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Because electrons and ions form a coupled system, it is a priori clear that the dynamics of the lattice
should reflect symmetry breaking within the electronic degrees of freedom. Recently, this has been clearly
evidenced for the case of time-reversal and mirror symmetry breaking by observations of a large phononic
thermal Hall effect in many strongly correlated electronic materials. However, the mechanism by which
time-reversal breaking and chirality is communicated to the lattice is far from evident. In this paper, we
discuss how this occurs via many-body scattering of phonons by collective modes: a consequence of non-
Gaussian correlations of the latter modes. We derive fundamental new results for such skew (i.e., chiral)
scattering and the consequent thermal Hall conductivity. We emphasize that these results apply to any
collective variables in any phase of matter: electronic, magnetic, or neither; highly fluctuating and
correlated, or not. As a proof of principle, we compute general formulas for the above quantities for ordered
antiferromagnets. From the latter, we obtain the scaling behavior of the phonon thermal Hall effect in clean
antiferromagnets. The calculations show several different regimes and give quantitative estimates of similar
order to that seen in recent experiments.
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I. INTRODUCTION

Thermal conductivity is the most ubiquitous transport
coefficient, being well defined in any system with suffi-
ciently local interactions, irrespective of the nature of the
specific low-energy degrees of freedom. Therefore, it is
particularly important in systems for which charge trans-
port is either strongly suppressed (i.e., insulators) or
singular (i.e., superconductors). Moreover, the thermal
Hall conductivity plays a particularly special role in the
theory of exotic topological phases, as it can be related to
the chiral central charge, to the presence of edge modes, etc.
For all of the above reasons, experiments on thermal
conductivity have played a preeminent role in establishing
the nature of the most interesting strongly correlated states
of matter. A few notable examples are the observation of
metalliclike transport in an organic spin liquid [1], a
quantized thermal Hall effect in the Kitaev material
α-RuCl3 [2] (taken as evidence for Majorana fermion edge
states), and an exceptionally large and yet unexplained

thermal Hall effect in underdoped cuprate high-temperature
superconducting materials [3,4].
Arguably, the Achilles heel of thermal conductivity

measurements is the contribution of lattice vibrations or
phonons to heat transport. Phonons are present in any solid,
and indeed, except at very low temperatures, usually
dominate the thermal properties of materials. A common
approach is to attempt to separate electronic and lattice
contributions by some subtraction scheme, for example,
based on measuring two electronically different but vibra-
tionally similar analog materials, or on the dependence on
temperature, field, etc., which might be attributed uniquely
to only one of the lattice or electronic degrees of freedom.
Of particular significance in this regard is the thermal Hall
effect, which, by Onsager relations, can only exist when
time-reversal symmetry is broken [5]. The Hall conduc-
tivity is captured by the antisymmetric components of the
thermal conductivity tensor κ, namely,

κμνH ðT;H; � � �Þ ¼ ðκμν − κνμÞ=2: ð1Þ

It is often assumed that the charge neutrality of phonons
and the large ionic mass are sufficient to prevent them from
coupling effectively to internal or external magnetic fields
and, therefore, that large thermal Hall signals must arise
uniquely from the electrons in a material. Many recent
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theoretical works have thus focused on the thermal Hall
conductivity of spin excitations [6–10], in particular, spin
waves [11–14].
However, recent experiments have conclusively shown

that this assumption is incorrect, via the simplest and most
persuasive of arguments [15–17]. In particular, studies of
materials that are electronically (or magnetically) two
dimensional have observed that the thermal Hall conduc-
tivity is three dimensional and remains large when the
thermal current within the sample is normal to the two-
dimensional planes [18]. One has no choice but to conclude
that the transported heat is carried by phonons.
The problem posed by these observations is then to

understand how lattice vibrations “sense” time-reversal
symmetry breaking. This must indeed be by an indirect
process, as ultimately it is the electrons that interact directly
and significantly with magnetic fields. In principle, there
are two broad ways in which the transfer of information,
i.e., the breaking of time-reversal symmetry, can occur from
electrons to the lattice. First, it can occur via the quasi-
adiabatic adaptation of electronic states to slow phonon
motions, which may modify the phonon dispersion rela-
tions and generate dynamical Berry phases [19–22]. While
this is certainly possible in principle, numerous estimates
indicate that this mechanism is unlikely to explain the large
magnitude of thermal Hall signals seen in experiments. The
second type of information transfer, depicted in Fig. 1, is
through scattering of phonons from the electronic modes,
which can be “chiral” when the latter break time-reversal
and reflection symmetries. In the electrical anomalous Hall
effect, such “skew scattering” is known to dominate in the
most highly conducting samples [23], and for similar
reasons, we expect it to do so for heat transport when
thermal conductivity is large.
With this in mind, it is critical to ask how time-reversal

symmetry breaking of electronic degrees of freedom is
communicated via scattering to phonons in clean systems.
We assume perturbative coupling of some set of collective
fields Q to the lattice, which is generally valid away from

the limit of polaron formation [24,25]. To account for the
diversity of different electronic and magnetic phases being
studied, we allow the fields Q to be general, restricted only
by the requirements of unitarity of quantum mechanics and
equilibrium. We show that the full scattering data needed to
understand the thermal conductivity (both longitudinal and
Hall components) can be obtained from the time- and
space-dependent correlation functions of the Q fields.
Crucially, we show that the standard two-point correlation
functions of Q give vanishing contributions to skew
scattering and the Hall effect. Consequently, the skew
scattering can be attributed entirely to non-Gaussian
fluctuations of the collective modes. This is a challenge
theoretically (because as we discuss below, beyond-
Gaussian fluctuations are significantly more complex than
Gaussian ones) but also an opportunity. The absence of
lower-order contributions to skew scattering means that the
latter provides a direct probe of non-Gaussianity, which
does not require any subtraction. This suggests the prospect
of using measures of skew scattering of phonons, such as
the thermal Hall effect, as a means to interrogate the rich
higher-order correlations of electronic modes.
In this paper, we identify the corresponding higher-order

correlation functions that relate the multiphonon scattering
rates to the fluctuations of the collective modes. These are
complicated objects that depend upon several time and
space coordinates or, equivalently, multiple frequencies and
wave vectors. We show how to extract the essentially
antisymmetric part of these correlations that uniquely
contribute to the Hall effect, using symmetry and detailed
balance relations, which generalize well-known and ubiqui-
tously important laws that are used to analyze two-point
correlations throughout physics [26–28]. This provides a
recipe that can be applied in diverse systems, telling what is
known about the electronic modes coupled to the lattice and
how to use those data to obtain an understanding of the
thermal Hall effect of phonons. Notably, the results are
valid irrespective of the nature of the phase of matter
hosting the collective fields: It may be strongly fluctuating,
highly correlated, or even have no quasiparticles at all. This
contrasts greatly with prior theories of phonon skew
scattering that are based on very specific models of
electronic modes [29,30].
To demonstrate the methodology and as a proof of

principle, we also apply the general results to the case of an
ordered antiferromagnet, in which case the Q fields
correspond to magnetic fluctuations that can be decom-
posed into composites of magnons. The result is a richly
structured skew-scattering rate, visualized in Fig. 2.
Validating the general formulation, we obtain a nonvanish-
ing thermal Hall effect when all the symmetry criteria
(which we establish) are satisfied, and we explicitly show
that within a minimal model of an antiferromagnet with
strictly two-dimensional magnetic correlations, the thermal
Hall effect is three dimensional and its magnitude is

FIG. 1. Illustration of a scattering mechanism responsible for a
Hall effect. Only scattering processes that involve at least two
(virtual) collisions with collective fluctuations can contribute to a
Hall effect.
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roughly independent of whether the thermal currents are
within or normal to the magnetic planes.

