward
heat equation” −∂tT ¼ D∂

2
xT, which is renowned for its

ill-posedness.

V. SOME QUICK APPLICATIONS

As we mention in the Introduction, a relativistic theory
should pass three tests to be considered reliable:

(i) causality.
(ii) stability in the background’s rest frame.
(iii) stability in reference frames in which the back-

ground is moving.
Usually, one is content verifying these properties at least for
linear deviations from equilibrium, although in principle
conditions i–iii should be valid also in the nonlinear regime.
The main message of this paper is that, once properties

i and ii have been tested, assessing property iii is super-
fluous. In fact, if causality is violated, we know from the
argument of Sec. III A that the theory will be unstable
(if dissipative). Furthermore, from the acoustic-cone argu-
ment of Sec. IV, we are also able to predict exactly in which
reference frames the problems appear. If, on the other hand,
i and ii are respected, then, by Theorems 1 and 2, iii follows
automatically. Below, we list some direct applications of
the present results, which span all areas of relativistic
physics, including heavy-ion-collision simulations (point 1),
accretion-disk simulations (point 2), alternative theories
for dissipation (points 3–7), models for turbulent flow
(point 8), Chern-Simons magnetohydrodynamics (point 9),
and multiconstituent fluids (points 10–14).
(1) Plumberg et al. [94] have shown that viscous

heavy-ion-collision simulations explore regimes
of causality violation. This surely introduces un-
certainty, but how much uncertainty? Each discrete
time step in a simulation introduces an error, and
may “activate” Fourier modes. Picture this error as
a small source on the right-hand side of the field
equations. As shown in Fig. 6, the effect of a source
is dissipated away in those reference frames in
which the acoustic cone points entirely toward the
future. However, in the remaining frames, it trig-
gers growing modes. Hence, a simulation is really
nonreliable if and only if part of the acoustic cone
“sinks” below the numerical time-step hypersurfa-
ces. Plotting the acoustic cone will thus show the
real entity of the problem (the formula for the
acoustic cone can be deduced from the causality
analysis of Bemfica et al. [95]).
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FIG. 7. Boosted Green’s function of the heat equation for
tB < 0. We set D ¼ 30 and v ¼ 3=4. Each curve represents a
snapshot of TðtB; xBÞ, for different choices of tB. If someone
knows the entire history of the system, the interpretation of this
figure is quite straightforward: Alice injects a spike of energy at
tB ¼ xB ¼ 0; because of acausality, a portion of such a spike
propagates toward the past; as it travels backward in time, the
spike diffuses and flattens. On the other hand, to Bob (who cannot
predict the decisions of Alice), the situation looks very different.
From his perspective, the material is initially in thermodynamic
equilibrium (at tB ¼ −∞). Then, a perturbation builds up
spontaneously, developing a superluminal front on the character-
istic line xB ¼ −tB=v. As time goes ahead, the perturbation
“antidiffuses,” becoming more and more peaked. Eventually,
when tB → 0, the peak diverges at xB ¼ 0. What we are
observing is just an inversion of chronology (see Fig. 2).
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(2) Fragile et al. [96] have performed relativistic viscous
hydrodynamic simulations of accretion disks, adopt-
ing the Landau and Lifshitz [13] theory, which is
acausal: The acoustic cone is the normal hyperplane
to the fluid’s velocity [62]. Thus, our reliability
criterion (see point 1) is violated at any point where
the flow velocity is not normal to the 3þ 1 foliation:
These simulations are probably nonreliable. How-
ever, the choice of approximating theviscous stress as
constant (during theprimitive solve)mayhavehad the
effect of erasing the second time derivatives, effec-
tively collapsing the acoustic cone upon the foliation,
removing the pathologies. This would explain why
some of their simulations predict the existence of
stable disks, which is surprising given the violence of
the acausality-induced instabilities (see Sec. III A).
We believe that this issue needs further investigation.

(3) Pu et al. [55] have shown that second-order viscous
hydrodynamics is stable if and only if it is causal (in
the linear regime). An analogous result has been
found by Brito and Denicol [59] for third-order
viscous hydrodynamics. We are in the position to
predict that the same will also be true for higher-
order viscous hydrodynamics.

