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Numerical integrations of the Solar System reveal a remarkable stability of the orbits of the inner planets
over billions of years, in spite of their chaotic variations characterized by a Lyapunov time of only 5 million
years and the lack of integrals of motion able to constrain their dynamics. To open a window on such long-
term behavior, we compute the entire Lyapunov spectrum of a forced secular model of the inner planets. We
uncover a hierarchy of characteristic exponents that spans 2 orders of magnitude, manifesting a slow-fast
dynamics with a broad separation of timescales. A systematic analysis of the Fourier harmonics of the
Hamiltonian, based on computer algebra, reveals three symmetries that characterize the strongest
resonances responsible for the orbital chaos. These symmetries are broken only by weak resonances,
leading to the existence of quasi-integrals of motion that are shown to relate to the smallest Lyapunov
exponents. A principal component analysis of the orbital solutions independently confirms that the quasi-
integrals are among the slowest degrees of freedom of the dynamics. Strong evidence emerges that they
effectively constrain the chaotic diffusion of the orbits, playing a crucial role in the statistical stability over
the Solar System lifetime.
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I. INTRODUCTION

The planetary orbits in the inner Solar System (ISS) are
chaotic, with a Lyapunov time distributed around 5 million
years (Myr) [1–4]. Still, they are statistically very stable
over a timescale that is a thousand times longer. The
probability that the eccentricity of Mercury exceeds 0.7,
leading to catastrophic events (i.e., close encounters,
collisions, or ejections of planets), is only about 1%
over the next 5 billion years (Gyr) [5–7]. The dynamical
half-life of Mercury orbit has recently been estimated at
30–40 billion years [4,7]. A disparity of nearly 4 orders of
magnitude between the Lyapunov time and the timescale of
dynamical instability is intriguing, since the chaotic var-
iations of the orbits of the inner planets cannot be con-
strained a priori. While the total energy and angular

momentum of the Solar System are conserved, the dis-
proportion of masses between the outer and inner planets
implies that unstable states of the ISS are in principle easily
realizable through exchanges of these quantities. The
surprising stability of the ISS deserves a global picture
in which it can emerge more naturally.
To our knowledge, the only study addressing the time-

scale separation in the long-term dynamics of the ISS is
based on the simplified secular dynamics of a massless
Mercury [8]: All the other planets are frozen on regular
quasiperiodic orbits; secular interactions are expanded to
first order in masses and degree 4 in eccentricities and
inclinations; an a priori choice of the relevant terms of
the Hamiltonian is made. The typical instability time of
about 1 Gyr [8,9] is, however, too short and in significant
contrast with realistic numerical integrations of the Solar
System, which show a general increase of the instability
rate with the complexity of the dynamical model [7]. We
have shown that truncating the secular Hamiltonian of the
ISS at degree 4 in eccentricities and inclinations results in
an even more stable dynamics, with an instability rate at
5 Gyr that drops by orders of magnitude when compared to
the full system [10]. From the perspective of these latest
findings, the small probability of 1% of an instability over
the age of the Solar System may be naturally regarded as a
perturbative effect of terms of degree 6 and higher. Clearly,
the striking stability of the dynamics at degree 4 is even
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more impressive in the present context, and remains to be
explained.
A strong separation in dynamical timescales is not

uncommon among classical quasi-integrable systems (see,
e.g., Refs. [11,12]). This is notably evinced by the Fermi-
Pasta-Ulam-Tsingou (FPUT) problem, which deals with a
chain of coupled weakly anharmonic oscillators [13]. Far
fromKolmogorov-Arnold-Moser (KAM) and Nekhoroshev
regimes (as is likely to be pertinent to the ISS, see Sec. III),
one can generally state that the exponential divergence of
close trajectories occurring over a Lyapunov time is mostly
tangent to the invariant tori defined by the actionvariables of
the underlying integrable problem, and hence contributes
little to the diffusion in the action space [14,15]. In other
words, the Lyapunov time and the diffusion or instability
time scale differently with the size of the terms that break
integrability, and this can result in very different timescales
[12]. However, this argument is as general as poorly
satisfactory in addressing quantitatively the timescale sep-
aration in a complex problem such as the present one.
Moreover, even though order-of-magnitude estimates of the
chaotic diffusion in the ISS suggest that it may take hundreds
of million years to reach the destabilizing secular resonance
g1 − g5 [16], the low probability of an instability over 5 Gyr
still remains unexplained [4]. Establishing more precisely
why the ISS is statistically stable over a timescale compa-
rable to its age is a valuable step in understanding the secular
evolution of planetary systems through metastable states
[4,17,18]. With its 8 secular degrees of freedom (d.o.f.), this
system also constitutes a peculiar bridge between the low-
dimensional dynamics often addressed in celestial mechan-
ics and the systems with a large number of bodies studied in
statistical mechanics: It cannot benefit from the straightfor-
ward application of standard methods of the two fields (see,
e.g., Ref. [19], Appendix A).
This work aims to open a window on the long-term

statistical behavior of the inner planet orbits. Section II
briefly recalls the dynamical model of forced secular ISS
introduced in Ref. [4]. Section III presents the numerical
computation of its Lyapunov spectrum. Section IV intro-
duces the quasisymmetries of the resonant harmonics of the
Hamiltonian and the corresponding quasi-integrals (QIs) of
motion. Section V establishes a geometric connection
between the quasi-integrals and the slowest d.o.f. of the
dynamics via a principal component analysis (PCA) of
the orbital solutions. Section VI states the implications of
the new findings on the long-term stability of the ISS. We
finally discuss the connections with other classical quasi-
integrable systems and the methods used in this work.

II. DYNAMICAL MODEL

The long-term dynamics of the Solar System planets
consists essentially of the slow precession of their perihelia
and nodes, driven by secular, orbit-averaged gravitational
interactions [2,20]. At first order in planetary masses, the

secular Hamiltonian corrected for the leading contribution
of general relativity reads [4,21]

bH ¼ −
X8
i¼1

�Xi−1
l¼1

�
Gmiml

kri − rlk
�
þ 3G2m2

0mi

c2a2i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2i

p �
: ð1Þ

The planets are indexed in order of increasing semimajor
axes ðaiÞ8i¼1, m0, and mi are the Sun and planet masses,
respectively, ei the eccentricities, G the gravitational
constant, and c the speed of light. The vectors ri are the
heliocentric positions of the planets, and the bracket
operator represents the averaging over the mean longitudes
resulting from the elimination of the nonresonant Fourier
harmonics of the N-body Hamiltonian [4,21]. Hamiltonian
(1) generates Gauss’s dynamics of Keplerian rings [4,22],
whose semimajor axes ai are constants of motion of the
secular dynamics.
By developing the two-body perturbing function [23,24]

in the computer algebra system TRIP [25,26], the secular
Hamiltonian can be systematically expanded in series of the
Poincaré rectangular coordinates in complex form,

xi ¼
ffiffiffiffiffi
Λi

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2i

qr
Ejϖi ;

yi ¼
ffiffiffiffiffiffiffiffi
2Λi

p
ð1 − e2i Þ1=4 sinðI i=2ÞEjΩi ; ð2Þ

where Λi ¼ μi½Gðm0 þmiÞai�1=2, μi ¼ m0mi=ðm0 þmiÞ
being the reduced masses of the planets, I i the inclinations,
ϖi the longitudes of the perihelia, and Ωi the longitudes of
the nodes [27]. Pairs ðxi;−jx̄iÞ and ðyi;−jȳiÞ are canoni-
cally conjugate momentum-coordinate variables. When
truncating at a given total degree 2n in eccentricities and
inclinations, the expansion provides Hamiltonians bH2n ¼bH2n½ðxi; x̄i; yi; ȳiÞ8i¼1� that are multivariate polynomials.
Valuable insight into the dynamics of the inner planets

is provided by the model of a forced ISS recently pro-
posed [4]. It exploits the great regularity of the long-term
motion of the outer planets [2,20,28] to predetermine their
orbits to a quasiperiodic form:

xiðtÞ ¼
XMi

l¼1

exilEjmil·ωot; yiðtÞ ¼
XNi

l¼1

eyilEjnil·ωot; ð3Þ

for i ∈ f5; 6; 7; 8g, where t denotes time, exil and eyil are
complex amplitudes, mil and nil integer vectors, and ωo ¼
ðg5; g6; g7; g8; s6; s7; s8Þ represents the septuple of the
constant fundamental frequencies of the outer orbits.
Frequencies and amplitudes of this Fourier decomposition
are established numerically by frequency analysis [29,30]
of a comprehensive orbital solution of the Solar System
(see Ref. [4], Appendix D). Gauss’s dynamics of the forced
ISS is obtained by substituting the predetermined time
dependence in Eq. (1),
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H ¼ bH½ðxi; yiÞ4i¼1; ðxi ¼ xiðtÞ; yi ¼ yiðtÞÞ8i¼5�; ð4Þ

so that H ¼ H½ðxi; yiÞ4i¼1; t�. The resulting dynamics con-
sists of two d.o.f. for each inner planet, corresponding to
the xi and yi variables, respectively. Therefore, the forced
secular ISS is described by 8 d.o.f. and an explicit time
dependence. As a result of the forcing from the outer
planets, no trivial integrals of motion exist and its orbital
solutions live in a 16-dimensional phase space.
A truncated Hamiltonian H2n for the forced ISS is

readily obtained by substituting Eq. (3) in the truncated
Hamiltonian bH2n of the entire Solar System. At the
lowest degree, H2 generates a linear, forced Laplace-
Lagrange (LL) dynamics. This can be analytically inte-
grated by introducing complex proper mode variables
ðui; viÞ4i¼1 via a time-dependent canonical transforma-
tion ðxi;−jx̄iÞ → ðui;−jūiÞ, ðyi;−jȳiÞ → ðvi;−jv̄iÞ [4].
Action-angle pairs ðXi; χiÞ, ðΨi;ψ iÞ are introduced as

ui ¼
ffiffiffiffiffi
Xi

p
E−jχi ; vi ¼

ffiffiffiffiffi
Ψi

p
E−jψ i : ð5Þ

When expressed in the proper modes, the truncated
Hamiltonian can be expanded as a finite Fourier series:

H2nðI; θ; tÞ ¼
X
k;l

eHk;l
2n ðIÞEj½k·θþl·ϕðtÞ�; ð6Þ

where I ¼ ðX;ΨÞ and θ ¼ ðχ ;ψÞ are the eight-dimensional
vectors of the action and anglevariables, respectively, andwe
introduce the external angles ϕðtÞ ¼ −ωot. The wave
vectors ðk;lÞ belong to a finite subset ofZ8 × Z7. At degree
2, one has H2 ¼ −ωLL · I, where ωLL ¼ ðgLL; sLLÞ ∈ R4 ×
R4 are the LL fundamental precession frequencies of the
inner planet perihelia and nodes.HamiltonianH2n is in quasi-
integrable form.
The quasiperiodic form of the outer orbits in Eq. (3)

contains harmonics of order higher than one, that is,
kmilk1 > 1 and knilk1 > 1 for some i and l, where k·k1
denotes the 1-norm. Therefore, the dynamics of H2n and
H2n are not exactly the same [4]. Still, the difference is
irrelevant for the results of this work, so we treat the two
Hamiltonians as equivalent from now on. Despite the
simplifications behind Eqs. (1) and (3), the forced secular
ISS has been shown to constitute a realistic model that is

consistent with the predictions of reference integrations of
the Solar System [2,5,6,20]. It correctly reproduces the
finite-time maximum Lyapunov exponent (FT-MLE) and
the statistics of the high eccentricities of Mercury over
5 Gyr [4]. Table I presents a summary of the different
Hamiltonians and corresponding dynamics we consider in
this work.