II. SCATTERING AND CORRELATION
FUNCTIONS

In this section, we present the main results for the
scattering rates of phonons due to collective modes. We
limit the discussion here to the simplest case in which
the coupling is linear in phonon creation or annihilation
operators a†nk; ank. Then, the coupling Hamiltonian is

H0 ¼
X
nk

ða†nkQ†
nk þ ankQnkÞ; ð2Þ

where Qnk describes the collective mode arising from
electronic degrees of freedom, coupled to the nth phonon
polarization. For brevity, we subsume any electron-phonon
coupling constant into Qnk. We carry out a perturbative
analysis of H0, so Qnk may be regarded as “small.”

A. Formulation

Our aim is to calculate the necessary terms in the
collision integral Cnk of the phonon Boltzmann equation,

∂tN̄nk þ vnk · ∇rN̄nk ¼ Cnk½fN̄n0k0 g�; ð3Þ
where N̄nk is the nonequilibrium average occupation
number of phonons in polarization mode n and

quasimomentum k with velocity vnk ¼ ∇kωnk, where
ωnk is the ðn;kÞ phonon dispersion relation. Once the
collision integral is known, the Boltzmann equation can be
solved in a standard manner by linearizing around the
equilibrium distribution to obtain the nonequilibrium
change and thereby the transport current to linear order
in the temperature gradient.
We now summarize the method used to obtain the

collision integral from the microscopic quantum dynamics
and Eq. (2). The basic procedure is to determine the many-
body transition rate between microstates in the combined
phonon-electron system using the scattering matrix (T)
expansion and, from there, use the equilibrium distribution
for the electronic subsystem to evaluate the rate of change
of the mean occupation probabilities of phonon states that
enter the Boltzmann equation.
We begin with the Born expansion [31]:

Ti→f¼Tfi¼hfjH0jiiþ
X
n

hfjH0jnihnjH0jii
Ei−Enþ iη

þ�� � ; ð4Þ

where the jii; jfi; jni states are product states in the Q
(index s) and phonon (index p) Hilbert space; jgi ¼
jgsijgpi for g ¼ i, f, n; and Eg is the energy of the
unperturbed Hamiltonians of the Q and phonons in state g.
Here, η → 0þ is a small regularization parameter.
The rate of transitions from state i to state f is obtained

using Fermi’s golden rule,

Γi→f ¼ 2π

ℏ
jTi→fj2δðEi − EfÞ: ð5Þ

Note that Γi→f is a transition rate in the full combined
phonon-Q system. By assuming equilibrium for the elec-
tronic modes, we obtain the transition rates within the
phonon subsystem,

Γ̃ip→fp ¼
X
isfs

Γi→fpis ; ð6Þ

with pis ¼ ð1=ZsÞe−βEis . This in turn determines the
collision integral through the master equation

Cnk ¼
X
ip;fp

Γ̃ip→fpðNnkðfpÞ − NnkðipÞÞpip; ð7Þ

where pip ¼
P

is pi, with pi the probability to find the
system in state i.

B. Result

To carry out the above procedure, we first express the
microscopic processes generated in the Born expansion,
Eq. (4), and insert them into the square in Eq. (5). Then, the
sums over electronic states is, fs in Eq. (6) can be converted
into dynamical multitime correlation functions of the Q

0
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FIG. 2. Calculated skew-scattering rate W⊖;−þ
nkn0k0=γ0 [see

Eqs. (10) and (19)] to transfer a phonon in mode n0k0 to mode
nk, induced by coupling the lattice to a two-dimensional
antiferromagnet. The density plot shows the angular dependence
as a function of θðk0Þ ∈ ½0; π=2� (horizontal axis) and φðk;k0Þ ¼
ϕðk0Þ − ϕðkÞ (vertical axis) for fixed jk0j ¼ 0.8=a, kx ¼ 0.2=a,
ky ¼ 0, kz ¼ 0.1=a, m0 ¼ 0.05ẑ, and temperature T ¼ 0.5T0.
Here, a is the in-layer lattice spacing, and ϕðkð 0ÞÞ and θðkð 0ÞÞ are
the azimuthal and polar angles of kð 0Þ, defined in the usual way.
Note that the color bar is not scaled linearly.
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operators. The corresponding technical manipulations are
described in Appendix A. The leading result for the
longitudinal conductivity [symmetric part of the tensor,
κμνL ¼ ðκμν þ κνμÞ=2] is dominated by diagonal scattering
(absorption or emission of a single phonon), and it is
given by

κμνL ¼ ℏ2

kBT2

1

V

X
nk

ω2
nkv

μ
nkv

ν
nk

4Dnk sinh2ðβℏωnk=2Þ
; ð8Þ

where V is the volume of the system; μ; ν ¼ x, y, z; and
Dnk is the longitudinal scattering rate [see Eq. (11)]. For the
Hall effect, the important contributions are those from the

second-order terms in the Born expansion, which generate
processes in which a phonon is scattered from one state to
another, or in which pairs of phonons are created or
annihilated. Using Eq. (7) then leads to off-diagonal terms
in the collision integral, i.e., contributions to Cnk propor-
tional to Nn0k0 , with n0k0 ≠ nk. The desired “skew”
scattering contributions, roughly speaking, correspond to
processes in which k is preferentially deflected “to the
right” of k0, for example.
More precisely, we define antisymmetric scattering rates

W⊖;þ;q
nk;n0k0 (q ¼ �) in such a way that they control the

antisymmetric (Hall) part of the thermal conductivity
tensor, κμνH ¼ −κνμH :