(4) Andersson and Lopez-Monsalvo [57] have formu-
lated a relativistic theory for heat conduction,
proving that it satisfies conditions i and ii.
Theorem 2 implies that also condition iii is satisfied:
The theory is stable.

(5) Stricker and Öttinger [21] have formulated a rela-
tivistic viscous theory for liquids. In Ref. [21], they
verify that, for some choice of parameters, condition
ii is respected. However, we can see from Figs. 1–3
of Ref. [21] that for this same choice of parameters,
the front velocity of some Fourier modes is super-
luminal. Since the signal velocity is not smaller than
the front velocity [97], we can conclude that the
liquid under consideration violates causality and is
therefore unstable in some reference frames.

(6) Ván and Biró [22] have formulated a relativistic
theory for viscosity and heat conduction, showing
that it respects condition ii. However, upon inspec-
tion of the last column of their matrix R [Eq. (34)],
we see that the field equations are not hyperbolic
[51], suggesting the presence of causality violations
and thus of instabilities. Indeed, if (in R) we impose
Γ ¼ γΓ̃ and k ¼ iγvΓ̃ (spatially homogeneous solu-
tion in a boosted frame [36]), we find that there is
one growing solution for any v ≠ 0.

(7) Ván and Biró [98] have formulated another theory
for viscous hydrodynamics, similar to that discussed
above. Unfortunately, it suffers exactly from the
same problems as the previous one: The matrix R
[Eq. (38)] models acausal perturbations, which
become unstable when boosted.

(8) The Smagorinsky model [99] is a filtered theory for
modeling turbulent flows in large eddy Newtonian
simulations. Celora et al. [100] have shown that if
the same approach is lifted to a relativistic setting,
the resulting model is not “covariantly stable”; i.e., it
satisfies condition ii but not condition iii. Applying
Theorem 2, we can conclude that the relativistic
Smagorinsky model is acausal.

(9) Kiamari et al. [101] have shown that Chern-Simons
magnetohydrodynamics is causal but unstable in the
rest frame. Using Theorem 2, we can conclude that
the theory must be unstable in every reference frame.

(10) Many relativistic fluids can be modeled as reacting
mixtures [102–104]. For a perfect-fluid reacting
mixture, the rest-frame stability conditions coincide
with the “textbook” conditions for thermodynamic
stability [60], while the causality condition is simply
the requirement that the sound speed at frozen
chemical fractions should not exceed the speed of
light [10]. Under these assumptions, by Theorem 2,
a mixture is stable in all reference frames.

(11) Most models for radiation hydrodynamics
assume that there is a matter fluid with stress-energy
tensor Mab and a radiation fluid with stress-energy
tensor Rab, which interact dissipatively though the
equation ∇aMab ¼ −∇aRab ¼ Gb, where Gb is a
hydrodynamic force [34,35,105]. Since Gb usually
does not depend on the gradients, its presence does
not modify the characteristic determinant of the
system. Therefore, the causality properties of
the two fluids are unaffected by the coupling: If
the dynamics of the matter fluid is acausal, the total
radiation-hydrodynamic theory will also be acausal.
On the other hand, radiation hydrodynamics is
dissipative by construction [31,34]. Therefore, in-
voking the argument of Sec. III A, we can conclude
that all acausal fluids become unstable when coupled
with radiation through Gb.

(12) The argument above can be easily generalized:
Assume that an arbitrary number of fluids and
classical fields interact dissipatively through some
equations ∇aTab

n ¼ Gb
n (n is an index counting the

fluids), where Gb
n does not depend on the gradients.

Then, if any of these fluids is acausal (and its
dissipative coupling with the other fluids is not
zero), the resulting composite system is unstable.

(13) Carter and Khalatnikov [106] have formulated a
relativistic theory for superfluid mixtures. The sim-
plest way of implementing dissipation in their theory
is by coupling the currents through hydrodynamic
forces which do not contain gradients [63] (analo-
gous to the case above). It follows that dissipative
superfluid mixtures (and, more in general, “multi-
fluids”) are stable only if their nondissipative analog
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is causal. The only exception is when the dissipative
coupling is mediated by quantum vortices [107,108],
in which case the drag force depends nonlinearly on
the gradients, changing completely the causal struc-
ture of the system.