III. LYAPUNOV SPECTRUM

Ergodic theory provides a way, through the Lyapunov
characteristic exponents (LCEs), to introduce a fundamen-
tal set of timescales for any differentiable dynamical system
_z ¼ Fðz; tÞ defined on a phase space P ⊆ RP [31–34]. If
Φðz; tÞ denotes the associated flow and zðtÞ ¼ Φðz0; tÞ the
orbit that emanates from the initial condition z0, the LCEs
λ1 ≥ λ2 ≥ � � � ≥ λP are the logarithms of the eigenvalues of
the matrix Λðz0Þ defined as

lim
t→∞

½Mðz0; tÞTMðz0; tÞ�1=2t ¼ Λðz0Þ; ð7Þ

where Mðz0; tÞ ¼ ∂Φ=∂z0 is the fundamental matrix and T
stands for transposition [32,33]. Introducing the Jacobian
J ¼ ∂F=∂z, the fundamental matrix allows us to write the
solution of the variational equations _ζ ¼ JðzðtÞ; tÞζ as
ζðtÞ ¼ Mðz0; tÞζ0, where ζðtÞ ∈ T zðtÞP belongs to the
tangent space of P at point zðtÞ and ζ0 ¼ ζð0Þ. The
multiplicative ergodic theorem of Oseledec [31] states that
if ρ is an ergodic (i.e., invariant and indecomposable)
measure for the time evolution and has compact support,
then the limit in Eq. (7) exists for ρ-almost all z0, and the
LCEs are ρ-almost everywhere constant and only depend
on ρ [32]. Moreover, one has

lim
t→∞

1

t
log kMðz0; tÞζ0k ¼ λðiÞ if ζ0 ∈ EðiÞ

z0 nEðiþ1Þ
z0 ; ð8Þ

for ρ-almost all z0, where λð1Þ > λð2Þ > � � � are the LCEs

without repetition by multiplicity, and EðiÞ
z0 is the subspace

of RP corresponding to the eigenvalues of Λðz0Þ that are

smaller than or equal to exp λðiÞ, with T z0P ¼ Eð1Þ
z0 ⊃

Eð2Þ
z0 ⊃ � � �. The specific choice of the RP-norm k · k in

Eq. (8) is irrelevant [32,34]. Once the LCEs have been
introduced, a characteristic timescale can be defined from

TABLE I. Summary of the different models of forced secular ISS considered in this work. Gauss’s dynamics results from first-order
averaging of the N-body Hamiltonian over the mean longitudes of the planets. The dynamics generated by H2n and H2n are practically
equivalent and treated as such. The H•

2n models are introduced and discussed in Sec. IV D.

Hamiltonian Description Reference

H Gauss’s dynamics in complex Poincaré variables Eq. (4)
H2n Truncation of Gauss’s dynamics at total degree 2n in eccentricities and inclinations Ref. [4]
H2n Truncated dynamics expressed in the action-angle variables of the Laplace-Lagrange dynamics H2 Eq. (6) and Ref. [4]
H•

2n Fourier harmonics that involve outer planet modes other than g5 are dropped from H2n Eq. (24)
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each positive exponent as λ−1i . In the case of the maximum
Lyapunov exponent λ1, the corresponding timescale is
commonly called the Lyapunov time.
For a Hamiltonian system with p d.o.f. (i.e., P ¼ 2p),

the fundamental matrix is symplectic and the set of LCEs is
symmetric with respect to zero; that is,

Δλi ≔ λi þ λ2p−iþ1 ¼ 0 for all 1 ≤ i ≤ p: ð9Þ
If the Hamiltonian is time independent, a pair of exponents
vanishes. In general, the existence of an integral of motion
C ¼ CðzÞ implies a pair of null exponents, one of them
being associated with the direction of the tangent space that
is normal to the surface of constant C [33].
The ISS is a clear example of a dynamical system that is

out of equilibrium. Its phase-space density diffuses seam-
lessly over any meaningful timescale [5,28]. Therefore, the
infinite time limit in Eq. (7) is not physically relevant.
The non-null probability of a collisional evolution of the
inner planets [5,6,35,36] implies that such limit does not
even exist as a general rule. Most of the orbital solutions
stemming from the current knowledge of the Solar System
are indeed asymptotically unstable [4,7]. Physically rel-
evant quantities are the finite-time LCEs (FT-LCEs),
λiðz0; tÞ, defined from the eigenvalues m1 ≥ m2 ≥ � � � ≥
mP of the time-dependent symmetric positive-defined
matrix Mðz0; tÞTMðz0; tÞ as

λiðz0; tÞ ¼
1

2t
log miðz0; tÞ: ð10Þ

The time dependence of the phase-space density translates
in the fact that no ergodic measure is realized by the
dynamics, and the FT-LCEs depend on the initial condition
z0 in a nontrivial way [37].
The FT-MLE of the forced secular ISS has been numeri-

cally computed over 5 Gyr for an ensemble of stable orbital
solutions of the Hamiltonian H with initial conditions very
close to their nominal values [38]. Its long-term distribution
is quite large and does not shrink over time (see Ref. [4],
Fig. 3). At 5 Gyr, the probability density function (PDF) of
the Lyapunov time peaks at around 4 Myr, it decays very
fast below 2 Myr, while its 99th percentile reaches 10 Myr
(see Ref. [4], Fig. 4). The significant width of the dis-
tribution relates to the aforementioned out-of-equilibrium
dynamics of the ISS, as the FT-MLE of each orbital
solution continues to vary over time. The dependence of
the exponent on the initial condition is associated with the
nonergodic exploration of the phase space by the dynamics.
As a remark, the fact that the lower tail of the FT-MLE
distribution, estimated from more than 1000 solutions, does
not extend to zero implies that invariant (KAM) tori are rare
in a neighborhood of the nominal initial conditions (if they
exist at all). This fact excludes that the dynamics is in a
Nekhoroshev regime [12,39], in agreement with the indi-
cations of a multidimensional resonance overlapping at the

origin of chaos [19,40]. In such a case, the long dynamical
half-life of the ISS should not be interpreted in terms of an
exponentially slow Arnold diffusion.
Computations of the FT-MLE of the Solar System

planets have been reported for more than 30 years [1,3].
However, the retrieval of the entire spectrum of exponents
still represents a challenging task. Integrating an N-body
orbital solution for the Sun and the eight planets that spans
5 Gyr requires the order of a month of wall-clock time [41].
The computation by a standard method of the entire
Lyapunov spectrum for a system with p d.o.f. also requires
the simultaneous time evolution of a set of 2p tangent
vectors [42]. On the top of that, a computation of the
exponents for an ensemble of trajectories is advisable for a
nonergodic dynamics [4]. These considerations show how
demanding the computation of the Lyapunov spectrum of
the Solar System planets is. By contrast, a 5 Gyr integration
of the forced ISS takes only a couple of hours for Gauss’s
dynamics (H) and a few minutes at degree 4 (H4). This
dynamical model thus provides a unique opportunity to
compute all the FT-LCEs that are mainly related to the
secular evolution of the inner orbits.
We compute the Lyapunov spectrum of the truncated

forced ISS using the standard method of Benettin et al. [43],
based on Gram-Schmidt orthogonalization. Manipulation of
the truncated Hamiltonian H2n in TRIP allows us to system-
atically derive the equations ofmotion and the corresponding
variational equations, which we integrate through an Adams
PECE method of order 12 and a time step of 250 yr.
Parallelization of the time evolution of the 16 tangent vectors,
between two consecutive reorthonormalization steps of the
Benettin et al. [43] algorithm, significantly reduces the
computation time. Figure 1(a) shows the positive FT-
LCEs expressed as angular frequencies over the next
10 Gyr for the Hamiltonian truncated at degree 4. The FT-
LCEs are computed for 150 stable solutions, with initial
conditions very close to the nominal values of Gauss’s
dynamics and random sets of initial tangent vectors
(Ref. [19], Appendix C). The figure shows the [5th, 95th]
percentile range of the marginal PDF of each exponent
estimated from the ensemble of solutions. For large times, the
exponents of each solution become independent of the initial
tangent vectors, the renormalization time, and the norm
chosen for the phase-space vectors [see Appendix A and
Fig. 8(a)]. In this asymptotic regime, the Benettin et al. [43]
algorithm purely retrieves the FT-LCEs as defined in
Eq. (10), and the width of their distributions only reflects
the out-of-equilibrium dynamics of the system. The con-
vergence of our numerical computation is also assessed by
verifying the symmetry of the spectrum stated in Eq. (9) [see
Appendix A and Fig. 8(b)].
The spectrum in Fig. 1(a) has distinctive features. A set

of intermediate exponents follow the FT-MLE, ranging
from 0.1 to 0.0100 yr−1, while the smallest ones fall below
0.0100 yr−1. Figure 1(a) reveals the existence of a hierarchy
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of exponents and corresponding timescales that spans 2
orders of magnitude, down to a median value of
λ−18 ≈ 500 Myr. The number of positive exponents con-
firms that no integral of motion exists, as one may expect
from the forcing of the outer planets. We also compute the
spectrum for the Hamiltonian truncated at degree 6. As
shown in Appendix A (Fig. 9), the asymptotic distributions
of the exponents are very similar to those at degree 4. This
result suggests that long-term diffusion of the phase-space
density is very close in the two cases. The different
instability rates of the two truncated dynamics mainly
relates to the geometry of the instability boundary, which is
closer to the initial position of the system for H6 than
for H4 [7].
The relevance of the Lyapunov spectrum in Fig. 1(a)

emerges from the fact that the existence of an integral of
motion implies a pair of vanishing exponents. This is a
pivotal point: By a continuity argument, the presence of
positive exponents much smaller than the leading one
constitutes a compelling indication that there are dynamical
quantities whose chaotic decoherence over initially very
close trajectories takes place over timescales much longer
than the Lyapunov time. In the long term, such quantities
should diffuse much more slowly than any LL action
variable. Therefore, Fig. 1(a) suggests that the secular
orbits of the inner planets are characterized by a slow-fast
dynamics that is much more pronounced than the well-
known timescale separation arising from the LL integrable
approximation. The existence of slow quantities, which are
a priori complicated functions of the phase-space variables,
is crucial in the context of finite-time stability, as they
can effectively constrain the long-term diffusion of the
phase-space density toward the unstable states. The next

section addresses the emergence of these slow quantities
from the symmetries of the Fourier harmonics that compose
the Hamiltonian.

IV. QUASI-INTEGRALS OF MOTION

The emergence of a chaotic behavior of the planetary
orbits can be explained in terms of the pendulumlike
dynamics generated by each Fourier harmonic that com-
poses the Hamiltonian in Eq. (6) [44]. One can write
H2nðI; θ; tÞ ¼ eH0;0

2n ðIÞ þ
PM2n

i¼1 F iðI; θ; tÞ, with

F iðI; θ; tÞ ¼ eHki;li

2n ðIÞEj½ki·θþli·ϕðtÞ� þ c:c:; ð11Þ

where ðki;liÞ ≠ ð0; 0Þ,M2n is the number of harmonics in
H2n with a non-null wave vector, and c.c. stands for
complex conjugate. Chaos arises from the interaction of
resonant harmonics, that is, those harmonics F i whose
frequency combination ki · _θþ li · _ϕðtÞ vanishes at some
point along the motion. Using the computer algebra system
TRIP, the harmonics of H10 that enter into resonance along
the 5 Gyr nominal solution of Gauss’s dynamics have been
systematically retrieved, together with the corresponding
time statistics of the resonance half-widths Δω [19]. The
resonances have then been ordered by decreasing time
median of their half-widths. The resulting ranking of
resonances is denoted as R1 from now on. Table II recalls
the 30 strongest resonances that are active for more than 1%
of the 5 Gyr time span of the orbital solution. The
wave vector of each harmonic is identified by the corre-
sponding combination of frequency labels ðgi; siÞ8i¼1, that
is, k · ωi þ l · ωo, with ωi ¼ ðg1; g2; g3; g4; s1; s2; s3; s4Þ.
Table II also shows the order of each harmonic, defined

(a) (b)

FIG. 1. Positive FT-LCEs λi of the forced secular ISS from Hamiltonians H4 (a) and H•
4 [Eq. (24)] (b), and corresponding

characteristic timescales λ−1i . The bands represent the [5th, 95th] percentile range of the marginal PDFs estimated from an ensemble of
150 stable orbital solutions with very close initial conditions. The lines denote the distribution medians. The H•

4 model is introduced and
discussed in Sec. IV D.
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as the even integer O ¼ kðk;lÞk1. The support of the
asymptotic ensemble distribution of the FT-MLE shown in
Fig. 1(a) overlaps in a robust way with that of the time
distribution of the half-width of the strongest resonances. In
other words,

2πλ1 ≈ ΔωR1 ; ð12Þ
where ΔωR1 stands for the half-width of the uppermost
resonances of ranking R1. Equation (12) shows the
dynamical sources of chaos in the ISS by connecting
the top of the Lyapunov spectrum with the head of the
resonance spectrum. Computer algebra allows us to estab-
lish such a connection in an unbiased way despite the
multidimensional nature of the dynamics. We stress that

such analysis is built on the idea that the time statistics of
the resonant harmonics along a 5 Gyr ordinary orbital
solution should be representative of their ensemble statis-
tics (defined by a set of stable solutions with very close
initial conditions) at some large time of the order of billions
of years. This assumption was inspired by the good level of
stationarity that characterizes the ensemble distribution of
the FT-MLE beyond 1 Gyr [4,19], and that extends to the
entire spectrum in Fig. 1(a).
We remark that, strictly speaking, ranking R1 is estab-

lished on the Fourier harmonics of the Lie-transformed
Hamiltonian H0

2n (see Ref. [19], Appendix G). New
canonical variables are indeed defined to transform H2n
in a Birkhoff normal form to degree 4. The goal is to let the
interactions of the terms of degree 4 in H2n appear more
explicitly in the amplitudes of the harmonics of higher
degrees in H0

2n, the physical motivation being that the
nonlinear interaction of the harmonics at degree 4 con-
stitutes the primary source of chaos [19]. Keeping in mind
the quasi-identity nature of the Lie transform, here we drop
for simplicity the difference between the two Hamiltonians.
Moreover, all the new analyses of this work involve the
original variables of Eq. (5).