κμνH ¼ ℏ2

kBT2

1

V

X
nkn0k0

Jμnk
eβℏωnk=2

2Dnk

�
1

Nuc

X
q¼�

ðeβℏωnk − eqβℏωn0k0 ÞW⊖;þ;q
nk;n0k0

sinhðβℏωnk=2Þ sinhðβℏωn0k0=2Þ
�
eβℏωn0k0=2

2Dn0k0
Jνn0k0 ; ð9Þ

where, for q; q0 ¼ �1,

W⊖;qq0
nkn0k0 ¼ 2Nuc

ℏ4
Re

Z
t;t1;t2

ei½Σ
q;q0
nkn0k0 tþΔq;q0

nkn0k0 ðt1þt2Þ�signðt2Þh½Q−q
nkð−t − t2Þ; Q−q0

n0k0 ð−tþ t2Þ�fQq0
n0k0 ð−t1Þ; Qq

nkðt1Þgi ð10Þ

and

Dnk ¼ −
1

ℏ2

Z
dte−iωnkth½QnkðtÞ; Q†

nkð0Þ�iβ þ D̆nk: ð11Þ

Here, h� � �iβ denotes the expectation value at inverse
temperature β, and μ; ν ¼ x, y, z; we define the phonon
current Jμnk ¼ Neq

nkωnkv
μ
nk, and Neq

nk is the number of
phonons in mode nk in thermal equilibrium. Equation (11)
gives the leading-order result for the diagonal scattering
rate Dnk, which enters Eq. (9). In general, it includes
contributions D̆nk from other scattering channels (e.g.,
impurities) and higher-order contributions. In Eq. (10), we
introduced the notation Qþ

nk ¼ Q†
nk and Q−

nk ¼ Qnk, as

well as Σq;q0
nkn0k0 ¼ qωnk þ q0ωn0k0 and Δq;q0

nkn0k0 ¼ qωnk−
q0ωn0k0 . Here and in the following, lower case latin q (with
or without primes or subscripts) is used to indicate a
particle-hole index taking values �1 ¼ �:
Equations (9) and (10) constitute the central result of this

paper. They give a general formula for the skew-scattering
rate and the thermal Hall conductivity, given in Eq. (2),
assuming a small Hall angle (a condition which is nearly
always true), valid in any dimension. Even more general
formulas valid when electronic modes are coupled to both
linear and quadratic functions of the phonons will be given
in a separate publication [32]. These results can be applied
to any material provided the non-Gaussian correlations of
the collective degrees of freedom corresponding to Qnk
are known.

Considerable structure is encoded in Eq. (10). It is
straightforward to show that the skew scattering vanishes
ifQnk is taken to be Gaussian: In this case, Wick’s theorem
is obeyed, and its application to Eq. (10) implies that
W⊖

nkn0k0 is zero if ðn;kÞ ≠ ðn0;k0Þ. Hence, nontrivial
contributions to the skew scattering arise entirely from
non-Gaussian correlations. Physically, W⊖;þþ (respec-
tively, W⊖;−−) corresponds to scattering processes where
two phonons are emitted (respectively, absorbed), and
W⊖;þ−;W⊖;−þ to processes where one phonon is emitted
and one is absorbed. The contribution to the Hall conduc-
tivity has been carefully isolated so that the rate obeys the
“anti-detailed balance” relation:

W⊖;qq0
nkn0k0 ¼ −e−βðqωnkþq0ωn0k0 ÞW⊖;−q−q0

nkn0k0 ; ð12Þ

as well as

W⊖;qq0
nkn0k0 ¼ W⊖;q0q

n0k0nk: ð13Þ

The combination of the commutator and anticommutator in
Eq. (10) ensures the validity of these relations.

III. APPLICATION TO AN ORDERED
ANTIFERROMAGNET

We now provide an application of the above results to the
specific case of an insulating antiferromagnet. This is
important as a proof of principle to confirm that the general

MANGEOLLE, BALENTS, and SAVARY PHYS. REV. X 12, 041031 (2022)

041031-4



formula in Eq. (10) indeed results in a nonvanishing Hall
effect of phonons from skew scattering. It is also a relevant
test case as it corresponds to the situation in many recent
experiments, and it is perhaps the simplest situation in
which time-reversal symmetry breaking of spins is com-
municated to phonons in an insulator.
To model the antiferromagnet, we employ a spin-wave

description and, for concreteness, assume the spin corre-
lations are purely two dimensional: Each layer of spins is
presumed to be completely independent. The latter
assumption is not essential, but it is illustrative: Using it,
we demonstrate that even when spin correlations are
confined to two dimensions, their influence can lead to
thermal Hall conductivity with heat current oriented
perpendicular to those layers. In any case, the general
formulas in the first subsection below can be easily
modified for the case of three-dimensional spin waves.

A. Formulation and general results within linear
spin-wave theory

The spin waves are described by magnon operators b†lk;z
(blk;z), which create (annihilate) a magnon in branch l
with momentum k in layer z ∈ N, whose Hamiltonian is

Hm ¼
X
l;k;z

Ωk;lb
†
lk;zblk;z: ð14Þ

Note that the effect of a magnetic field is already included
in Hm; i.e., here, the spin-wave modes are based on an
expansion around the spin order including the effect of the
field. The collective modesQq

nk can be expanded in a series
in the spin-wave operators, and the dominant contribution
to scattering comes from second order [33]:

Qq
nk ¼ 1ffiffiffiffiffiffiffiffi

Nuc
p

X
p;l1 ;l2
q1 ;q2 ;z

Bn;l1;l2jq1q2q
k;p eikzzbq1l1;pþq

2
k;zb

q2
l2;−pþq

2
k;z;

ð15Þ

where q ¼ �1 and the sums run over p in the 2D Brillouin
zone, and q1;2 ¼ �1, z ∈ N, and l1;2 over the magnon
branches. Here, we define the notations

bþl;p;z ¼ b†l;p;z; b−l;p;z ¼ bl;−p;z: ð16Þ

Note theminus sign in the momentum in the second relation.
Generally, this means that ðbql;p;zÞ† ¼ b−ql;−p;z. To make the
coefficients unambiguous, we choose the symmetrized

form Bn;l1;l2jq1q2q
k;p ¼ Bn;l2;l1jq2q1q

k;−p . Demanding that Qþ
nk ¼

ðQ−
nkÞ† implies that Bn;l1;l2jq1q2þ

k;p ¼ ðBn;l2;l1j−q2−q1−
k;p Þ�.

Equation (14) contains the energy dispersion Ωk;l of the
spin waves, but their wave functions are implicit. That
information is encoded in the B coefficients. To obtain
them, one should start with a microscopic spin-lattice
coupling, expand it with Holstein-Primakoff bosons, and
then use the canonical Bogoliubov transformation, which
achieves the diagonal form of Eq. (14), to express the
coupling as in Eq. (15). We apply this procedure to a
particular case in Sec. III B. The following general results
hold beyond this specific case and only assume Eqs. (14)
and (15) as a starting point.
We proceed by evaluating Eqs. (9) and (11) and use

Wick’s theorem [valid for the free boson Hamiltonian in
Eq. (14)] to compute the necessary correlation functions,
decomposing them into products of the free-particle two-
point function,

hbq1l1;p1;z1
ðt1Þbq2l2;p2;z2

ðt2Þi¼ δl1;l2δz1;z2δq1;−q2δp1þp2;0

×fq2ðΩl1;q1p1
Þe−iq2Ωl2 ;q2p2

ðt1−t2Þ:

ð17Þ

Here, fqðΩÞ ¼ ð1þ qÞ=2þ nBðΩÞ, where nBðΩÞ is the
Bose distribution.
This results in the following expressions for the diagonal

and off-diagonal scattering rates:

DðsÞ
nk ¼ ð3 − sÞπ

ℏ2N2D
uc

X
p

X
l;l0

sinhðβ
2
ℏωnkÞ

sinhðβ
2
ℏΩl;þ

p Þ sinhðβ
2
ℏΩl0;−s

pþk Þ
δðωnk −Ωl;þ

p − sΩl0;−s
pþk ÞjBn;l;l0jþs−

k;pþk
2

j2; ð18Þ

where s ¼ � and Dnk ¼ P
s D

ðsÞ
nk þ D̆nk. Here, we define Ωl;q

p ¼ Ωl;qp, and for q; q0 ¼ �1,

W⊖;qq0
nk;n0k0 ¼ 64π2

ℏ4

1

N2D
uc

X
p

X
fli;qig

Dnn0jq1q2q3;l1l2l3
qkq0k0;p Fq1q2q4;l1l2l3

qkq0k0;p Im
�
Bnl2l3jq2q3q
k;pþ1

2
qkþq0k0B

n0l3l1j−q3q1q0
k0;pþ1

2
q0k0

×PP

� Bnl1l4j−q1q4−q
k;pþ1

2
qk

Bn0l4l2j−q4−q2−q0
k0;pþqkþ1

2
q0k0

Δqq0
nkn0k0 þ q1Ω

l1;−q1
p − q2Ω

l2;q2
pþqkþq0k0 − 2q4Ω

l4;−q4
pþqk

þ
Bn0l1l4j−q1−q4−q0
k0;pþ1

2
q0k0 Bnl4l2jq4−q2−q

k;pþ1
2
qkþq0k0

Δqq0
nkn0k0 − q1Ω

l1;−q1
p þ q2Ω

l2;q2
pþqkþq0k0 − 2q4Ω

l4;q4
pþq0k0

��
;

ð19Þ
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where fli; qig ¼ fl1;l2;l3;l4; q1; q2; q3; q4g, with qj ¼ �1, and lj runs over the magnon branch indices. Here, we used,

as before, Σq;q0
nkn0k0 ¼ qωnk þ q0ωn0k0 , Δq;q0

nkn0k0 ¼ qωnk − q0ωn0k0 , and we defined the product of delta functions D and
“thermal factor” F:

Dnn0jq1q2q3;l1l2l3
qkq0k0;p ¼ δðΣqq0

nkn0k0 þ q1Ω
l1;−q1
p þ q2Ω

l2;q2
pþqkþq0k0 ÞδðΔqq0

nkn0k0 þ 2q3Ω
l3;−q3
pþq0k0 − q1Ω

l1;−q1
p þ q2Ω

l2;q2
pþqkþq0k0 Þ;

Fq1q2q4;l1l2l3
qkq0k0;p ¼ q4ð2nBðΩl3;−q3

pþq0k0 Þ þ 1Þð2nBðΩl1;−q1
p Þ þ q1 þ 1Þð2nBðΩl2;q2

pþqkþq0k0 Þ þ q2 þ 1Þ: ð20Þ

These formulas make no further assumptions on the nature
of the spin-wave modes or spin-lattice couplings, so they
could be applied to general problems involving spin-lattice
couplings using a spin-wave approach. Note that although
we take the spin-wave operators to be free bosons, with
Gaussian correlations, the Qq

nk operator defined through
Eq. (15) is generally non-Gaussian, as it is bilinear in the b
fields.

B. Square lattice two-sublattice antiferromagnets

Now, we evaluate the diagonal and Hall scattering rates
specifically for spin waves on the square lattice in low
magnetic fields. We assume the magnon dispersions

Ωl;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2mk2 þ Δ2

l

q
(l ¼ 0, 1 in this case), with magnon

velocity vm and magnon gaps Δl, and take isotropic
acoustic phonons with ωnk ¼ vph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2z

p
(we define

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
). We obtain the coefficients Bnl1l2jq1q2q

k;p

from the continuum description of the spin waves in terms
of local fluctuating uniform and staggered magnetization
fields, and the symmetry-allowed couplings of these fields
to the strain. The expressions for these coefficients are
algebraically complicated, and some further details are
given in Appendix B, with a full exposition of the
calculations to be presented in a separate publication
[32]. Here, instead, we sketch the important properties
of the coefficients and their origins.

1. Scaling

First, when the temperature is smaller than the magnon
gaps, kBT ≲ Δl, all contributions to scattering become
exponentially suppressed by thermal factors, and the
scaling is unimportant. For larger temperatures, the gaps
are negligible, and the momentum sum(s) in Eqs. (18) and
(19) are dominated by momenta of order k; p ∼ kBT=vm.
Then, the B coefficients, evaluated for momenta of this
order, are sums of three types of contributions:

B ∼
�
kBT
Mv2ph

�1
2

n−10

�
λmm

χkBT
n0

þ λmn þ λnn
n0

χkBT

�
: ð21Þ

Here, M is the mass per unit cell of the solid, n0 is the
ordered (staggered) moment density, χ is the uniform

susceptibility, and λmm; λnn, and λmn represent couplings
of the strain to exchange terms quadratic in local magneti-
zation fluctuations δm, local staggered magnetization
fluctuations δn, and the product of the two, respectively.
Microscopically, this arises from effects like magnetostric-
tion, the modification of orbital overlaps due to strain-
induced bond length and angle changes, etc. The different
powers of temperature multiplying the different λ couplings
arise from the fact that the order parameter of the
antiferromagnet is the staggered magnetization, and there-
fore, its fluctuations are more singular than those of the
uniform magnetization, which is, however, still a low-
energy mode in an antiferromagnet.
Depending upon the relative magnitudes of these differ-

ent couplings, distinct scalings are observed for the
diagonal and off-diagonal scattering rates, and hence for
thermal conductivity components. To perform a full evalu-
ation, we use parameters (given explicitly in Appendix B)
that describe a typical situation corresponding to weak
spin-orbit coupling and, correspondingly, weak anisotropy
of magnetic exchange. In this case, there is a hierarchy
that λmm ≫ λnn; λmn (which is ultimately a consequence of
Goldstone’s theorem). Furthermore, in the low-field
regime, i.e., when the field-induced magnetization m0 of
the antiferromagnet is much smaller than ms, the saturation
value, m0 ≪ ms, the mixed coupling λmn is proportional to
m0 and λmn ≪ λnn as well.
These facts allow one to estimate the scalings of the

important physical quantities. The longitudinal scattering
rate [Eq. (18)] scales as

Dnk ∼
1

τ
∼ Td−1jBj2 ∼ Tdþ2x: ð22Þ

Here, d is the dimensionality of the spin system (which we
later take equal to d ¼ 2 for numerical calculations), while
phonons are always three dimensional. The crucial expo-
nent x ¼ 1 occurs in the high-temperature regime domi-
nated by λmm, while a crossover to behavior controlled by
λnn with x ¼ −1 can occur at lower temperatures if the
minimum magnon gap is sufficiently small. This behavior
corresponds to the longitudinal thermal conductivity
[Eq. (8)] behaving as