(14) Superfluid neutron stars exhibit a phenomenon
called “entrainment,” according to which the super-
fluid momentum of the paired neutrons is not
collinear to the flow of neutrons [24]. If we imagine
to remove this effect, the acoustic cone becomes that
of Carter’s regular theory for heat conduction [109],
which can be acausal, for certain equations of state
[78]. Hence, the existence of the entrainment may be
necessary to guarantee the stability of the equilib-
rium. The thermodynamic origin of this fact is
studied in another work [79].

VI. CONCLUSIONS

In this paper, we identify the physical mechanism that
connects causality, stability, and dissipation. Our reasoning
can be summarized as follows. First, we abstract from the
general notion of “dissipation” its key feature, namely, the
existence of a decaying-over-time scalar field (which
measures “how large” a perturbation is at a point). Next,
we interpret the word “stability” as the statement that all
possible observers agree on the fact that such a field is
nonincreasing with respect to their proper time. Finally, we
set up a simple argument: Suppose that a perturbation
moves superluminally (i.e., outside the light cone) and
decays over time from the point of view of one observer.
Because the perturbation is superluminal, it links causally
disconnected spacetime points which can, via a Lorentz
transformation, be chronologically inverted, making the
decaying quantity appear increasing from the point of view
of another observer. In a nutshell, the lack of causality
always allows one to transform dissipation into antidissi-
pation (i.e., dissipation backward in time). This also
explains why acausal theories always turn out to be
thermodynamically unstable [61].
As a concrete example, we study how the retarded

Green’s function of the heat equation transforms under
Lorentz boosts. We find that, due to the relativity of
simultaneity, one of its Gaussian tails must always “sink”
to the past (no matter how small the boost velocity), so
that the boosted Green’s function presents an advanced
part. This acausal precursor undergoes an inversion of
chronology: It antidiffuses instead of diffusing (see
Fig. 7). As a consequence, thermodynamics now is time
reversed: Spikes tend to pinch (instead of flattening),
energy tends to concentrate (instead of spreading),
and the medium wants to move away from equilibrium
(rather than toward it). That is why the boosted heat
equation is unstable [36], antidissipative [63], and ill-
posed [62].

With a similar reasoning, we rigorously prove that,
instead, if a causal theory is stable in one reference frame,
it is stable in all reference frames. The reason is that Lorentz
transformations can never invert the chronological order of
causally connected events: A decaying subluminal pertur-
bation cannot be Lorentz transformed into a growing one.
In other words, causality guarantees that the “thermo-
dynamic arrow of time” points toward the future in all
reference frames, not only in the rest frame.
Our analysis reveals that the causality-stability assess-

ment is much easier than we thought, because the boosted-
frame stability analysis (which is notoriously the most
difficult part) is superfluous. Causality alone takes care of
ensuring the Lorentz invariance of a stability assessment,
which can just be performed in a preferred reference
frame. This result is a more general formulation of
Theorem III of Bemfica et al. [18] and of the inverse
argument of Gavassino et al. [61]. The main advantage of
our Theorems 1 and 2 is that they do not make any
assumption about the structure of the field equations,
besides causality.
We also formulate a general criterion based on the notion

of an acoustic cone, which allows one to predict exactly in
which reference frames an acausal theory becomes prob-
lematic. This criterion can be used to understand whether
the reliability of state-of-the-art heavy-ion-collision simu-
lations [94] is really compromised by the causality viola-
tions of Israel-Stewart-type theories.
This paper clarifies several fundamental aspects of

relativistic hydrodynamics and thermodynamics, providing
a definitive answer to some old open questions.
(1) What is the “physical interpretation” of the insta-

bilities that we observe in relativistic hydrodynam-
ics? They are just dissipative processes under time
reversal. Without causality, there is no absolute
notion of chronology, because the “cause” and the
“effect”may be exchanged via a Lorentz boost. As a
result, the thermodynamic arrow of time may point
toward the past for some observers. When this
happens, systems evolve away from equilibrium
rather than toward it. That is why these instabilities
are present in some reference frames and not in
others.