A. Quasisymmetries of the resonant harmonics

In addition to the dynamical interactions responsible for
the chaotic behavior of the orbits, Table II provides
information on the geometry of the dynamics in the action
variable space. Ranking the Fourier harmonics allows us to
consider partial Hamiltonians constructed from a limited
number m of leading terms [7,19], that is,

H2n;m ¼ eH0;0
2n þ

Xm
i¼1

F i: ð13Þ

The dynamics of a Hamiltonian reduced to a small set of
harmonics is generally characterized by several symmetries
and corresponding integrals of motion. We are interested in
how these symmetries are progressively destroyed when
one increases the number of terms taken into account
in Eq. (13).
Consider a set of m harmonics of H2n and a dynamical

quantity that is a linear combination of the action variables,
that is,

Cγ ¼ γ · I; ð14Þ

γ ∈ R8 being a parameter vector. From Eq. (11), the partial
contribution of them harmonics to the time derivative of Cγ

along the flow of H2n is

_Cγ;m ¼ 2
Xm
i¼1

γ · ki ImfeHki;li

2n ðIÞEj½ki·θþli·ϕðtÞ�g; ð15Þ

TABLE II. Top of ranking R1. First 30 resonant harmonics of
H10 along the 5 Gyr nominal solution of Gauss’s dynamics, in
order of decreasing time median of the resonance half-width Δω
(arcsec yr−1).O is the order of the harmonic. τres is the fraction of
time the harmonic is resonant. Only harmonics with τres > 1% are
shown. 5th and 95th percentiles of the time distribution of Δω as
subscripts and superscripts, respectively. Adapted from Table 2 of
Ref. [19].

i Fourier harmonic F i Oi τresi Δωi

1 g3 − g4 − s3 þ s4 4 12% 0.3320.5260.093
2 g1 − g2 þ s1 − s2 4 19% 0.3020.6110.154
3 g2 − g5 − 2s1 þ 2s2 6 23% 0.1050.2230.041
4 2g3 − 2g4 − s3 þ s4 6 70% 0.0760.1590.023
5 g1 − g5 − s1 þ s2 4 10% 0.0740.1780.056
6 g2 − g4 þ s2 − s4 4 6% 0.0660.0980.025
7 g1 − 2g2 þ g4 þ s1 − 2s2 þ s4 8 5% 0.0610.0740.051
8 g1 − g3 þ s2 − s3 4 17% 0.0560.0900.028
9 g1 þ g3 − 2g4 þ s2 − s3 6 5% 0.0530.0610.037
10 3g3 − 3g4 − s3 þ s4 8 9% 0.0520.1400.007
11 g2 − g3 − s1 þ 2s2 − s3 6 5% 0.0380.0470.028
12 g1 − 2g3 þ g4 þ s2 − s4 6 36% 0.0380.0830.016
13 2g1 − g3 − g5 þ s2 − s4 6 5% 0.0370.0430.028
14 g4 − g5 − s2 þ 2s3 − s4 6 2% 0.0330.0360.031
15 g1 − 2g3 þ g4 þ s1 þ s3 − 2s4 8 25% 0.0330.0450.014
16 g1 − g4 þ s1 − s4 4 23% 0.0320.0540.017
17 g1 − 2g2 þ g5 þ 3s1 − 3s2 10 6% 0.0320.0390.023
18 g1 − g4 þ s2 − s3 4 18% 0.0310.0730.016
19 3g1 − g2 − g4 − g5 þ s1 − s3 8 2% 0.0310.0420.023
20 2g1 − g2 − g3 þ s1 − s3 6 29% 0.0280.0510.016
21 2g1 − g2 − g4 þ s1 − s3 6 3% 0.0260.0280.021
22 3g3 − 3g4 − 2s3 þ 2s4 10 8% 0.0250.0550.012
23 2g1 − g2 − 2g3 þ g4 þ s1 − s4 8 3% 0.0230.0360.012
24 2g3 − g4 − g5 − s1 þ s4 6 16% 0.0230.0480.010
25 g1 − 3g3 þ 2g4 þ s2 − s4 8 7% 0.0210.0300.008
26 g1 − g2 − g3 þ g4 þ s1 − s2 6 6% 0.0210.0320.004
27 g1 þ g3 − 2g4 þ s1 − s4 6 3% 0.0210.0220.017
28 g1 þ g2 − 2g5 − 3s1 þ 3s2 10 4% 0.0200.0280.006
29 3g1 − g2 − g4 − g5 þ s2 − s3 8 4% 0.0200.0270.008
30 2g1 − g4 − g5 þ s2 − s4 6 7% 0.0200.0290.007
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and _Cγ ¼ _Cγ;M2n
, where M2n is the total number of

harmonics with a non-null wave vector that appear in
H2n. Any quantity Cγ with γ · ki ¼ 0 is conserved by the
one-d.o.f. dynamics generated by the single harmonic F i.
In other words, such a quantity would be an integral of
motion if F i were the only harmonic to appear in the
Hamiltonian. Considering now m different harmonics,
these do not contribute to the change of the quantity Cγ

if γ⊥ spanðk1; k2;…; kmÞ, that is, if the vector γ belongs to
the orthogonal complement of the linear subspace of R8

spanned by the wave vectors ðkiÞmi¼1. We also consider the
quantity

C0
γ ¼ H2n þ γ · I: ð16Þ

Because of the explicit time dependence in the Hamiltonian,
the partial contribution of a set of m harmonics to the time
derivative of C0

γ along the flow of H2n is

_C0
γ;m ¼ 2

Xm
i¼1

ðγ · ki þ li · ωoÞ ImfeHki;li

2n ðIÞEj½ki·θþli·ϕðtÞ�g;

ð17Þ

and one has _C0
γ ¼ _C0

γ;M2n
. Quantity C0

γ is unchanged by the
m harmonics if γ · ki þ li · ωo ¼ 0 for i ∈ f1; 2;…; mg.
Dynamical quantities Cγ or C0

γ that are unaffected by a
given set of leading harmonics, that is, with null partial
contribution in Eq. (15) or (17), are denoted as quasi-
integrals of motion from now on. More specifically, we
build our analysis on ranking R1, since the resonant
harmonics are those responsible for changes that accumu-
late stochastically over long timescales, driving chaotic
diffusion.
In the framework of the aforementioned considerations,

the resonances listed in Table II possess three different
symmetries.
(a) First symmetry.—The rotational invariance of the

entire Solar System implies the d’Alembert ruleP
8
i¼1 ki þ

P
7
i¼1 li ¼ 0, where k ¼ ðk1; k2;…; k8Þ

and l ¼ ðl1;l2;…;l7Þ [21,24,45,46]. Moreover,
the Jupiter-dominated eccentricity mode g5 is the only
fundamental Fourier mode of the outer planet forcing
to appear in Table II. The quantity

E2n ≔ C0
g518

¼ H2n þ g5
X4
i¼1

ðXi þ ΨiÞ; ð18Þ

with 18 ¼ ð1; 1;…; 1Þ ∈ R8, is therefore unaffected
by the resonances listed in Table II. In an equivalent
way, the time-dependent canonical transformation
θ → θþ g5t18, with unchanged action variables,
allows us to remove the explicit time dependence in
these harmonics. Quantity E2n coincides with the

transformed Hamiltonian, and the harmonics in
Table II do not contribute to its time derivative.

(b) Second symmetry.—We write the eccentricity and
inclination parts of the harmonic wave vectors explic-
itly, that is, k ¼ ðkecc; kincÞ with kecc; kinc ∈ R4. One
can visually check that the harmonics in Table II verify
the relation

P
4
i¼1 k

inc
i ¼ 0, where kinc ¼ ðkinc1 ;…; kinc4 Þ.

Therefore, denoting γ1 ¼ ð04; 14Þ, the quantity

Cinc ≔ Cγ1 ¼ Ψ1 þ Ψ2 þ Ψ3 þ Ψ4 ð19Þ

is conserved by these resonances. Cinc is the angular
momentum deficit (AMD) [47] contained in the
inclination d.o.f. This symmetry can then be inter-
preted as a remnant of the conservation of the AMD
of the entire (secular) Solar System. We remark
that the AMD contained in the eccentricity d.o.f.,
Cecc ¼

P
4
i¼1 Xi, is not invariant under the leading

resonances because of the eccentricity forcing mainly
exerted by Jupiter through the mode g5. The con-
servation of Cinc depends on two facts: the inclination
modes s6, s7, s8 of the external forcing do not appear
in Table II and low-order harmonics like 2g1 − s1 − s2,
2g1 − 2s1, and 2g1 − 2s2 are never resonant (even if
they can raise large quasiperiodic contributions), so
that two AMD reservoirs Cecc and Cinc are decoupled in
Table II. We recall that the absence of an inclination
mode s5 in the external forcing relates to the fixed
direction of the angular momentum of the entire Solar
System [2,21,46].

(c) Third symmetry.—The first two symmetries could be
expected to some extent on the basis of physical
intuition of the interaction between outer and inner
planets. However, it is not easy to even visually guess
the third one from Table II. Consider the 30 × 8matrix
K30 whose rows are the wave vectors ðkiÞ30i¼1 of the
listed resonances. A singular value decomposition
shows that the rank of K30 is equal to 6. Therefore,
the linear subspace V30¼ spanðk1;k2;…;k30Þ spanned
by the wave vectors has dimension 6. AGram-Schmidt
orthogonalization allows us to determine two linearly
independent vectors that span its orthogonal comple-
ment V ⊥

30 . One choice consists in V
⊥
30 ¼ spanðγ2; γ⊥

2 Þ,
with

C2 ≔ Cγ2 ¼ −X3 −X4 þΨ1 þΨ2 þ 2Ψ3 þ 2Ψ4;

C⊥
2 ≔ Cγ⊥

2
¼ X3 þX4 þ Ψ1 þ Ψ2: ð20Þ

Since the second symmetry clearly requires that
γ1 ∈ V ⊥

30 , the three quantities Cinc; C2; C⊥
2 are not

independent and one has indeed Cinc ¼ ðC2 þ C⊥
2 Þ=2.

We remark that ðC2 − C⊥
2 Þ=2 ¼ −X3 −X4 þΨ3 þΨ4.

The additional symmetry can thus be interpreted in
terms of a certain decoupling between the d.o.f. 3,4 and
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1,2, representing in the proper modes the Earth-Mars
and Mercury-Venus subsystems, respectively.