κL ∼ T3−d−2x; ð23Þ
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when magnon-phonon scattering dominates the phonon
mean free path. Again, the power laws apply in certain
distinct regimes and should be pieced together, along with
the influence of nonzero gaps and other scattering mech-
anisms of phonons, to form a complete picture of the
thermal conductivity. This is captured in the numerical
calculations.
Next, we turn to the thermal Hall effect. It is crucial to

keep in mind the effective time-reversal symmetry of an
antiferromagnet under the combined action of time-reversal
symmetry and a translation that exchanges the two sub-
lattices. The uniform magnetization is invariant under this
symmetry, but the staggered magnetization is odd.
Consequently, the couplings λmm and λnn are even under
effective time-reversal symmetry, while only λmn is odd.
This implies that the Hall conductivity and Hall scattering
rate W⊖;eff , with W⊖;eff;qq0

nk;n0k0 ≔ W⊖;qq0
nk;n0k0 þW⊖;qq0

n−k;n0−k0 ,
which are odd under effective time-reversal symmetry,
must be proportional to an odd power of λmn, and to linear
order in the magnetic field or average magnetization, these
quantities are simply linear in λmn. From Eqs. (19) and (21),
we therefore obtain

W⊖;eff ∼ Td−1λmnðλmmT þ λnnT−1Þ3 ∼ Td−1þ3x: ð24Þ

The natural definition of a skew-scattering rate multiplies
the above by a phase-space factor to account for the sum
over different final states of the scattering, which
gives 1=τskew ∼ T3W⊖;eff ∼ Tdþ2þ3x.
We would like to emphasize that within any scattering

mechanism of the phonon thermal Hall effect, the skew-
scattering rate is a more fundamental measure of the
chirality of the phonons than the thermal Hall conductivity.
This is because the Hall conductivity inevitably involves
the combination of the skew and longitudinal scattering
rates (in the form τ2=τskew), and the longitudinal scattering
rate of phonons has many other contributions that do not
probe chirality and may have complex dependence on
temperature and other parameters that obscure the skew
scattering.
Consequently, instead of the thermal Hall conductivity,

we discuss the thermal Hall resistivity ϱH, which is simply
proportional to 1=τskew, at least in the simplest view where
the angle dependence of the longitudinal scattering does
not spoil its cancellation.
We define the thermal Hall resistivity tensor as usual by

the matrix inverse, ϱ ¼ κ−1. In particular, considering the
simplest case of isotropic κμμ → κL and κL ≫ κμ≠ν, one
thus has

ϱμνH ¼ ϱμν − ϱνμ
2

≈
−κμν þ κνμ

2κ2L
¼ −

κμνH
κ2L

: ð25Þ

The quantity ϱμνH is independent of the scale of the
longitudinal scattering, in the sense that under a rescaling

Dnk → ζDnk, ϱμνH is unchanged. If we assume that
Dnk ¼ 1=τ is ðn;kÞ independent, e.g., as is the case if
dominated by some extrinsic effects, then we can readily
extract the scaling of the thermal Hall resistivity. One finds

ϱH ∼W⊖;eff ∼ Td−1þ3x; ð26Þ

which is verified numerically. This scaling behavior should
also be roughly true in the presence of more angle-
dependent scattering, given the aforementioned independ-
ence on the scale of scattering.
Finally, we comment on the role of spin-orbit coupling in

the present model. The coefficient λmn communicates the
lack of effective time-reversal and mirror symmetry break-
ing to the scattering rate W⊖, and thereby, the Hall
resistivity begins at linear order in this coefficient. In the
present model, λmn is also proportional to (symmetric)
spin-orbit coupling terms (microscopically, derivatives of
such terms with respect to ionic displacement)—see
Appendix B. In general, however, for more complex
magnetic ordering patterns, a nonzero Hall effect may be
obtained from our formulation even in the absence of spin-
orbit coupling.

2. Numerical evaluation

It is important to verify that the formulas in Eqs. (18) and
(19) are sufficient to generate all the expected symmetry-
allowed scattering processes and thereby contributions to
the thermal Hall conductivity. To do so, we evaluate these
formulas numerically, which also allows a test of the
scaling predictions above. In the numerical calculations,
we take specific values for the microscopic parameters,
which define the dispersions of the magnons and phonons,
as well as those that underlie the B coefficients, comprising
spin-lattice couplings and the mass per unit cell.
Equations (8), (9), (18), and (19) were evaluated by a
C code using the Cuba and Cubature libraries for numerical
integration [34].
It is convenient to measure energies in units of the

phononic energy scale ϵ0 ¼ kBT0 ¼ ℏvph=a, which is
equal to the Debye temperature up to a factor, and we
report thermal conductivities in units of κ0 ¼ kBvph=a2,
which gives a natural scale for phononic heat transport.
To make our numerical calculations more directly rele-

vant, we choose key dimensionless parameters to loosely
match those of Copper Deuteroformate Tetradeuterate
(CFTD), a square lattice S ¼ 1=2 antiferromagnet that
has been intensively studied via neutron scattering [35–
37] due to its convenient scale of exchange, which suits
such measurements. For our purposes, CFTD has the
desirable attribute that the magnon and phonon velocities
are comparable (based on an estimate of the sound velocity
from the corresponding hydrate [38]), which creates a
significant phase space for magnon-phonon scattering. In
particular, we take vm=vph ¼ 2.5, while the corresponding
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ratio in La2CuO4, vm=vph, is approximately 30. We also
use the mass per unit cell Muc appropriate to CFTD. The
parameters n0 ¼ 1=2 and χ ¼ 1=ð4Ja2Þ are chosen to be
consistent with spin-wave theory. We include small mag-
non gaps, Δ0 ¼ 0.2ϵ0 and Δ1 ¼ 0.04ϵ0. The microscopic
spin-lattice couplings are taken to be consistent with
the expectations for weak spin-orbit coupling, and they
are given in Appendix B. Finally, in the calculations, we
include a small constant contribution D̆nk → γext, indepen-
dent of ðn;kÞ, to model additional scattering channels. In
very clean monocrystals and in the absence of any other
phonon scattering events, γext ∼ vph=L reduces to the rate at
which phonons bounce off the boundaries of the sample (of
size L). We vary γext to show the dependence on these
extrinsic effects. For the calculations of the Hall effect, we
include a small nonzero magnetization in the direction of
the applied field, 1=20th of the saturation magnetization.
Figure 3 shows the results for the longitudinal thermal

conductivity versus temperature in zero or low applied
magnetic field (the results are insensitive to small magne-
tizations), for different choices of γext. In panel (a), a broad
temperature range is shown, which exposes the evolution
from an extrinsic scattering regime κL ∝ T3 at low temper-
ature to an intrinsic one κL ∝ 1=T at high temperature. In
panel (b), further features emerge related to the scales of the
magnon gaps.