(2) Is it possible to make these instabilities small enough
to be irrelevant? No. If the beginning and the end of
a process can be chronologically reordered via a
boost, then there is an intermediate reference frame
in which they are simultaneous. In such a frame, the
whole process occurs instantaneously. Therefore,
one cannot hope that the instabilities will grow
“slowly” (for a given acausal theory), because there
is always some reference frame in which the growth
rate is infinite.

(3) Why does this problem appear only when we turn
on dissipation? Because nondissipative theories are
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invariant under time reversal (strictly speaking, they
are invariant under the action of CPT [110]). Hence,
in the absence of dissipation, an inversion of
chronology does not produce any observable effect
on the laws of thermodynamics.

(4) Is it possible to observe a similar phenomenon in
Newtonian physics? No. In Newtonian physics, time
(and in particular, chronology) is absolute. As a
consequence, the thermodynamic arrow of time is
Galilean invariant, and all observers agree on
whether a system is stable or not.

Theorems 1 and 2 are also interesting from the point of
view of the foundations of relativistic thermodynamics. In
fact, the essence of these theorems may be summarized as
follows: If a system exhibits a tendency to evolve toward
thermodynamic equilibrium in one frame of reference, it
exhibits the same tendency in all frames, provided that the
principle of causality holds. This suggests that, once thermo-
dynamics is valid in one reference frame, it should “look the
same” in all reference frames. This is perfectly in line with
our recent proof [82] of vanKampen’s argument [111] for the
existence of a relativistically covariant theory of thermody-
namics. There, causality and stability are implicitly assumed
when the concept of “kick” is introduced.
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APPENDIX A: THE RELATIVISTIC
STABILITY ASSESSMENT

Let us compare the Galilean boost with the Lorentz boost
(we ignore the variables y and z):

Galileo

�
tA ¼ tB;

xA ¼ xBþvtB;
Lorentz

�
tA ¼ γðtBþvxBÞ;
xA ¼ γðxBþvtBÞ:

ðA1Þ

In addition to the Lorentz factor γ ¼ ð1 − v2Þ−1=2, there is
an additional term in the Lorentz boost that catches the eye:
the position-dependent shift “vxB” in the relativistic trans-
formation of time. This term is responsible for a counter-
intuitive phenomenon called “relativity of simultaneity,”
according to which two events that are simultaneous for one
observer (ΔtB ¼ 0) may not be simultaneous for another
observer (ΔtA ¼ γvΔxB ≠ 0). It is this effect that makes the

relativistic stability assessment more complicated than its
Newtonian counterpart. Let us see why.

1. Boosted Fourier modes are no longer Fourier modes

A physical system is in thermodynamic equilibrium.
We perturb it a bit. We expect that after an initial transient,
the system will relax back to equilibrium. If instead the
perturbation grows with time, we say that the theory is
“unstable.”
In practice, given a system of partial differential equa-

tions, how dowe assess the stability of the equilibrium? The
standard approach is the same both in Newtonian physics
and in relativity, andworks as follows. Let us say, for clarity,
that we are interested in tracking the evolution of the local
temperature TðtA; xAÞ interpreted as a scalar field [93]. For
small perturbations, we can work in the linear approxima-
tion and expand a generic solution of the field equations as a
superposition of sinusoidal plane-wave solutions (Fourier
modes). For each of these solutions, the perturbation to the
local temperature takes the form below:

δTðtA; xAÞ ¼ eΓAtA sinðkAxA − ωAtA þ ϕÞ; ðA2Þ

where ΓA, kA, ωA, ϕ are real numbers, which do not depend
on the spacetime location. The numbers kA and ϕ called,
respectively, “wave number” and “phase” are treated as free
parameters, whereas ΓA and ωA called, respectively,
“growth rate” and “frequency” are constrained by the
equations of motion and depend on kA. It is evident that
if ΓA is always nonpositive (for all values of kA), the system
is stable, otherwise, it is unstable.
The only difference between a Newtonian stability

analysis and a relativistic stability analysis lies in what
happens when we change the frame of reference. Our
intuition suggests that once we verify that the system is
stable in one reference frame, it should be stable in all
reference frames. And, indeed, this is true in Newtonian
physics. In fact, when we change reference frame (in a
Newtonian world), Eq. (A2) is transformed into