The aforementioned symmetries, that exactly character-
ize the resonances listed in Table II, naturally represent
quasisymmetries when considering the entire spectrum of
resonances R1. They are indeed broken at some point by
weak resonances (see Sec. IV C). Quantities E2n, Cinc, and
C2 are the corresponding QIs of motion. The persistence of
the three symmetries under the 30 leading resonances is
somewhat surprising. Concerning Cinc and C2, for example,
one might reasonably expect that, since the ISS has 8 d.o.f.,
the subspace spanned by the wave vectors of just a dozen of
harmonics should already have maximal dimension,
destroying all possible symmetries.
We remark that, differently from Cinc and C2, the quantity

E2n is a nonlinear function of the action-angle variables.
However, as far as stable orbital evolutions are concerned,
the convergence of the series expansion of the Hamiltonian
is sufficiently fast that the linear LL approximation
E2 ¼ H2 þ g518 · I ¼ Cγ3 , with γ3 ¼ −ωLL þ g518, repro-
duces reasonably well E2n along the flow of H2n for n > 1.
The vector γ3 is used in Sec. V, together with γ1 and γ2, to
deal with the geometry of the linear action subspace
spanned by the QIs. The explicit expressions of these
vectors are given in Appendix B. We mention that, differ-
ently from γ1 and γ2, the components of γ3 are not integer
and they have the dimension of a frequency.

B. Slow variables

The QIs of motion E2n; Cinc; C2 are clearly strong
candidates for slow variables once evaluated along the
orbital solutions. In what follows, to assess the slowness of
a dynamical quantity when compared to the typical
variations of the action variables, we consider the variance
of its time series along a numerical solution.
We define the dimensionless QIs,

bCinc ¼ Cinc
kγ1kC0

; bC2 ¼ C2
kγ2kC0

; bE2n ¼
E2n

kγ3kC0

; ð21Þ

where C0 stands for the current total AMD of the inner
planets, that is, the value of Cecc þ Cinc at time zero. We
stress that, by introducing the unit vectors bγi ¼ γi=kγik for
i ∈ f1; 2; 3g, one has bCinc ¼ Cγ̂1=C0 and bC2 ¼ Cγ̂2=C0. At

degree 2, one also has bE2 ¼ Cγ̂3=C0. We then consider the
ensembles of numerical integrations of H4 and H6, with
very close initial conditions and spanning 100 Gyr in the
future, that have been presented in Ref. [7]. The top row of
Fig. 2 shows the time evolution over 5 Gyr of the
dimensionless QIs and of two components of the dimen-
sionless action vector bI ¼ I=C0 along the nominal orbital
solutions of the two ensembles. We subtract from each
time series its mean over the plotted time span. The
time series are low-pass filtered by employing the

Kolmogorov-Zurbenko filter with three iterations of the
moving average [4,48]. A cutoff frequency of 1 Myr−1 is
chosen to highlight the long-term diffusion that can be
hidden by short-time quasiperiodic oscillations. This is in
line with our definition of quasi-integrals based on con-
tribution from resonant harmonics only. Figure 2 clearly
shows that the QIs are slowly diffusing variables when
compared to an arbitrary function of the action variables.
The behavior of the QIs along the nominal orbital solutions
of Fig. 2 is confirmed by a statistical analysis in
Appendix C. Figure 10 shows the time evolution of the
distributions of the same quantities as Fig. 2 over the stable
orbital solutions of the entire ensembles of 1080 numerical
integrations of Ref. [7]. Figure 11 details the growth of the
QI dispersion over time.
We remark that C2 and E2n show very similar time

evolutions along stable orbital solutions, as can be seen in
the top row Fig. 2. This is explained by the interesting
observation that the components of the unit vectors bγ2 andbγ3 differ from each other by only a few percent, as shown in
Appendix B. However, we stress that the two vectors are in
fact linearly independent: C2 does not depend on the actions
X1 and X2, while E2n does. The two QIs move away from
each other when high eccentricities of Mercury are reached,
that is, for large excursions of the Mercury-dominated
action X1.

C. Weak resonances and Lyapunov spectrum

A fundamental result from Table II is that the symmetries
introduced in Sec. IVA are still preserved by resonances
that have half-widths an order of magnitude smaller than
those of the strongest terms. It is natural to extract from
ranking R1 the weak resonances that break the three
symmetries. A new ranking of resonances R2 is defined
in this way. Table III reports the ten strongest symmetry-
breaking resonances that change E2n; Cinc; C2, respectively.
As in Table II, only harmonics that are resonant for more
than 1% of the 5 Gyr time span of the nominal solution
of Gauss’s dynamics are shown. The leading symmetry-
breaking resonances have half-widths of about 0.0100 yr−1.
For each QI, the dominant contribution comes from
harmonics involving Fourier modes of the outer planet
forcing other than g5: the Saturn-dominated modes g6, s6
and the modes g7, s7 mainly associated to Uranus. In the
case of Cinc, there is also a contribution that starts at about
0.00600 yr−1 with F 8 ¼ 4g1 − g2 − g3 − s1 − 2s2 þ s4 and
comes from high-order internal resonances, that is, reso-
nances that involve only the d.o.f. of the inner planets. We
remark that the decrease of the resonance half-width with
the index of the harmonic in Table III is steeper for Cinc than
for E2n; C2, and is accompanied by a greater presence of
high-order resonances. This may notably explain why the
secular variations of Cinc are somewhat smaller in the top
row of Fig. 2. We finally point out the important symmetry-
breaking role of the modes g7, s7, representing the forcing
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mainly exerted by Uranus. Differently from what one might
suppose, these modes cannot be completely neglected
when addressing the long-term diffusion of ISS. This
recalls the role of the modes s7 and s8 in the spin dynamics
of Venus [49], and is basically a manifestation of the long-
range nature of the gravitational interaction.
As we state in Sec. III, a pair of Lyapunov exponents

would vanish if there were an exact integral of motion. In
the presence of a weakly broken symmetry, one may expect
a small positive Lyapunov exponent whose value relates to
the half-width of the strongest resonances driving the time
variation of the corresponding QI. Such an argument is a
natural extension of the correspondence between the FT-
MLE and the top of the resonance spectrum given in
Eq. (12). Comparison of Table III with the Lyapunov
spectrum in Fig. 1(a) shows that the time statistics of the
half-widths of the symmetry-breaking resonances of rank-
ingR2 overlaps with the ensemble distribution of the three
smallest FT-LCEs, that is, λ6, λ7, λ8. One can indeed write

2πλ6 ≈ ΔωR2 ; ð22Þ

where ΔωR2 stands for the half-width of the uppermost
resonances of ranking R2. Table III and Fig. 1(a) suggest a
relation between the QIs and the smallest Lyapunov
exponents:

λ6; λ7; λ8 ↔ E2n; Cinc; C2: ð23Þ

Equation (23) is not a one-to-one correspondence, nor
should it be understood as an exact relation since, for
example, λ6 is not well separated from the larger exponents.

Its physical meaning is that the QIs are among the slowest
d.o.f. of the ISS dynamics. Such a claim is one of the
core points of this work. In Sec. V, we show its statistical
validity in the geometric framework established by a
principal component analysis of the orbital solutions.
Moreover, Sec. IV D shows that Eq. (23) can be stated
more precisely in the case of a simplified dynamics that
underlies H2n. We remark that E2n; Cinc; C2 constitute a set
of three QIs that are independent and nearly in involution,
and it is thus meaningful to associate three different
Lyapunov exponents with them. On the one hand, the
independence is easily checked at degree 2 as the vectors
γ1, γ2, γ3 are linearly independent. On the other hand, one
has the Poisson bracket fCinc; C2g ¼ 0, since the two
quantities are functions of the action variables only. One
also has fE2n;Cincg¼fH2n;Cincg¼ _Cinc and fE2n; C2g ¼ _C2.
Only weak resonances contribute to these Poisson brackets
and the three QIs are therefore nearly in involution.

D. New truncation of the Hamiltonian

The fundamental role of the external modes g6, g7, s6, s7
in Table III raises the question of which symmetry-breaking
resonances persist if one excludes all the Fourier harmonics
that involve external modes other than g5. Therefore, we
define a new ranking R3 by extracting such resonances
from ranking R2. Table IV reports the ten strongest
resonances per each broken symmetry. The difference with
respect to Table III is manifest. As g5 is the only external
mode remaining, there are no resonances left that can
contribute to the time evolution of E2n. For the remaining
two QIs, the only harmonics that appear in Table IV are of

FIG. 2. Time evolution over 5 Gyr of the dimensionless QIs (bCinc;bC2; bE) and of two representatives of the dimensionless action

variables (bX1; bΨ3) along the nominal orbital solutions of different models. Top row: H4 and H6 (bE stands for bE4 and bE6, respectively).

Bottom row: H•
4 and H•

6 from Eq. (24) (bE•
2n is exactly conserved and not shown). The time series are low-pass filtered with a cutoff

frequency of 1 Myr−1 and the mean over 5 Gyr is subtracted. The variations of the QIs are enlarged in the insets. The H•
2n models are

introduced and discussed in Sec. IV D.
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order 8 or higher, and this is accompanied by a significant
drop in the half-width of the leading resonances. In the case
of Cinc, the half-width of the uppermost resonances is now
around 0.00500 yr−1. One can appreciate that the activation
times τres of the resonances do not exceed a few percent,
differently from Table III. The most impressive change is,
however, related to C2: only harmonics of order 10 appear
in Table IVand the half-width of the uppermost resonances
drops by 2 orders of magnitude. We stress that such
harmonics are resonant for very short periods of time
along the 5 Gyr spanned by the nominal solution of Gauss’s
dynamics. To retrieve the time statistics of the resonances
affecting C2, we indeed choose to repeat the computations

of Ref. [19] by increasing the cutoff frequency of the low-
pass filter applied to time series of the action-angle variables
from ð5 MyrÞ−1 to 1 Myr−1 (see Ref. [19], Appendixes F.2
and G.5). The filtered time series have then been resampled
with a time step of 50 kyr. Many harmonics we show in
Table IV and related to C2 are resonant for a few time steps
and their time statistics is very tentative. More precise
estimations of the half-widths should be obtained over an
ensemble of different orbital solutions, possibly spanning
more than 5 Gyr. In any case, the fundamental point here is
the drastic reduction in the size of the uppermost resonances
with respect to Table III, and this is a robust result. We
remark that resonances of order 12 and higher may also
carry an important contribution at these scales, but they are
excluded by the truncation at degree 10 adopted in Ref. [19]
to establish the resonant harmonics, so they do not appear in
the tables of this work.
Hamiltonian H•

2n.—The implications of Table IV
suggest to introduce an additional truncation in the

TABLE III. Top of ranking R2. First ten symmetry-breaking
resonances of H10 along the 5 Gyr nominal solution of Gauss’s
dynamics, that change E2n; Cinc, and C2, respectively (see Table II
for details).

i Fourier harmonic F i Oi τresi Δωi

E2n

1 g1 þ g2 − 2g5 þ s2 − s7 6 1% 0.0180.0200.016
2 g1 − 2g2 þ g6 − s2 þ s6 6 4% 0.0170.0240.008
3 g3 − g6 þ s2 − s4 4 10% 0.0170.0220.009
4 g5 − g7 þ s3 − s4 4 5% 0.0170.0240.010
5 g4 − g6 þ s2 − s4 4 4% 0.0160.0210.007
6 g2 − 2g4 þ g6 4 12% 0.0160.0270.009
7 g1 − g3 − g5 þ g6 − s1 þ s4 6 6% 0.0150.0240.011
8 2g3 − 2g4 þ g5 − g7 6 25% 0.0140.0220.006
9 g2 þ g3 − 3g4 þ g6 6 3% 0.0140.0170.010
10 g2 − 2g3 þ g6 þ s3 − s4 6 3% 0.0110.0180.003

Cinc

1 g1 þ g2 − 2g5 þ s2 − s7 6 1% 0.0180.0200.016
2 g1 − 2g2 þ g6 − s2 þ s6 6 4% 0.0170.0240.008
3 g2 − g6 þ s1 − s6 4 8% 0.0110.0170.003
4 g4 − g6 − 2s3 þ 3s4 − s6 8 5% 0.0100.0120.002
5 2g1 − 2g5 þ s1 − s7 6 1% 0.0070.0080.005
6 4g1 − 3g2 − g5 − s2 þ s7 10 7% 0.0060.0150.003
7 g3 − g6 − 2s3 þ 3s4 − s6 8 2% 0.0060.0110.003
8 4g1 − g2 − g3 − s1 − 2s2 þ s4 10 2% 0.0060.0090.001
9 2g1 − g2 − g5 þ 3s1 − 2s2 − s7 10 3% 0.0060.0080.002
10 3g1 − 3g2 þ s1 − 2s2 þ s7 10 19% 0.0060.0090.002