(a) (b)

FIG. 3. Longitudinal thermal conductivity κL with respect to temperature T, for four different values of γext. (a) Results on an order-
one temperature scale, with γext ¼ 1 × 10−zðvph=aÞ; z ∈ ⟦4; 7⟧, from darker (z ¼ 4) to lighter (z ¼ 7) shade. A crossover occurs
between two scaling regimes with x ¼ 1 and x ¼ −1 [see Eq. (23)]. Inset: log-log plot. The scaling behaviors are consistent with the
analysis presented in the text. (b) Results on a smaller temperature scale, with γext ¼ 1 × 10−zðvph=aÞ; z ∈ ⟦6; 9⟧, from darker (z ¼ 6) to
lighter (z ¼ 9) shade. The peaks are features related to the magnon gaps.

FIG. 4. Thermal Hall resistivity ϱxyH and ϱzxH (in units of
ϱ0 ¼ κ−10 ) with respect to temperature T. The transverse mag-
netization values ðmy

0; m
z
0Þ used for computing ϱxyH and ϱxzH are

(0.0,0.05) and (0.05,0.0), respectively. Inset: log-log plot. The
scaling behavior is consistent with the analysis presented in
the text.
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Next, we turn to the calculations of chiral scattering and
the thermal Hall effect. Figure 2 shows a density plot of the
Hall scattering rateW⊖;−þ as a function of the polar angle of
k0, θðk0Þ, and of the difference in azimuthal angles ofk0 and
k, φðk;k0Þ ¼ ϕðk0Þ − ϕðkÞ. We see that it has an intricate
structure reflecting kinematics and energetics. The thermal
Hall resistivity in the constant longitudinal scattering
approximation (Dnk ¼ 1=τ independent of n, k) is plotted
in Fig. 4 for two different field orientations: For a field along
the z axis, normal to the planes, we plot ϱxyH , and for a field
along the y axis, within the planes, we plot ϱzxH . Both curves
perfectly fit the T4 scaling expected theoretically from
Eq. (26) (usingd ¼ 2, x ¼ 1)withweak spin-orbit coupling.
Notably themagnitudes of the thermalHall resistivity for the
two orientations are comparable, and it is actually larger for
an in-plane field than for an out-of-plane one.

IV. CONCLUSION

In this paper, we presented a theory for the skew
scattering of phonons coupled to a quantum collective
field, which gives rise to a phonon thermal Hall effect. A
general formula, given in Eqs. (9) and (10), allows the latter
to be calculated for arbitrary correlations of the collective
variable. We then explicitly calculated these correlations for
the case in which the collective field is bilinear in canonical
bosons, e.g., spin-wave operators. A formula with no
further assumptions is given in Eq. (19). Applying this
to the regime of long-wavelength magnons in a square
lattice antiferromagnet, we obtained a nonzero thermal Hall
effect and its scaling with temperature in various regimes.
While we are not aware of any general results on the

intrinsic phononHall conductivity due to scattering, there are
a number of complementary theoretical papers, as well as
some prior work, that overlap a small part of our results. The
specific problem of phonons scattering from magnons was
studied long ago to the leading second order in the coupling
by Cottam [39]. That work, which assumed the isotropic
SU(2) invariant limit, agrees with our calculations when
these assumptions are imposed. The complementary mecha-
nism of the intrinsic phonon Hall effect due to phonon
Berry curvature was studied by many authors [23,40–42],
including how the phonon Berry curvature is induced by
spin-lattice coupling in Ref. [43]. The majority of recent
theoretical work has concentrated on extrinsic effects due to
scattering of phonons by defects [44–47]. The pioneering
paper of Mori et al. [48], in particular, recognized the
importance of higher-order contributions to scattering for
theHall effect and is in someways a predecessor to ourwork.
Do the present results explain experiments on the

cuprates? We have not attempted a quantitative compari-
son, for several reasons. This would require some detailed
knowledge of spin-lattice couplings. It also is numerically
difficult because in the cuprates there is a very large ratio of
magnon to phonon velocities (of order 30), which renders
the scattering phase space narrow and the integration

challenging. Nevertheless, it is interesting to ask about
the order of magnitude of the response. For this compari-
son, we follow the logic outlined in Sec. III B 1 in which we
argued that the thermal Hall resistivity is a better quantity
for which to compare theory and experiment. We obtain the
thermal resistivity from the experimental data in Ref. [18]
on the undoped material La2CuO4: At about 20 K, the
longitudinal conductivity κxx ≈ 10 W/(K m) (from their
extended data in Fig. 2), and the thermal Hall conductivity
κxy ≈ 40 mW/(K m). Using Eq. (25) and the value ϱLCO0 ≈
2.6 K m/W, we then obtain ðϱH=ϱ0ÞLCO ≈ 1.5 × 10−4. This
is at least comparable to values in Fig. 4.
Regardless ofwhether the intrinsic picture is correct for the

cuprates (we think it is most promising for systems like
CFTD for which there is a good phase-space match of
phonons and magnons), we believe that a scattering mecha-
nism of some kind is very likely at work. Therefore, we
would encourage the analysis of future experimental data in
terms of ϱH rather than κH.
In a companion paper [32], wewill expound on the results

of the present paper and give several extensions covering
evenmore general types of coupling of phonons to collective
degrees of freedom. There also remain many other related
problems that would be interesting to explore, for example,
the influence of electronic disequilibrium upon the phonons,
and vice versa, and the interplay of scattering, presumed here
to be dominant, and phononicBerry phases.We hope that the
present study provides a theoretical framework to begin to
approach these and other intriguing questions.
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APPENDIX A: FROM INTERACTION TERMS
TO THE COLLISION INTEGRAL

1. First Born order

First, we consider only the first term of Born’s expan-
sion. The transition rate associated with H0 at this order
derives from the matrix elements:
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T ½1�
i→f ¼

X
nkq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni

k;n þ
qþ 1

2

r
hfsjQq

nkjisiIðip !
q·nk

fpÞ; ðA1Þ

where Iðip !q·nkfpÞ means that the only difference between
jipi and jfpi is that there is q ¼ �1 more phonon of
species ðn;kÞ in the final state.
We then compute the squared matrix element. We have

jT ½1�
i→fj2 ¼

X
nkq

�
Ni

k;n þ
qþ 1

2

�
Iðip !q·nkfpÞ

× hisjQ−q
nkjfsihfsjQq

nkjisi: ðA2Þ

Next, we enforce the energy conservation δðEf − EiÞ ¼
δðqωnk þ Efs − EisÞ by writing the latter as a time integral,
i.e.,

Rþ∞
−∞ dteiωt ¼ 2πδðωÞ; identify AðtÞ ¼ eþiHtAe−iHt;

use the identity 1 ¼ P
fs jfsihfsj; and take the Q field

in the initial state to be in thermal equilibrium,
pis ¼ Z−1

s e−βEis . Finally summing over jisi and identifying
hAiβ ¼ Z−1

s Trðe−βHAÞ, we find that the scattering rate
between phonon states at first Born order reads