δTðtB; xBÞ ¼ eΓBtB sinðkBxB − ωBtB þ ϕÞ; ðA3Þ
with ΓB ¼ ΓA, kB ¼ kA, and ωB ¼ ωA − vkA. As we can
see, the Galilean boost always maps sinusoidal plane waves
into sinusoidal plane waves, with the same wave number
and growth rate. Hence, if ΓAðkAÞ cannot be positive,
neither can ΓBðkBÞ. However, things change dramatically in
relativity. In fact, when we make a Lorentz boost, relativity
of simultaneity mixes space with time, and the exponential
in Eq. (A2) becomes

eΓAtA ¼ eΓAγtBeΓAγvxB : ðA4Þ
Because of the extra factor eΓAγvxB, the wave is no longer
sinusoidal in the boosted frame (see Fig. 8) unless ΓA ¼ 0.
This is telling us that solutions of the form (A2) are
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intrinsically different from the solutions of the form (A3).
One is not the boosted version of the other. We cannot even
express Eq. (A2) as a superposition of solutions like
Eq. (A3) because the factor eΓAγvxB has a divergent tail
for xB → ∞ (plus or minus, depending on the sign of vΓA),
so that the plane wave (A2) does not have a well-defined
Fourier transform in the B frame. This fact can lead to a
surprising phenomenon: Sometimes, a system is stable in
one reference frame but unstable in another one.

2. The case of the heat equation

The most striking example of how relativity of simul-
taneity can destabilize a system is the case of the heat
equation:

∂T
∂tA

¼ D
∂
2T
∂x2A

: ðA5Þ

In the A frame, this equation is clearly stable. In fact, if we
plug Eq. (A2) into Eq. (A5), we obtain ΓA ¼ −Dk2A ≤ 0.
No Fourier mode can grow. However, quite surprisingly,
there are unstable Fourier modes in all other frames of
reference. For example, consider a solution of the form
δTðtBÞ ¼ eΓBtB . In the B frame, this is a sinusoidal plane
wave, with kB ¼ 0. Physically, it models a configuration
with no gradients in space for observer B. Intuitively, we
then expect that the only possible solution will be ΓB ¼ 0
(no gradients⇒ no heat flux⇒ no temperature changes).
However, this is not the case. Because of relativity of
simultaneity, δT acquires an exponential profile in the A
coordinates:

δTðtA; xAÞ ¼ eΓBtB ¼ eΓBγðtA−vxAÞ ¼ eΓBγtAe−ΓBγvxA : ðA6Þ

As a consequence, when we plug Eq. (A6) into Eq. (A5),
we obtain two possible solutions. One is ΓB ¼ 0 and the
other is

ΓB ¼ 1

Dγv2
> 0: ðA7Þ

As we can see, in the B frame, the temperature is allowed to
grow uniformly (with no bound), even in the absence of
spatial gradients. Note that this is not in contradiction with
the Fick law (“fluxes” ∝ “spatial gradients”), because in the
rest frame of the medium (the A frame) there are gradients.
In Sec. IVA. we finally explain why the boosted heat
equation must necessarily be unstable.

APPENDIX B: THE
PERTURBATION-INTENSITY FIELD

The essence of Theorem 1 is the following: If a causal
perturbation with compact support converges to zero
uniformly in Alice’s frame, it converges to zero uniformly
also in Bob’s frame. To prove it, we rely only on the
existence of a scalar field φ that measures “how large” a
perturbation is at a point. The simplest way of constructing
φ is the following. Suppose that Alice and Bob are
interested in measuring a finite set of relevant scalar
observables On (e.g., temperature T, pressure P, chemical
potential μ, electromagnetic field strength FabFab, etc.) at
each spacetime event. Then, they may define φ as