C2

1 g1 þ g2 − 2g5 þ s2 − s7 6 1% 0.0180.0200.016
2 g1 − 2g2 þ g6 − s2 þ s6 6 4% 0.0170.0240.008
3 g3 − g6 þ s2 − s4 4 10% 0.0170.0220.009
4 g4 − g6 þ s2 − s4 4 4% 0.0160.0210.007
5 g2 − 2g4 þ g6 4 12% 0.0160.0270.009
6 g1 − g3 − g5 þ g6 − s1 þ s4 6 6% 0.0150.0240.011
7 g2 þ g3 − 3g4 þ g6 6 3% 0.0140.0170.010
8 g2 − 2g3 þ g6 þ s3 − s4 6 3% 0.0110.0180.003
9 g1 − g3 − g4 þ g6 þ s1 − s2 6 4% 0.0110.0130.008
10 g2 − g6 þ s1 − s6 4 8% 0.0110.0170.003

TABLE IV. Top of ranking R3. First ten symmetry-breaking
resonances of H10 along the 5 Gyr nominal solution of Gauss’s
dynamics, that only involve g5 among the external modes and
change E2n; Cinc, and C2, respectively.

i Fourier harmonic F i Oi τresi Δωi

E2n

No resonances

Cinc
a

1 4g1 − g2 − g3 − s1 − 2s2 þ s4 10 2.0% 0.0060.0090.001
2 2g1 þ g2 − g4 − 2s1 − s2 þ s3 8 2.5% 0.0030.0080.002
3 3g1 − g2 − s1 − 3s2 þ s3 þ s4 10 1.5% 0.0030.0050.001
4 2g1 − g4 þ g5 − s1 − 2s2 þ s4 8 1.3% 0.0030.0060.001
5 4g1 − g2 − g4 − s1 − 2s2 þ s4 10 1.4% 0.0030.0040.001
6 4g1 − g2 − g4 − 3s2 þ s3 10 1.3% 0.0030.0050.001
7 3g1 − g4 − 2s1 − s2 þ s4 8 1.8% 0.0030.0040.001
8 3g1 − g3 − 2s1 − s2 þ s4 8 1.6% 0.0020.0060.000
9 2g1 − g3 þ g5 − s1 − 2s2 þ s4 8 1.0% 0.0020.0040.000
10 g1 þ g2 − g3 þ g5 − 2s1 − s2 þ s3 8 1.3% 0.0020.0030.001

C2

1 g1 − 3g2 þ 2g5 − s1 þ 2s2 − s4 10 0.01‰ 1e-41e-41e-4
2 2g1 − 4g2 þ 2g5 þ s2 − s4 10 0.08‰ 8e-51e-42e-5
3 3g2 − 3g5 þ s1 − 2s2 þ s3 10 0.01‰ 3e-53e-53e-5
4 g1 − 4g2 þ g3 þ 2g5 − s1 þ s2 10 0.13‰ 3e-55e-52e-6
5 g1 þ 3g2 − 4g5 − s2 þ s4 10 0.56‰ 3e-54e-52e-5
6 g1 − 4g2 þ 3g5 þ s2 − s4 10 0.01‰ 2e-52e-52e-5
7 3g2 − 3g5 þ s1 − 2s2 þ s4 10 0.13‰ 1e-53e-57e-6
8 4g2 − g3 − g4 − 2g5 þ s1 − s3 10 0.03‰ 1e-51e-59e-6
9 2g1 − 5g2 þ g4 þ 2g5 10 0.02‰ 9e-69e-69e-6
10 2g1 − 5g2 þ g3 þ 2g5 10 0.14‰ 6e-68e-63e-6

aOnly harmonics that are resonant for more than 1% of time are
shown, i.e., τres > 1%.
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Hamiltonian H2n. This consists in dropping the harmonics
of Eq. (6) that involve external modes other than g5:

H•
2nðI; θ; tÞ ¼

X
k;l1

eHk;l•

2n ðIÞEj½k·θþl1ϕ1ðtÞ�; ð24Þ

where ϕ1ðtÞ ¼ −g5t and l• ¼ ðl1; 0;…; 0Þ, with l1 ∈ Z.
Consistently with the absence of symmetry-breaking res-
onances related to E2n in Table IV, the corresponding
dynamics admits the exact integral of motion

E•
2n ¼ H•

2n þ g5
X4
i¼1

ðXi þ ΨiÞ; ð25Þ

which represents the transformed Hamiltonian under the
canonical change of variables that eliminates the explicit
time dependence in Eq. (24). We point out that, as the
additional truncation is applied to the action-angle formu-
lation of Eq. (6), the external modes other than g5 still enter
the definition of the proper modes of the forced Laplace-
Lagrange dynamics [4]. The orbital solution arising from
H•

2n is initially very close to that of H2n. A frequency
analysis over the first 20 Myr shows that the differences in
the fundamental frequencies of the motion betweenH•

2n and
H2n are of the order of 10−3 arcsec yr−1, an order of
magnitude smaller than the typical frequency differences
betweenH4 andH6 (see Ref. [4], Table 3). Therefore, even
thoughH•

2n constitutes a simplification of H2n, it should not
be regarded as a toy model. Its dynamics, in particular, still
possesses 8 d.o.f.
We compute the Lyapunov spectrum of the Hamiltonian

H•
4 in the same way as described in Sec. III in the case of

H2n. Since its dynamics turns out to be much more stable
than that of H4 (see Sec. VI, Fig. 7), we extend the
computation to a time span of 100 Gyr. The marginal
ensemble PDFs of the positive FT-LCEs are shown in
Fig 1(b). Comparing to the Lyapunov spectrum ofH4, one
notices that the distributions of the leading exponents turn
out to be quite similar, apart from being more spaced and
except for a slight decrease in their median values.
However, such a decrease is more pronounced for smaller
exponents, and the drop in the smallest exponents is
drastic. The smallest one, λ8, decreases monotonically,
consistently with the fact that E•

4 from Eq. (25) is an exact
integral of motion. The exponent λ7 drops by more than an
order of magnitude, and apparently begins to stabilize
around a few 10−4 arcsec yr−1, while λ6 also reduces
significantly, by a factor of 3, to about 0.00500 yr−1.
The drop in the smallest exponents agrees remarkably
well with that of the half-width of the leading symmetry-
breaking resonances when switching from Table III to
Table IV. One can indeed write

2πλ6 ≈ ΔωR3;Cinc ;

2πλ7 ≈ ΔωR3;C2 ;

λ8 ¼ 0; ð26Þ

where ΔωR3;Q stands for the half-width of the uppermost
resonances of ranking R3 related to the quasi-integral Q.
The hierarchy of the three smallest exponents in the
spectrum of Fig. 1(b) consistently follows that of the
QIs suggested in Table IV by the very different sizes of
the leading resonances. In other words, one can state:

λ6 ↔ Cinc;

λ7 ↔ C2;

λ8 ↔ E•
2n: ð27Þ

These one-to-one correspondences are a particular case of
Eq. (23) and support the physical intuition behind it. In
Sec. V, we prove the validity of Eq. (27) in the geometric
framework established by a principal component analysis
of the orbital solutions of H•

2n.
Numerical integrations.—We compute ensembles of

1080 orbital solutions of the dynamical models H•
4 and

H•
6, with initial conditions very close to the nominal ones of

Gauss’s dynamics and spanning 100 Gyr in the future. This
closely follows what we did in Ref. [7] in the case of the
models H2n. The bottom row of Fig. 2 shows the filtered
dimensionless QIs along the nominal solutions of the two
models over the first 5 Gyr. The hierarchy of the QIs stated
in Eq. (27) is manifest. The quantity C2 has secular
variations much slower than Cinc, while the latter is itself
slower with respect to its counterpart in the orbital solutions
of H2n. We remark that, as E•

2n is an exact integral of
motion for the modelH•

2n, we do not plot it. From Fig. 2 it is
also evident how difficult can be the retrieval of the short-
lasting resonances affecting C2 from a solution of H•

2n
spanning only a few billion years.
The hierarchy of the QIs is confirmed by a statistical

analysis in Appendix C. Figure 10 shows the entire time
evolution of the distributions of the filtered dimensionless
QIs over the stable orbital solutions of the ensembles of
1080 numerical integrations. Figure 11 details the growth
of the QI dispersion over time. As suggested by Table IV,
the drop in the diffusion rates of the QIs when switching
from H2n to H•

2n is manifest.

V. STATISTICAL DETECTION
OF SLOW VARIABLES

Section IV shows how the slow-fast nature of the ISS
dynamics, indicated by the Lyapunov spectrum, emerges
from the quasisymmetries of the resonant harmonics of the
Hamiltonian. QIs of motion can be introduced semianalyti-
cally and they constitute slow quantities when evaluated
along stable orbital solutions. In this section, we consider
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the slow variables that can be systematically retrieved from
a numerically integrated orbital solution by means of a
statistical technique, the principal component analysis. We
show that, in the case of the forced secular ISS, the slowest
variables are remarkably close to the QIs, and this can be
established in a precise geometric framework.

A. Principal component analysis

PCA is a widely used classical technique for multivariate
analysis [50,51]. For a given dataset, PCA aims to find an
orthogonal linear transformation of the variables such that
the new coordinates offer a more condensed and represen-
tative view of the data. The new variables are called
principal components (PCs). They are uncorrelated and
ordered according to decreasing variance: the first PC and
last one have, respectively, the largest and the smallest
variance of any linear combination of the original variables.
While one is typically interested in the PCs of largest
variance, in this work we employ the variance of the time
series of a dynamical quantity to assess its slowness when
compared to the typical variations of the action variables
(see Sec. IV B). We thus perform a PCA of the action
variables I and focus on the last PCs, as they give a
pertinent statistical definition of slow variables. We stress
that, when coupled to a low-pass filtering of the time series,
the statistical variance provides a measure of chaotic
diffusion.
Implementation.—Our procedure for the PCA is

described briefly as follows (for general details see,
e.g., Refs. [52,53]). Let IðtÞ ¼ ðXðtÞ;ΨðtÞÞ the eight-
dimensional time series of the action variables evaluated
along a numerical solution of the equations of motion. As
in Sec. IV B, we apply the Kolmogorov-Zurbenko low-pass
filter with three iterations of the moving average and a
cutoff frequency of 1 Myr−1 to obtain the filtered time
series bIðtÞ [4,48]. In this way, the short-term quasiperiodic
oscillations are mostly suppressed, which better reveals the
chaotic diffusion over longer timescales. We finally define
the mean-subtracted filtered action variables over the time
interval ½t0; t0 þ T� as eIðtÞ ¼ bIðtÞ − n−1

P
n−1
i¼0

bIðt0 þ iΔtÞ,
where the mean is estimated by discretization of the time
series with a sampling step Δt such that T ¼ ðn − 1ÞΔt.
The discretized time series over the given interval is stored
in an 8 × n matrix:

D ¼ ½eIðt0Þ;eIðt0 þ ΔtÞ;…;eIðt0 þ ðn − 1ÞΔtÞ�: ð28Þ

The PCA of the data matrix D consists in a linear trans-
formation P ¼ ATD, where A is an 8 × 8 orthogonal
matrix (i.e., A−1 ¼ AT) defined as follows. By writing
A ¼ ½a1;…; a8�, the column vectors ai ∈ R8 are chosen to
be the normalized eigenvectors of the sample covariance
matrix, in order of decreasing eigenvalues: ðn − 1Þ−1DDT ¼
AΣAT, where Σ ¼ diagðσ1;…; σ8Þ and σ1 ≥ � � � ≥ σ8.