Γ½1�;½1�
ip→fp

¼
X
nkq

�
Ni

nk þ qþ 1

2

�
Iðip !q·nkfpÞ

×
Z

∞

−∞
dte−iqωnkthQ−q

nkðtÞQq
nkð0Þiβ: ðA3Þ

To arrive at the collision integral, the final step involves
summing over final phononic states fp and taking the
average over initial phononic states ip. First, we notice that
a change of variables in hQ−q

nkðtÞQq
nkð0Þiβ leads to the

detailed-balance relation

hQ−q
nkðtÞQq

nkð0Þiβ ¼ hQq
nkðtÞQ−q

nkð0Þiβe−qβωnk : ðA4Þ

It is then straightforward to show that only the commutator
term on the right-hand side of Eq. (A3) satisfies this
relation. In turn, the final expression for the diagonal of
the collision matrix takes the form of the spectral function:

D½1�;½1�
nk ¼ −

Z þ∞

−∞
dte−iωnkth½Q−

nkðtÞ; Qþ
nkð0Þ�iβ; ðA5Þ

as quoted in the main text.

2. Second Born order

As discussed, the first Born approximation alone does
not lead to a nonzero thermal Hall effect. Here, we compute
what appears when the Born expansion is taken up to the
second Born order. We have

T ½1;1�
i→f¼

X
nk;n0k0

X
q;q0¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni

nkþ
1þq
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf

n0k0 þ1−q0

2

r

×
X
ms

hfsjQq0
n0k0 jmsihmsjQq

nkjisi
Eis −Ems

−qωk;nþ iη
Iðip →

q·nk

q0·n0k0
fpÞ: ðA6Þ

The squared T-matrix elements now include cross terms
between the first and second orders of the Born expansion.
Here, we give details of the calculation of one term, the

square of Eq. (A6), jT ½1;1�
i→fj2. In the numerator, the matrix

elements of the Q operators can combine in two diffe-
rent ways, which we denote in the following as

(a) hisjQq
nkjmsihmsjQq0

n0k0 jfsihfsjQ−q0
n0k0 jm0

sihm0
sjQ−q

nkjisi and
(b) hisjQq

nkjmsihmsjQq0
n0k0 jfsihfsjQ−q

nkjm0
sihm0

sjQ−q0
n0k0 jisi.

We use the following time integral representation of each
of the denominators (using a regularized definition of the
sign function),

1

x� iη
¼PP

1

x
∓ iπδðxÞ

¼ 1

2i

Z þ∞

−∞
dt1eit1xsignðt1Þ�

1

2i

Z þ∞

−∞
dt1eit1x ðA7Þ

and introduce a third time integral to enforce the energy
conservation Ef − Ei ¼ q0ωn0k0 þ qωnk þ Efs − Eis . The
product of the denominators [cf. Eq. (A7)] leads to four
terms, which can be labeled by two signs s; s0 ¼ �, and we
define, for convenience,

Θss0 ðt1; t2Þ ≔ ½−signðt1Þ�1−s2 ½signðt2Þ�1−s
0

2 : ðA8Þ

Then, the transition rate coming from this part of the total
squared matrix element can be written as a sum of eight
terms:

Γ½1;1�;½1;1�
ip→fp

¼
X

nk;n0k0

X
q;q0

�
Ni

nkþ
qþ1

2

��
Ni

n0k0 þq0 þ1

2

�

×
X
s;s0¼�

X
i¼a;b

W½1;1�;½1;1�;ðiÞ;ss0
nkq;n0k0q0 Iðip →

q·nk

q0·n0k0
fpÞ; ðA9Þ

where we defined (notice the order of the first two operators
in the correlator and the sign t1 � t2 in the exponential):

W½1;1�;½1;1�;ðaÞ;ss0
nkq;n0k0q0

¼
Z

dtdt1dt2Θss0 ðt1; t2Þeiðqωnkþq0ωn0k0 Þteiðt1þt2Þðqωnk−q0ωn0k0 Þ

× hQ−q
nkð−t− t2ÞQ−q0

n0k0 ð−tþ t2ÞQq0
n0k0 ð−t1ÞQq

nkðþt1Þiβ;
ðA10Þ
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W½1;1�;½1;1�;ðbÞ;ss0
nkq;n0k0q0

¼
Z

dtdt1dt2Θss0 ðt1; t2Þeiðqωnkþq0ωn0k0 Þteiðt1−t2Þðqωnk−q0ωn0k0 Þ

× hQ−q0
n0k0 ð−t− t2ÞQ−q

nkð−tþ t2ÞQq0
n0k0 ð−t1ÞQq

nkðþt1Þiβ:
ðA11Þ

One can show the following (“anti-”)detailed-balance
relations:

W½1;1�;½1;1�;ðaÞ;ss0
nkq;n0k0q0 ¼ ss0W½1;1�;½1;1�;ðaÞ;s0s

n0k0−q0;nk−q e−βðqωnkþq0ωnk0 Þ; ðA12Þ

W½1;1�;½1;1�;ðbÞ;ss0
nkq;n0k0q0 ¼ ss0W½1;1�;½1;1�;ðbÞ;s0s

nk−q;n0k0−q0 e−βðqωnkþq0ωn0k0 Þ: ðA13Þ

From this, the same holds for the symmetrized in nkq ↔

n0k0q0 scattering rateW ½1;1�;½1;1�;ss0
nkq;n0k0q0 ¼P

i¼a;bW
½1;1�;½1;1�;ðiÞ;ss0
nkq;n0k0q0 þ

ðnkq↔n0k0q0Þ, i.e.,

W ½1;1�;½1;1�;ss0
nkq;n0k0q0 ¼ ss0e−βðqωnkþq0ωn0k0 ÞW ½1;1�;½1;1�;ss0

nk−q;n0k0−q0 : ðA14Þ

We can then identify

W⊖;½1;1�;½1;1�;qq0
nk;n0k0 ¼ Nuc

X
s¼�

W ½1;1�;½1;1�;s;−s
nkq;n0k0q0 ; ðA15Þ

W⊕;½1;1�;½1;1�;qq0
nk;n0k0 ¼ Nuc

X
s¼�

W ½1;1�;½1;1�;ss
nkq;n0k0q0 ; ðA16Þ

which, by construction, satisfy

Wσ;½1;1�;½1;1�;qq0
nk;n0k0 ¼ σe−βðqωnkþq0ωn0k0 ÞWσ;½1;1�;½1;1�;−q−q0

nk;n0k0 ; ðA17Þ

where σ ¼⊕ (respectively, σ ¼ ⊖) indicates thatW satisfies
detailed balance (respectively, anti-detailed balance). Only

W⊖;½1;1�;½1;1�;qq0
nk;n0k0 contributes to the thermal Hall conductivity.