φ ¼
X
n

½On −Oeq
n �2; ðB1Þ

where Oeq
n is the equilibrium value of On. Viewed in this

light, the theorem tells us that if the differences On −Oeq
n

go below experimental resolution uniformly in Alice’s
frame, then the same happens in Bob’s frame, provided
that On ¼ Oeq

n on DþðRcÞ.
On the other hand, one would also like to interpret the

theorem in a more “mathematical” sense. For a given
deterministic field theory with some set of field equations,
what are the underlying assumptions that make Theorem 1

0 2 4 6

-1

-0.5

0

0.5

1

0 2 4 6

-1

-0.5

0

0.5

1

FIG. 8. The same plane wave viewed by two observers in motion with respect to each other. The full spacetime dependence of the
temperature perturbation is assumed to be δTðtA; xAÞ ¼ e−tA sinð10xAÞ. In the “(A)” frame, we have a conventional Fourier mode (left
panel), whose amplitude decays in time. In the “(B)” frame, there is an exponential modulation also in space (right panel). This is a direct
consequence of the relativity of simultaneity: If something decays only in time in one frame, it may decay both in time and space in
another frame. We choose the boost velocity v ¼ 3=4, which corresponds to the Lorentz factor γ ≈ 1.5.
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applicable? We address this (rather technical) problem in
the remaining part of this appendix.

1. What is a perturbation?

We consider the following Cauchy problem:(
F hðψ i;∇aψ i;∇a∇bψ i;…Þ ¼ 0 on D

∘ þðΣÞ;
ψ i ¼ fð0Þi ; na∇aψ i ¼ fð1Þi ;… on Σ;

ðB2Þ

where ψ i are the fields of the theory, Σ is the spacelike
Cauchy 3D surface introduced in the main text, na is the

unit normal to Σ, ffðnÞi gi;n is a set of functions on Σ (they
constitute the initial data), and F h are some tensor-valued
functions, which are smooth in all the arguments. We also
assume that Σ is smooth, and we restrict our attention to
smooth initial data. The following two assumptions are
standard [41] but not so easy to guarantee in general [112]:

(i) The Cauchy problem (B2) is globally well posed;
i.e.. the solution exists, is unique, and depends
continuously on the initial data [across all DþðΣÞ].

(ii) The field equations are causal; i.e., if the initial data
for ψ⋆

i agree with those of ψ i on a subset S of Σ, then
ψ⋆
i ¼ ψ i on DþðSÞ.

Now we can define rigorously what we mean by a
perturbation. Any state of global thermodynamic equilib-
rium is modeled in a deterministic field theory as a specific
solution of the field equations, with certain properties (e.g.,
∇asa ¼ 0 and∇aβb þ∇bβa ¼ 0 [14]). We simply call ψ i a
solution of this kind, which plays the role of the back-
ground equilibrium state. A localized perturbation (of the
type considered in Sec. III B) is another solution ψ⋆

i , whose
initial data agree with those of ψ i on Rc, but differ on R
(there is no need for ψ⋆

i to be “close to ψ i” insideR). Then,
by causality, we know that

ψ⋆
i ¼ ψ i on DþðRcÞ: ðB3Þ

The final step consists of constructing a scalar field φwhich
quantities how far ψ⋆

i is from ψ i at a point. There are
infinitely many ways of constructing such a field, but the
simplest one works as follows: Taken a preferred tetrad
eA ¼ eaA∂a (with ∇eA ¼ 0) and its dual eA ¼ eAadxa,
introduce the operation

kAk2e ≔
Xfrom 0 to 3

A1;…;Al;B1;…;Bk

jAðeA1 ;…;eAl ;eB1
;…;eBk

Þj2 ðB4Þ

for a generic complex-valued ðl; kÞ-tensor A. Then,
define φ as

φ ¼
X
i

kψ⋆
i − ψ ik2e: ðB5Þ

It is evident that given a spacetime point p, φðpÞ ¼ 0 if and
only if ψ⋆

i ðpÞ ¼ ψ iðpÞ. Hence, from Eq. (B3), we see that

φ ¼ 0 on DþðRcÞ, proving that Definition 1 follows
directly from causality. Furthermore, global well posedness
guarantees that φ exists everywhere in DþðΣÞ, which is
another central assumption of the theorem.
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