The PCs are defined as the new variables after the trans-
formation; that is, PCi ¼ ai · I, with i ∈ f1;…; 8g. The
uncorrelatedness and the ordering of the PCs can be easily
seen from the diagonal form of their sample covariance
matrix, ðn − 1Þ−1PPT ¼ Σ, from which it follows that the
variance of PCi is σi.
Among all the linear combinations in the action variables

I, the last PC, i.e., PC8, has the smallest variance over
the time interval ½t0; t0 þ T� of a given orbital solution.
The second last PC, i.e., PC7, has the second smallest
variance and is uncorrelated with PC8, and so on. It follows
that the linear subspace spanned by the last k PCs is the
k-dimensional subspace of minimum variance: the variance
of the sample projection onto this subspace is the minimum
among all the subspaces of the same dimension. These
properties indicate that the last PCs provide a pertinent
statistical definition of slow variables along numerically
integrated solutions of a dynamical system. The linear
structure of the PCA, in particular, seems adapted to quasi-
integrable systems close to a quadratic Hamiltonian, like
the ISS. In such a case, one may reasonably expect that
the slow variables are, to a first approximation, linear
combinations of the action variables. We remark that the
mutual orthogonality allows us to associate a linear d.o.f. to
each PC.
Aggregated sample.—Instead of considering a specific

solution, it is also possible to take the same time interval
from m different solutions, and stack them together to form
an aggregated sample: Dagg ¼ ½D1;D2;…;Dm�, where Di

is the data matrix of Eq. (28) for the ith solution. Since this
work deals with a nonstationary dynamics, as the ISS
ceaselessly diffuses in the phase space [7], we always
consider the same time interval for each of the m solutions.
The aggregated sample is useful in capturing globally the
behavior of the dynamics, because it averages out tempo-
rary and rare episodes arising along specific solutions.

B. Principal components and quasi-integrals

Both the QIs and the last PCs represent slow variables,
but are established through two different methods.
Equations (23) and (27) claim that the QIs found semi-
analytically in Sec. IV are among the slowest d.o.f. of the
ISS dynamics. This naturally suggests to compare the three
QIs with the three last PCs retrieved from numerically
integrated orbital solutions. In this part, we first introduce
the procedure that we implement to establish a consistent
and systematic correspondence between QIs and PCs. We
then present both a visual and a quantitative geometric
comparison between them.

1. Tweaking the QIs

The three last components PC8, PC7, PC6 are represented
by the set of vectors SPCs ¼ fa8; a7; a6g belonging to R8.
By construction, these PCs have a linear, hierarchical, and

MOGAVERO, HOANG, and LASKAR PHYS. REV. X 13, 021018 (2023)

021018-12



orthogonal structure. In other words, the PCs are linear
combinations of the action variables I; denoting by ≼ the
order of statistical variance, one has PC8 ≼ PC7 ≼ PC6;
the unit vectors ðaiÞ8i¼6 are orthogonal to each other. On the
other hand, the QIs of motion Cinc; C2; E2n do not possess
these properties. Therefore, we adjust them in such a way to
reproduce the same structure.
(1) Linearity.—While Cinc and C2 are linear functions of

the action variables, E2n is not when n > 1. Never-
theless, as we explain in Sec. IVA, as far as one
considers stable orbital solutions, the linear LL
approximation E2 ¼ γ3 · I reproduces E2n rea-
sonably well. Therefore, we consider the three
linear QIs of motion Cinc; C2; E2, which are res-
pectively represented by the set of R8 vectors
SQIs ¼ fγ1; γ2; γ3g. In this way, the three-dimen-
sional linear subspaces of the action space spanned
by the sets SQIs and SPCs can be compared.

(2) Ordering.—We define a set of QIs that are ordered
by statistical variance, as it is the case for the PCs.
We follow two different approaches according to
model H•

2n in Eq. (24) or H2n in Eq. (6)
(clearly n > 1).
(a) [H•

2n] A strong hierarchy of statistical variances
among the QIs emerges from the size of
the leading symmetry-breaking resonances in
Table IVand from the orbital solutions in Figs. 2,
10, and 11. One has E•

2n ≺ C2 ≺ Cinc. While E•
2n

is an exact nonlinear integral of motion, we
expect that its linear truncation E•

2 ¼ E2 varies
more than C2 and Cinc. Therefore, we consider
the ordered set of QIs of motion fC2; Cinc; E2g
represented by the ordered set of vectors
S0QIs ¼ fγ2; γ1; γ3g.

(b) [H2n] Since the leading resonances affecting the
QIs in Table III have comparable sizes, there is
no clear order of statistical variances that can
be inferred. We then implement a systematic
approach that orders the QIs by simply inheriting
the ordering of the PCs. More precisely, we
define a set of ordered vectors S0QIs through
the projections of the three last PCs onto the
linear subspace generated by the QIs: S0QIs ¼
fprojSQIsða8Þ; projSQIsða7Þ; projSQIsða6Þg [54]. As
a result, the new set of QIs mirrors the hierar-
chical structure of the PCs. We stress that S0QI
spans the same subspace of R8 as SQI, since the
ordered QIs are just linear combinations of the
original ones.

(3) Orthogonality.—We apply the Gram-Schmidt proc-
ess to the ordered set S0QIs to obtain the orthonormal
basis S00QIs ¼ fα1;α2;α3g. The set S00QIs clearly spans
the same subspace as SQIs. Moreover, the Gram-
Schmidt process preserves the hierarchical structure;

that is, the twom-dimensional subspaces spanned by
the first m ≤ 3 vectors of S0QIs and S

00
QIs, respectively,

are identical.
In the end, we obtain a linear, ordered, and orthogonal

set of modified QIs of motion fQI1;QI2;QI3g, where
QIi ¼ αi · I.

2. Visual comparison

We now visually compare the vectors α1;2;3 of the
modified QIs with the corresponding vectors a8;7;6 of the
last three PCs. We use the ensembles of 1080 numerically
integrated orbital solutions of the models H4 and H4

considered in Secs. IV B and IV D, respectively. The
nominal solution of each set is denoted as sol. 1 from
now on. For the model H4, we also consider two other
solutions: sol. 2, which represents a typical evolution
among the 1080 solutions, and sol. 3 representing a rarer
one. The particular choice of these two solutions is detailed
in Sec. V B 3.
Hamiltonian H•

4.—The modified QIs can be expli-
citly derived in this case and comprise interpretable
physical quantities. One has QI1 proportional to C2 and
QI2 proportional to C⊥

2 . Moreover, QI3 is the component of
E2 that is orthogonal to both C2 and C⊥

2 . Figure 3 shows the
comparison between the modified QIs and the correspond-
ing PCs for three different time intervals along sol. 1 of H•

4

(see Fig. 2, bottom left for its time evolution). The agree-
ment of the pairs ðQI1; PC8Þ, ðQI2; PC7Þ, and ðQI3; PC6Þ
across different intervals is manifest and even impressive.
One can appreciate that the “slower” the PC, the more
similar it is to its corresponding QI. The overlap between
the modified QIs and the three last PCs means that the QIs
of motion span the slowest three-dimensional linear sub-
space of the action space. Therefore, to a linear approxi-
mation, they represent the three slowest d.o.f. of the H•

4

dynamics. The quasi-integral C2 represents the slowest
linear d.o.f.: it coincides with the last principal component
PC8, which has the smallest variance among all the linear
combinations of the action variables. Cinc and E2 repre-
sent the second and the third slowest linear d.o.f., respec-
tively: the component of Cinc orthogonal to C2, i.e., C⊥

2 ,
matches the second last principal component PC7; the
component of E2 orthogonal to the subspace generated by
(C2, Cinc) matches the third last principal component PC6.
The strong hierarchical structure of the slow variables for
the simplified dynamics H•

4 is clearly confirmed by the
almost frozen basis vectors of the PCs.
Hamiltonian H4.—In this case, the QIs of motion

Cinc; C2; E2 do not show a clear hierarchical structure in
terms of statistical variance. Therefore, we consider the
whole subspace spanned by the three QIs with respect to
that spanned by the three last PCs. Since it is not easy to
visually compare two three-dimensional subspaces of R8,
we compare their basis vectors instead. The basis α1;2;3 of
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modified quasi-integrals QI1;2;3 is computed according to
the algorithm presented in Sec. V B 1.
Figure 4 presents the comparison between the modified

QIs and the corresponding PCs across three different time
intervals of three solutions of H4 (see Fig. 5 for their time
evolution). The first two, sol. 1 and sol. 2, show thorough
agreement between the pairs of QIs and PCs across all
intervals, which indicates close proximity between the two
subspaces VQIs ¼ spanðSQIsÞ and VPCs ¼ spanðSPCsÞ. One
can appreciate that the directions of the basis vectors are
quite stable. The last component PC8, in particular, remains
close to Cinc. The slowest linear d.o.f. of H4 can thus be
deduced to be close to Cinc, in line with the discussion in
Sec. IV C. Such a result shows how interesting physical
insight can be gained through the PCA. Some changes in
the basis vectors can arise, however, as for the first time
interval of sol. 2. This may be expected from a dynamical
point of view. Differently from H•

4, there is no pronounced
separation between the slowest d.o.f. at the bottom of the
Lyapunov spectrum in Fig. 1(a): the marginal distributions
of consecutive exponents can indeed touch or overlap each
other. Therefore, the hierarchy of slow variables is not as

FIG. 4. Vectors α1;2;3 representing the three modified QIs
(QI1;2;3, black circles) compared to the corresponding vectors
a8;7;6 of the three last PCs (PC8;7;6, red dots), for the intervals [0,
500] Myr (left-hand column), [1000, 2000] Myr (middle col-
umn), and [0, 5000] Myr (right-hand column) of sol. 1, sol. 2,
and sol. 3 and of the aggregated sample of 1080 solutions of
model H4.

FIG. 3. Vectors α1;2;3 representing the three modified QIs
(QI1;2;3, black circles) compared to the corresponding vectors
a8;7;6 of the three last PCs (PC8;7;6, red dots), for the intervals [0,
500] Myr (left-hand column), [1000, 2000] Myr (middle col-
umn), and [0, 5000] Myr (right-hand column) of sol. 1 and of the
aggregated sample of 1080 solutions of model H•

4. Here, QI1 is
proportional to C2 and QI2 is proportional to C⊥

2 ; see Eq. (20).
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frozen as in H•
4 and it can change along a given orbital

solution.
Solutions 1 and 2 represent typical orbital evolutions. If

the same time intervals of all the 1080 solutions are stacked
together to form an aggregated sample on which the PCA is
applied, the features mentioned above persist: the agree-
ment between QIs and PCs, the stability of the basis
vectors, and the similarity between PC8 and Cinc (see
Fig. 4). Once again, the PCA confirms that the subspace
spanned by the three QIs is overall close to the slowest
three-dimensional linear subspace of the action space.
Therefore, to a linear approximation, they represent the
three slowest d.o.f. of the H4 dynamics. We remark that
the slowness of the three-dimensional subspace spanned by
the QIs is a much stronger constraint than the observation

that each QI is a slow variable. To give an example, let
Q ¼ bq · I be a slow variable with unit vector bq. If ϵ is an
arbitrary small vector, i.e., kϵk ≪ 1, then Q0 ¼ ðbqþ ϵÞ · I
can also be considered as a slow variable, whereas
the normalized difference of two quantities, bϵ · I, is gen-
erally not. Therefore, the linear subspace spanned byQ and
Q0, that is, by bq and bϵ, is not a slow two-dimensional
subspace.
Solution 3 in Fig. 4 represents an edge case (see Fig. 5

for its time evolution). Typically, the variances of the QIs
are at least one order of magnitude smaller than those
of the action variables, which allows a clear separation.
Nevertheless, the distinction between the QIs and faster
d.o.f. can be more difficult in two rare possibilities. Firstly,
if the change in a QI accumulates continually in one
direction, its variance can inflate over a long time interval.
This is the case for the interval [0, 5] Gyr of sol. 3.
Secondly, the variance of a variable that is typically fast can
suddenly dwindle during a certain period of time, for
example, Ψ3 over the interval [1, 2] Gyr of sol. 3. In both
cases, the slow subspace defined by the three last PCs can
move away from the QI subspace due to the contamination
by d.o.f. that are typically faster. This is reflected in the
mismatch of QI3 and PC6 on the last two time intervals of
sol. 3 in Fig. 4. We remark that PC8;7 are still relatively
close to QI1;2, which indicates that the slowest two-dimen-
sional subspace spanned by PC8;7 still resides inside the QI
subspace. It should be stressed that this disagreement
between QIs and PCs does not mean that the QIs are
not slow variables in this case. The mismatch has a clear
dynamical origin instead. The resonance tables of this work
have been retrieved from a single, very long orbital
solution, with the idea that its time statistics is represen-
tative of the ensemble statistics over a set of initially very
close solutions [19]. Therefore, the QIs derived from these
tables characterize the dynamics in a global sense. The
network of resonances can temporarily change in an
appreciable way along specific solution, or be very par-
ticular along rare orbital solutions. In these cases, a
mismatch between the last PCs and the present QIs may
naturally arise. Moreover, the contamination of the QIs
by d.o.f. that are typically faster may also be expected from
the previously mentioned lack of a strong hierarchical
structure of the slow variables. The Lyapunov spectrum in
Fig. 1(a) shows that the marginal distributions of the
exponents λ5 and λ6, for example, are not separate but
overlap each other.

