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We demonstrate a superconducting artificial atom with strong unidirectional coupling to a microwave
photonic waveguide. Our artificial atom is realized by coupling a transmon qubit to the waveguide at
two spatially separated points with time-modulated interactions. Direction-sensitive interference arising
from the parametric couplings in our scheme results in a nonreciprocal response, where we measure a
forward/backward ratio of spontaneous emission exceeding 100. We verify the quantum nonlinear behavior
of this artificial chiral atom by measuring the resonance fluorescence spectrum under a strong resonant
drive and observing well-resolved Mollow triplets. Further, we demonstrate chirality for the second
transition energy of the artificial atom and control it with a pulse sequence to realize a qubit-state-dependent
nonreciprocal phase on itinerant photons. Our demonstration puts forth a superconducting hardware
platform for the scalable realization of several key functionalities pursued within the paradigm of chiral
quantum optics, including quantum networks with all-to-all connectivity, driven-dissipative stabilization of
many-body entanglement, and the generation of complex nonclassical states of light.
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I. INTRODUCTION

Chiral light-matter interfaces have been long studied in
quantum optics [1,2] and promise a myriad of potential
opportunities for developing quantum networks with long-
range connectivity [3–5] and generating novel many-body
entangled states of light [6,7] and matter [8,9]. Light-matter
interaction is said to be chiral when the scattering of a
photon from an atom depends strongly on the photon’s
propagation direction in a one-dimensional (1D) wave-
guide [10]. This breaking of the symmetry of atom-
waveguide coupling to the right and left propagating modes
gives rise to a range of unique phenomena. For example,
a resonant photon impinging on a chiral atom strongly
coupled to a 1D waveguide acquires a nonreciprocal π
phase shift conditioned on the state of the atom. This
remarkable effect can be exploited to realize entangling
gates between distant stationary qubits mediated by itin-
erant photons [11,12]. In the paradigm of waveguide
quantum electrodynamics (QED), coupling several chiral

two-level systems to a common waveguide results in
novel collective spin dynamics and the formation of exotic
nonequilibrium phases of entangled spin clusters [9].
Conversely, complex nonclassical states of light such as
multidimensional cluster states and Fock states can be
generated efficiently using protocols that rely on determin-
istic chiral atom-photon interactions [7,13]. In addition,
chiral atom arrays can be used for generating many-photon
bound states [14] and for quantum nondemolition detection
of propagating photons [15].
Chiral atom-photon interfaces have been realized in the

optical domain by coupling atoms and solid-state quantum
emitters to nanophotonic structures, where the strong
confinement of light results in the locking of the local
polarization of a photon to its direction of propagation
[10,16–20]. Despite remarkable progress in these systems,
achieving strong unidirectional coupling with a chain of
emitters remains challenging due to the relative weakness
of interactions in the case of single atoms and the
environment-induced frequency disorder of solid-state
emitters. More recently, artificial atoms based on super-
conducting qubits have emerged as a powerful platform for
waveguide QED in the microwave domain. These systems
offer control over individual emitters and their coupling
to the environment, as well as the ability to tailor the
dispersion of the electromagnetic modes in waveguides.
Additionally, the relatively large wavelength of radiation at
the gigahertz band allows for the precise placement of
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atoms along a waveguide to control photon-mediated
interactions and collective dissipation [21,22]. These
advantages have enabled several demonstrations of wave-
guide QED phenomena with superconducting artificial
atoms, including resonance fluorescence [23–26], Dicke
superradiance and subradiance [21,22,27,28], formation of
qubit-photon bound states [29,30], and the realization of
long-range waveguide-mediated coupling for many-body
quantum simulations [31]. Despite this rapid progress,
studying chiral quantum optics with superconducting
qubits remains challenging due to the lack of an efficient
unidirectional interface for microwave photons.
Nonreciprocal transport of microwave photons is pos-

sible using devices based on ferromagnetic or ferrimagnetic
materials, which break Lorentz reciprocity. Recently, three-
dimensional qubit-cavity systems have successfully real-
ized chiral interactions using this approach [32]. However,
ferromagnetic devices such as circulators are not suitable
for on-chip integration due to their size, large magnetic
fields, and typically lossy response. Alternatively, low-loss
nonreciprocal components have been realized using
synthetic gauge fields [33–36]. While these experiments
demonstrate the nonreciprocal propagation of microwave
photons, a simple and scalable approach for realizing
on-chip chiral interactions with superconducting qubits
remains desirable. More recently, unidirectional emission
and absorption of microwave photons have been proposed
[11,37,38] and demonstrated [39–41] using a pair of
entangled qubits. However, relying on the interference of
the emission from two distinct physical qubits limits the
chiral behavior to weak drives where at most a single
photon is exchanged with a radiative bath. This diluted
quantum nonlinear response forbids a direct realization of
strongly driven-dissipative quantum systems.
Here, we experimentally demonstrate a chiral artificial