APPENDIX B: DETAILS OF THE
MAGNETIC MODEL

1. General symmetry-allowed model

We begin with a semimicroscopic coupling of the local
strain tensor Er to continuum nonlinear sigma-model
fields: the density ma of uniform magnetization and na
of staggered magnetization (a ¼ x, y, z), which is

H0
tetraðrÞ

¼
X

α;β¼x;y;z
a;b¼x;y;z

Eαβ
r

�
ΛðnÞ;αβ
ab nanb þ

ΛðmÞ;αβ
ab

n20
mamb

�				
x;z

; ðB1Þ

where n0 is the ordered moment density. The ΛðξÞ;αβ
ab

coefficients are constrained by the tetragonal symmetry

of the crystal. The nonlinear sigma model is defined by the
constraints n ·m ¼ 0 and n2 þm2=n20 ¼ 1.
We expand the above to second order in the fluctuations

ðδm; δnÞ around the average values due to both sponta-
neous ordering and the applied field. We take the
Néel vector along x̂. Then, nx ¼ 1 − 1

2

P
b¼y;z½δn2b þ

ð1=n20Þðmb
0 þ δmbÞ2�, and mx ¼ −

P
b¼y;zðmb

0 þ δmbÞδnb.
Here, m0 is the average uniform magnetization, which lies
in the y − z plane. We assume m0 ≪ n0, so quantities are
expressed to linear order in m0 whenever possible. This
gives

H0
tetraðrÞ ≈

X
αβ

Eαβ
r

X
a;b¼y;z

X
ξ;ξ0¼0;1

λαβab;ξξ0n
−ξ−ξ0
0 ηaξrηbξ0r; ðB2Þ

where ηa0 ¼ δna and ηa1 ¼ δma, and

λαβab;ξξ ¼ ΛðξÞ;αβ
ab − δabΛ

ð0Þ;αβ
xx ;

λαβab;01 ¼ λαβba;10

¼ −1
n0

½ma
0Λ

ð1Þ;αβ
bx þ δabmā

0Λ
ð1Þ;αβ
āx þmb

0Λ
ð0Þ;αβ
ax �; ðB3Þ

where ȳ ¼ z, z̄ ¼ y and we have associated ξ ¼ n ⇔ ξ ¼ 0

and ξ ¼ m ⇔ ξ ¼ 1 in ΛðξÞ.
Here, each ΛðξÞ tensor, which we define to be symmetric

in both ab and αβ variables, has seven independent

coefficients, which we call ΛðξÞ
1 ¼ ΛðξÞ;xx

xx ¼ ΛðξÞ;yy
yy , ΛðξÞ

2 ¼
ΛðξÞ;xx
yy ¼ ΛðξÞ;yy

xx , ΛðξÞ
3 ¼ ΛðξÞ;xx

zz ¼ ΛðξÞ;yy
zz , ΛðξÞ

4 ¼ ΛðξÞ;zz
xx ¼

ΛðξÞ;zz
yy , ΛðξÞ

5 ¼ ΛðξÞ;zz
zz , ΛðξÞ

6 ¼ ΛðξÞ;xy
xy ¼ ΛðξÞ;yx

xy ¼ ΛðξÞ;yx
yx ¼

ΛðξÞ;xy
yx , and ΛðξÞ

7 ¼ ΛðξÞ;xz
xz ¼ ΛðξÞ;zx

xz ¼ ΛðξÞ;zx
zx ¼ ΛðξÞ;xz

zx ¼
ΛðξÞ;yz
yz ¼ ΛðξÞ;zy

yz ¼ ΛðξÞ;zy
zy ¼ ΛðξÞ;yz

zy . All other ΛðξÞ;αβ
ab are

zero. This is the most general coupling allowed by the
symmetries of the lattice and of magnetic order.
To cast this in the form of Eqs. (2) and (15), we insert the

(very standard) free field expressions for the strain and
magnetization fluctuations in terms of phonon and magnon
creation or annihilation operators, respectively, into
Eq. (B2). For the strain,

EμνðxÞ

¼ 1ffiffiffiffi
V

p
X
nk

i=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρMωnk

p ðank þ a†n;−kÞðkμενnk þ kνεμnkÞeik·x;

ðB4Þ

where ρM is the mass density. For the magnetization
densities, diagonalization of the nonlinear sigma-model
Hamiltonian density
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Hm ¼ ρ

2
ðj∇δnyj2 þ j∇δnzj2Þ

þ 1

2χ
ðδm2

y þ δm2
zÞ þ

X
a¼y;z

χΔ2
a−1
2

δn2a ðB5Þ

yields

ηaξr ¼
X
p

X
l¼0;1

X
q¼�

UaξlqðpÞbqlpeip·r; ðB6Þ

with

UaξlqðpÞ ¼ −δa−1;l−ξ̄ mod 2FξqlðpÞ; ðB7Þ

FξqlðpÞ ¼ ðiqÞξ̄ð−1Þξ̄lðχΩlpÞξ−1
2: ðB8Þ

We defined ξ̄ ¼ 1 − ξ, i.e., 0̄ ¼ 1; 1̄ ¼ 0, as well as
a ¼ y ⇔ a − 1 ¼ 0 and a ¼ z ⇔ a − 1 ¼ 1. In addition,
in Eq. (B5), ρ is the antiferromagnetic spin stiffness, and χ
is the magnetic susceptibility. Inserting these definitions
into Eq. (B2), some algebra leads to the form given in
Eqs. (14) and (15), with the coupling coefficients

Bn;l1l2jq1q2q
k;p ¼ iq

2
ffiffiffiffiffiffiffiffiffiffiffi
2Muc

p
X
ξξ0

n−ξ−ξ
0

0 Lq;l1;l2
nk;ξ;ξ0 Fξq1l1

�
pþ q

2
k

�

× Fξ0q2l2

�
−pþ q

2
k

�
; ðB9Þ

where

Lq;l1;l2
nk;ξ;ξ0 ¼

X
α;β¼x;y;z

λ̂l1l2;αβξξ0
kαðεβnkÞq þ kβðεαnkÞqffiffiffiffiffiffiffiffi

ωnk
p ; ðB10Þ

and λ̂ll
0;αβ

ξξ0 ¼ λαβ
l−ξ̄mod2;l0−ξ̄0mod2;ξξ0 .

Note that the λmn coefficients involved in the Hall
conductivity, namely, the λab;01 rank-2 tensors, are written

explicitly in Eq. (B3). They are proportional to the net
magnetizationm0, as is consistent with the fact that they are
associated with a time-reversal breaking quantity. One can
also observe that they involve only the anisotropic co-

efficients ΛðξÞ
6;7, which, in a microscopic derivation, arise

from spin-orbit coupling; see Ref. [32].

2. Numerical implementation

In the numerical implementation, we use values of the
parameters roughly appropriate for CFTD, which we
provide in Table I. The phonon polarization vectors εn;k
are chosen to form an orthonormal basis in which k points
along the ½1; 1; 1� axis, so k · εn;k ¼ ðjkj= ffiffiffi

3
p Þ ∀ n.
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