3. Distance between the subspaces of PCs and QIs

The closeness of the two three-dimensional linear sub-
spaces VPCs; VQIs ⊂ R8 spanned by the sets of vectors SPCs
and SQIs, respectively, can be quantitatively measured in
terms of a geometric distance. This can be formulated using
the principal (canonical) angles [55–57].

FIG. 5. Time evolution over 5 Gyr of the dimensionless QIs of
motions (bCinc;bC2; bE) and of two representatives of the dimension-
less action variables (bX1; bΨ3) for three solutions of H4, that is,

sol. 1 (top), sol. 2 (middle), and sol. 3 (bottom). bE stands for bE4.
The time series are low-pass filtered with a cutoff frequency of
1 Myr−1 and the mean over 5 Gyr is subtracted.
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Let A and B be two sets of m ≤ n independent vectors in
Rn. The principal vectors ðpk; qkÞmk¼1 are defined recur-
sively as solutions to the optimization problem:

maximize p · q

subject to

������
p ∈ spanðAÞ;q ∈ spanðBÞ;
kpk ¼ 1;kqk ¼ 1;

p · pi ¼ 0;q · qi ¼ 0; i¼ 1;…; k− 1;

ð29Þ

for k ¼ 1;…; m. The principal angles 0 ≤ θ1 ≤ � � � ≤ θm ≤
π=2 between the two subspaces spanðAÞ and spanðBÞ are
then defined by

cos θk ¼ pk · qk; k ¼ 1;…; m: ð30Þ
The principal angle θ1 is the smallest angle between all pairs
of unit vectors in span(A) and span(B); the principal angle
θ2 is the smallest angle between all pairs of unit vectors that
are orthogonal to the first pair; and so on. Given thematrices
defining the two subspaces, the principal angles can be
computed from the singular value decomposition of their
correlation matrix. The result is the canonical correlation
matrix diagðcos θ1;…; cos θmÞ. This cosine-based method
is often ill conditioned for small angles. In such case, a sine-
based algorithm can be employed [58]. In this work, we use
the combined technique detailed in Ref. [59].
Once the principal angles have been introduced, different

metrics can be defined to measure the distance between two
subspaces. In this work, we choose the normalized chordal
distance [57]:

dðA;BÞ ¼
�
1

m

Xm
k¼1

sin2 θk

	
1=2

: ð31Þ

The distance is null if A and B are the same subspace and
equal to 1 when they are orthogonal. We use this metric to
show that the subspace closeness suggested by Figs. 3
and 4 is indeed statistically significantly. More precisely,
we provide evidence against the null hypothesis that the
distribution of distances between VPCs and VPCs, arising
from the H•

4 and H4 dynamics, coincides with that of
randomly drawn three-dimensional subspaces of R8.
The PDF of the distance between two random three-
dimensional subspaces of R8 is shown in Fig. 6 in blue
(such random subspaces can be easily generated by
sampling sets of 3 vectors uniformly on the unit 7-sphere
[60]). While the range of possible distances is [0, 1], the
distribution concentrates on the right-hand side of the
interval, with a probability of approximately 99.3% that
the distance is larger than 0.6. In this regard, we remark that
the notion of distance in high-dimensional spaces is very
different from our intuition in a three-dimensional world. If
we draw randomly two vectors in a very high-dimensional
space, it is extremely likely that they will be close to mutual
orthogonality.

The upper panel of Fig. 6 shows in green the PDF of the
distance between VPCs and VQIs arising from the time
interval [0, 5] Gyr of the 1080 orbital solutions of model
H•

4. In the lower panel, we consider a larger ensemble
of 10 800 solutions of model H4 spanning the same time
interval [7], and plot the corresponding PDF of the distance
between VPCs and VQIs. In both cases, the distance stem-
ming from the aggregated sample of all the solutions is
indicated by a vertical dark green line. We also report the
distances from the specific solutions considered in Figs. 3
and 4 as vertical red lines. As the PDFs of both models peak
at small distances, there results a strong evidence that the
distribution of distances between the subspaces spanned by
the PCs and the QIs is not that of random subspaces. In this
sense, the closeness of the subspaces VPCs and VQIs is a
statistically robust result. In the case of the simplified
dynamics H•

4, the PDF peaks around a median of roughly
0.08 and has small variance. Switching to model H4, the
median increases to about 0.26 and the PDF is more spread
out, with a long tail toward larger distances. The differences
between the PDFs of the two models follow quite naturally

FIG. 6. PDF of the distance between two random three-
dimensional linear subspaces of R8 (blue, 105 draws) compared
with the PDF of the distance between the two subspaces VPCs
(PC8;7;6) and VQIs (QI1;2;3) arising from the time interval [0, 5] Gyr
of 1080 solutions of H•

4 (top) and 10 800 solutions ofH4 (bottom)
(green). For each model, the subspace distance from the same time
interval of representative solutions (vertical red lines) and of the
aggregated sample of all the solutions (vertical dark green line) are
indicated. The subspace distance is given by Eq. (31).
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the discussion in Sec. V B 2: a quasifrozen hierarchy of the
slowest variables for H•

4; a larger variance forH4 related to
contamination by d.o.f. that are typically faster and to
variations of the resonant network with respect to the
nominal solution of Gauss’s dynamics which is used to
infer the QIs. Solution 3 in Fig. 4 represents in this sense an
edge case of the distance distribution, while sol. 2 is a
typical solution close to the PDF median.

VI. IMPLICATIONS ON LONG-TERM STABILITY

The existence of slow variables can have crucial impli-
cations on the stability of the ISS. The QIs of motion can
effectively constraint in an adiabatic way the chaotic
diffusion of the planet orbits over long timescales, forbid-
ding in general a dynamical instability over a limited time
span, e.g., several billions of years. Here we give compel-
ling arguments for such a mechanism.
Figure 7 shows the cumulative distribution function

(CDF) of the first time that Mercury eccentricity reaches
a value of 0.7, from the ensembles of 1080 orbital solutions
of H•

4 and H
•
6 introduced in Sec. IV D. We recall that such a

high eccentricity is a precursor of the dynamical instability
(i.e., close encounters, collisions, or ejections of planets) of
the ISS [6]. We also report the same CDF for the modelsH4

and H6, which we recently computed in Ref. [7]. One can
appreciate that the time corresponding to a probability of
instability of 1% is greater than 100 Gyr for the H•

4 model,
while it is about 15 Gyr for H4. At degree 6, this time still
increases from 5 Gyr for H6 to about 20 Gyr in H•

6. The
dynamics arising from H•

4 and H•
6 can be considered as

stable in an astronomical sense. Recalling that the main
difference between H•

2n and H2n relates to the smallest
Lyapunov exponents (Fig. 1), and this is accompanied by a
much slower diffusion of the QIs for H•

2n (Figs. 2, 10, and
11), Fig. 7 indicates that the dynamical half-life of the ISS
is linked to the speed of diffusion of these slow quantities in
a critical way. We stress that the slower diffusion toward the
dynamical instability in the H•

2n model derives from
neglecting the external forcing mainly exerted by Saturn,
Uranus, and Neptune.
We also observe that, to a linear approximation, the

knowledge of Cinc and E2 allows us to bound the variations
of the action variables X;Ψ. Recalling that the actions are
positive quantities, from Eq. (19) one sees that fixing a
value of Cinc puts an upper bound to the variations of the
inclination actions Ψ. As a consequence, at degree 2 in
eccentricities and inclinations, fixing a value of

E2 ¼ γ3 · I ¼ γecc3 ·Xþ γinc3 ·Ψ; ð32Þ

with γ3 ¼ ðγecc3 ; γinc3 Þ, also bounds the upper variations of
the eccentricity actions X, since the components of γecc3

have all the same sign, as those of γinc3 (see Appendix B).
This is an important point, as we state in Sec. I that the lack

of any bound on the chaotic variations of the planet orbits is
one of the reasons that complicates the understanding of
their long-term stability. We remark that the secular
planetary phase space can be bound by fixing the value
of the total AMD, that is, Cecc þ Cinc [47]. A statistical study
of the density of states that are a priori accessible can then
be realized [61]. It is not, however, fully satisfying to
consider a fixed value of total AMD of the ISS, as we show
that Cecc is changed by some of the leading resonances of
the Hamiltonian, as a result of the eccentricity forcing
mainly exerted by Jupiter through the mode g5. Moreover,
the destabilization of the ISS consists indeed in a large
transfer of eccentricity AMD, Cecc, from the outer system to
the inner planets through the resonance g1 − g5 [5,6,36,62].
It should be noted that Cecc can still be considered as a slow
quantity with respect to an arbitrary function of the action
variables, as it is only changed by the subset of the leading
resonances involving the external mode g5. This slowness
has indeed been observed on stable orbital solutions of the
Solar System [47] and supports the statistical hypothesis in
Ref. [61] that allows us to obtain a very reasonable first
guess of the long-term PDFs of the eccentricities and
inclinations of the inner planets.
The emerging picture explains the statistical stability of

the ISS over billions of years in a physically intuitive way.
The chaotic behavior of the planet orbits arises from the
interaction of a number of leading resonant harmonics of
the Hamiltonian, which determine the Lyapunov time. The
strongest resonances are characterized by some exact
symmetries, which are only broken by weak resonant
interactions. These quasisymmetries naturally give birth
to QIs of motion, quantities that diffuse much more slowly
than the LL action variables, constraining the variations of
the orbits. The long dynamical half-life of the ISS is
connected to the speed of this diffusion, which eventually
drives the system to the instability. It should be stressed

FIG. 7. Cumulative distribution function of the first time that
Mercury eccentricity reaches a value of 0.7, from 1080 orbital
solutions of different models over 100 Gyr. The shaded regions
represent the 90% piecewise confidence intervals from bootstrap.
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that, besides the speed of diffusion, the lifetime of the inner
orbits also depends on the initial distance of the system
from the instability boundary defined by the resonance
g1 − g5. This geometric aspect includes the stabilizing role
of general relativity [5,6], which moves the system away
from the instability boundary by 0.4300 yr−1, and the
destabilizing effect of terms of degree 6 in eccentricities
and inclinations of the planets [7].

VII. DISCUSSION

This work introduces a framework that naturally justifies
the statistical stability shown by the ISS over a timescale
comparable to its age. Considering a forced secular model
of the inner planet orbits, the computation of the Lyapunov
spectrum indicates the existence of very different dynami-
cal timescales. Using the computer algebra system TRIP, we
systematically analyze the Fourier harmonics of the
Hamiltonian that become resonant along a numerically
integrated orbital solution spanning 5 Gyr. We uncover
three symmetries that characterize the strongest resonances
and that are broken by weak resonant interactions. These
quasisymmetries generate three QIs of motion that re-
present slow variables of the secular dynamics. The size of
the leading symmetry-breaking resonances suggests that
the QIs are related to the smallest Lyapunov exponents.
The claim that the QIs are among the slowest d.o.f. of the
dynamics constitutes the central point of this work. On the
one hand, it is supported by the analysis of the underlying
Hamiltonian H•

2n, in which one neglects the forcing mainly
exerted by Saturn, Uranus, and Neptune, and, as a con-
sequence, the diffusion of the QIs is greatly reduced. On
the other hand, the geometric framework established by the
PCA of the orbital solutions independently confirms that
the QIs are statistically the slowest linear variables of the
dynamics. We give strong evidence that the QIs of motion
play a critical role in the statistical stability of the ISS over
the Solar System lifetime, by adiabatically constraining the
long-term chaotic diffusion of the orbits.

A. Inner Solar System among classical
quasi-integrable systems

It is valuable to contextualize the dynamics of the ISS
in the class of classical quasi-integrable systems. A
comparison with the Fermi-Pasta-Ulam-Tsingou problem,
in particular, deserves to be made. This concerns the
dynamics of a one-dimensional chain of identical masses
coupled by nonlinear springs. For weak nonlinearity, the
normal modes of oscillation remain far from the energy
equipartition expected from statistical mechanics for a very
long time [13]. One way to explain the lack of energy
equipartition reported by Fermi and collaborators is
through the closeness of the FPUT problem to the inte-
grable Toda dynamics [63–65]. This translates in a very
slow thermalization of the action variables of the Toda

problem and of the corresponding integrals of motion along
the FPUT flow [15,65–69]. In the framework of the present
study, the very long dynamical half-life of the ISS is also
likely to be the result of the slow diffusion of some
dynamical quantities, the QIs of motion. We find, in
particular, an underlying Hamiltonian H•

2n for which this
diffusion is greatly reduced, as a consequence of neglecting
the forcing mainly exerted by Saturn, Uranus, and Neptune.
This results in a dynamics that can be considered as
stable in an astronomical sense. We stress that, differently
from the FPUT problem, H•

2n is not integrable as the Toda
Hamiltonian. It is indeed chaotic and shares with the
original Hamiltonian H2n the leading Lyapunov exponents.
The QIs that we find in this work are only a small number
of functions of the action-angle variables of the integrable
LL dynamics, and are related to the smallest Lyapunov
exponents of the dynamics. Our study suggests that in the
FPUT problem the very slow thermalization occurring
beyond the Lyapunov time might be understood in terms
of combinations of the Toda integrals of motion diffusing
over very different timescales.
The long-term diffusion in chaotic quasi-integrable

systems should be generally characterized by a broad
range of timescales that results from the progressive,
hierarchical breaking of the symmetries of the underlying
integrable problem by resonant interactions [70–72]. A
hierarchy of Lyapunov exponents spanning several orders
of magnitude, in particular, should be common among this
class of systems (see, e.g., Ref. [73]).

B. Methods

The long-term dynamics of the ISS is described by a
moderate but not small number of d.o.f., which places it far
from the typical application fields of celestial mechanics
and statistical physics. The first discipline often studies
dynamical models with very few degrees of freedom, while
the second one deals with the limit of a very large number
of bodies. Chaos also requires a statistical description of the
inner planet orbits. But the lack of a statistical equilibrium,
resulting from a slow but ceaseless diffusion of the system,
places the ISS outside the standard framework of ergodic
theory. The kind of approach we develop in this work is
heavily based on computer algebra, in terms of systematic
series expansion of the Hamiltonian, manipulation of the
truncated equations of motion, extraction of given Fourier
harmonics, retrieval of polynomial roots, etc. [4,19]. This
allows us to introduce QIs of motion in a 16-dimensional
dynamics by analyzing how action-space symmetries are
progressively broken by resonant interactions. Our effec-
tive method based on the time statistics of resonances
arising along a single, very long numerical integration is
alternative to formal approaches that define QIs via series
expansions [74,75]. The practical usefulness of these
formal expansions for a dynamics that covers an intricate,
high-dimensional network of resonances seems indeed
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doubtful. Through the retrieval of the half-widths of the
symmetry-breaking resonances, computer algebra also
permits us to extend the correspondence between the
Lyapunov spectrum and the spectrum of resonances well
beyond the standard relation linking the Lyapunov time to
the strongest resonances [76].
In the context of dynamical systems with a number of

d.o.f. that is not small, this work also considers an approach
based on PCA. The role of this statistical technique can be
twofold. We use PCA as an independent test to systemati-
cally validate the slowness of the QIs. While being intro-
duced semianalytically as dynamical quantities that are not
affected by the leading resonances, they can indeed be related
to the last PCs. By extension, the first PCs should probe the
directions of the main resonances. This leads to a second
potential application of the PCA,which should offer away to
retrieve the principal resonant structure of a dynamical
system. In this sense, PCA represents a tool to systematically
probe numerical integrations of a complex dynamics and
distill important hidden insights. We emphasize that PCA is
the most basic linear technique of dimensionality reduction
and belongs to the more general class of the unsupervised
learning algorithms. There are more sophisticated methods
of feature extraction that can be more robust [77,78] and can
incorporate nonlinearity [79]. These methods are often less
intuitive to understand, less straightforward to apply, and
harder to interpret than PCA. Yet, they might be more
effective and worth pursuing for future works.
With long-term numerical integration and a computer

algebra system at one’s disposal, the entire strategy we
develop in this work can in principle be applied to
other planetary systems and quasi-integrable Hamiltonian
dynamics with a moderate number of d.o.f.
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APPENDIX A: LYAPUNOV SPECTRUM

Convergence.—We perform two tests to address
the convergence of our implementation of the Benettin
et al. [43] method. We first compute the FT-LCEs for a
single initial condition of H4 and an ensemble of 150
different random sets of initial tangent vectors. Figure 8(a)
shows the [5th, 95th] percentile range of the resulting
marginal distributions of the positive FT-LCEs over a time
span of 10 Gyr. The distributions shrink with increasing
time, eventually collapsing on single time-dependent val-
ues. In this asymptotic regime, the Benettin et al. [43]
algorithm loses memory of the initial tangent vectors and
purely retrieves the FT-LCEs as defined in Eq. (10).
Therefore, Fig. 1(a) shows asymptotically the dependence
of the FT-LCEs on the initial condition z0 and represents
their statistical distribution over the phase-space domain

(a) (b)

FIG. 8. (a) Positive FT-LCEs of Hamiltonian H4 and corresponding characteristic timescales for a single initial condition and an
ensemble of 150 random sets of initial tangent vectors. The bands represent the [5th, 95th] percentile range of the marginal PDFs. The
lines denote the distribution medians. (b) Medians of the relative numerical errors ϵi on the FT-LCEs λi, as defined in Eq. (A1), for the
ensemble of 150 orbital solution of Fig. 1(a).

TIMESCALES OF CHAOS IN THE INNER SOLAR SYSTEM … PHYS. REV. X 13, 021018 (2023)

021018-19



explored by the dynamics in a nonergodic way. The
convergence of the computation is clearly slower for
smaller exponents, but a comparison with Fig. 1(a) indi-
cates that, even in the case of λ8, the numerical uncertainty
on the FT-LCEs of each orbital solution at 10 Gyr is
negligible with respect to the width of their ensemble
distributions.
To quantitatively estimate the numerical precision on the

computed FT-LCEs, we exploit the symmetry of the
spectrum stated in Eq. (9). For a single orbital solution,
the relative numerical error on each exponent λi can be
estimated as

ϵi ¼
����Δλiλi

����: ðA1Þ

We plot in Fig. 8(b) the medians of ϵi for the ensemble of
150 orbital solutions of Fig. 1(a). The relative errors
decrease asymptotically with time, as expected. Even in
the case of the smallest exponent, λ8, the median error is
less than 10% at 10 Gyr.
Hamiltonian H6.—We compute for comparison the FT-

LCEs of the forced ISS truncated at degree 6 in eccen-
tricities and inclinations, that is,H6. We consider 150 stable
orbital solutions with initial conditions very close to the
nominal values of Gauss’s dynamics and random sets of
initial tangent vectors, as we do for the truncation at degree
4. Figure 9 shows the [5th, 95th] percentile range of the
marginal PDF of each FT-LCE estimated from the ensem-
ble of solutions. Apart from being somewhat larger, the
asymptotic distributions of the exponents are very similar to
those of H4 shown in Fig. 1(a).

APPENDIX B: VECTORS γ1, γ2, γ3

We report here the explicit expressions of the vectors
ðγiÞ3i¼1. We first give the components of the vector ωLL of
the fundamental precession frequencies of the inner orbits
in the forced Laplace-Lagrange dynamics (including the
leading correction of general relativity) [4]:

ωLL ¼ ðgLL; sLLÞ
≈ ð5.87; 7.46; 17.4; 18.1;−5.21;−6.59;−18.8;−17.7Þ;

ðB1Þ

in units of arcsec yr−1 (see Refs. [80–82] for comparison
with the frequencies of the Laplace-Lagrange dynamics of
the entire Solar System). One then has

γ1 ¼ ð04; 14Þ ¼ ð0; 0; 0; 0; 1; 1; 1; 1Þ;
γ2 ¼ ð0; 0;−1;−1; 1; 1; 2; 2Þ;
γ3 ¼ −ωLL þ g518

≈ ð−1.61;−3.20;−13.2;−13.9; 9.47; 10.8; 23.0; 22.0Þ;
ðB2Þ

with the components of γ3 in units of arcsec yr−1. We recall
that g5 ≈ 4.25700 yr−1 is a constant in the forced model of
the ISS. The corresponding unit vectors ðbγiÞ3i¼1 are given by

bγ1 ¼ ð0; 0; 0; 0; 1; 1; 1; 1Þ=2;
bγ2 ¼ ð0; 0;−1;−1; 1; 1; 2; 2Þ=2

ffiffiffi
3

p
;

bγ3 ≈ ð−0.04;−0.08;−0.33;−0.35; 0.24; 0.27; 0.58; 0.55Þ:
ðB3Þ

Since 1=2
ffiffiffi
3

p
≈ 0.289, the components of bγ3 are only a few

percent away from those of bγ2. Therefore, along stable
orbital solutions with typical bounded variations of the
Mercury-dominated action variable X1, the two quantities
C2 and E2n exhibit very similar time evolutions. This is
not the case anymore when Mercury orbit reaches high
eccentricities.

APPENDIX C: ENSEMBLE DISTRIBUTIONS
OF THE QUASI-INTEGRALS OVER TIME

To retrieve the long-term statistical behavior of the QIs,
we consider the ensembles of 1080 numerical integrations
of the dynamical modelsH4 andH6, with very close initial
conditions and spanning 100 Gyr in the future, that have
been presented in Ref. [7]. We also consider the similar
ensembles of solutions for the simplified Hamiltonians H•

4

and H•
6 that we introduce in Sec. IV D. We report in Fig. 10

the time evolution of the ensemble PDFs of the low-pass
filtered dimensionless QIs and dimensionless actions X1,

FIG. 9. Positive FT-LCEs λi of Hamiltonian H6 and corre-
sponding characteristic timescales λ−1i . The bands represent the
[5th, 95th] percentile range of the marginal PDFs estimated from
an ensemble of 150 stable orbital solutions with very close initial
conditions. The lines denote the distribution medians.

MOGAVERO, HOANG, and LASKAR PHYS. REV. X 13, 021018 (2023)

021018-20



Ψ3 for the different models (the cutoff frequency of the time
filter is set to 1 Myr−1, as in Sec. IV B). More precisely, to
highlight the growth of the statistical dispersion, we
consider at each time the PDF of the signed deviation
from the ensemble mean, so that all the plotted distributions
have a null mean. At each time, the PDF estimation takes
into account only the stable orbital solutions, that is, those

solutions whose running maximum of Mercury eccentricity
is smaller than 0.7 [7]. Figure 10 shows that the QIs are
indeed slow quantities when compared to the LL action
variables. The growth of the QI dispersion is detailed
in Fig. 11, where we report the time evolution of the
interquartile range (IQR) of their distributions. After a
transient phase lasting about 100 Myr and characterized by

FIG. 10. Time evolution over 100 Gyr of the PDF of the signed deviation from the mean of the low-pass filtered dimensionless QIs and
dimensionless actions X1, Ψ3. Estimation from an ensemble of 1080 numerical orbital solutions for different models (H4, H6, H

•
4, and

H•
6). First row: bCinc. Second row: bC2. Third row: bE4 (H4) and bE6 (H6). Fourth row: bX1. Fifth row: bΨ3. The time of each curve is color

coded. At each time, the estimation only takes into account stable solutions, that are those with a running maximum of Mercury

eccentricity smaller than 0.7. The quantity bE•
2n is an exact integral of motion for the model H•

2n and its PDF has null dispersion.

FIG. 11. Time evolution of the interquartile range (IQR) of the ensemble PDFs of the QIs shown in Fig. 10. Left: bCinc. Middle: bC2.
Right: bE4 (H4) and bE6 (H6). The quantity bE•

2n is an exact integral of motion for the model H•
2n and its PDF has a null IQR.
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the exponential separation of close trajectories, the time
growth of the IQR follows a power law typical of diffusion
processes. Figures 10 and 11 clearly show the slower
diffusion of Cinc and C2 in the model H•

2n when compared to
H2n. We recall that E•

2n is an exact integral of motion for the
model H•

2n (see Sec. IV D) and its PDF has null dispersion.
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