atom consisting of a transmon qubit coupled to a trans-
mission line at two spatially separated points, operating
in the so-called giant-atom regime [42–45]. The emitted
field components from the two coupling points are
imparted a relative phase using time-modulated parametric
couplings. In this setting, chirality arises from the inter-
ference between the two emission pathways resulting from
the phase difference from the parametric couplings and the
direction-dependent phase delay from propagation in the
waveguide. We show highly directional atom-waveguide
coupling, with the rate of spontaneous emission to the
forward-propagating modes exceeding that of backward-
propagating modes by more than 2 orders of magnitude.
Relying on a single physical qubit as the emission source,
our scheme is robust against decoherence and preserves
quantum nonlinear response under strong drives. We
demonstrate this quantum nonlinearity using resonance
fluorescence measurements and observe Mollow triplets
under a strong resonant drive. The chiral response is further
shown to be continuously tunable and extends to the

transmon qubit’s second transition (jei → jfi). Finally,
we use time-domain control to realize a qubit-state-
dependent response to traveling photons in the waveguide.
The minimal hardware overhead in our experiment, com-
bined with near-perfect directionality, in situ control of the
coupling, and access to higher-order chiral transitions,
provide a scalable platform for future studies of driven-
dissipative entanglement generation, quantum networks
with all-to-all coupling, and cascaded quantum systems
with superconducting qubits.

II. DESIGN OF THE ARTIFICIAL ATOM

As we show in Fig. 1(a), our experiment is based on a
planar transmon qubit (hereafter called the “emitter”)
coupled at two locations to an on-chip coplanar waveguide.
We use a dissipation port at each coupling point, which is
designed to realize a complex coupling rate to the wave-
guide modes with a well-defined phase (φl;r for the left or
right ports). The Hamiltonian for this system is given
by Ĥ ¼ Ĥatom þ Ĥfield þ Ĥint, where Ĥatom=ℏ ¼ ωgejeihej
and Ĥfield=ℏ ¼ R

dkωkðâ†k;fâk;f þ â†k;bâk;bÞ are the free
Hamiltonians for the atom and the field modes, respec-
tively. The integral in Ĥfield is performed over positive
values of the photonic wave vectors k, and the subscripts
denote forward (f) and backward (b) propagating modes
in the waveguide. The atom-waveguide interaction
Hamiltonian can be written as

Ĥint=ℏ ¼
X
i∈l;r

Z
dk½g̃k;iσ̂−ðâ†k;feikxi þ â†k;be

−ikxiÞ þ H:c:�;

ð1Þ

where g̃k;lðrÞ denotes the complex atom-waveguide cou-
pling strength at the left (right) coupling points, σ̂− is the
emitter’s lowering operator, and xlðrÞ is the position of
the left (right) coupling point along the waveguide [see
Fig. 1(a)]. Assuming a waveguide with linear dispersion,
the photonic mode resonant with the jgi → jei transition of
the atom (frequency ωge) has a wave vector k ¼ ωge=v,
where v is the speed of propagation of the modes in the
waveguide. Denoting the atom-waveguide coupling
strength for this mode as g̃lðrÞ at the left (right) coupling
points, the decay rate of the atom to the waveguide is given
by κem;lðrÞ ¼ 4πjg̃lðrÞj2DðωgeÞ, whereDðωÞ is the density of
states in the waveguide [42]. The emission field of the atom
acquires a phase φlðrÞ ¼ arg½g̃lðrÞ� at the coupling points.
In addition, the distance d ¼ xr − xl sets the propagation
phase φWG ¼ ωged=v between the two coupling points.
When setting d ¼ λ=4 (where λ ¼ 2πv=ωge is the wave-
length of the photons), a photon emitted from one coupling
point accumulates a π=2 phase shift when propagating to
the adjacent coupling point. In this situation, setting the
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relative phase φc ¼ φr − φl ¼ π=2 results in a chiral
response, with the emission from the two ports interfering
constructively (destructively) in the forward (backward)
direction. Formally, the spatially nonlocal emitter-
waveguide coupling can be described using the SLH
formalism (see Appendix B), leading to a pair of input-
output relations for the forward- and backward-propagating
modes:

âfout ¼ âfin þ ð1þ eiðφc−φWGÞÞ
ffiffiffiffiffiffiffi
κem
2

r
σ̂−; ð2Þ

âbout ¼ âbin þ ð1þ eiðφcþφWGÞÞ
ffiffiffiffiffiffiffi
κem
2

r
σ̂−: ð3Þ

Here, âfðbÞin is the input field for the forward-propagating

(backward-propagating) mode, âfðbÞout is the corresponding

output field, and we assume that the magnitude of the decay
rate at the two coupling points is equal and given by κem.
Solving the input-output relations yields the transmission
t ¼ hâfouti=hâfini and the emitter’s rate of spontaneous
emission into the forward (backward) direction:

ΓfðbÞ
1D =κem ¼ 1þ cosðφc ∓ φWGÞ: ð4Þ

Note that, in principle, any waveguide length permits full
suppression of coupling to one waveguide direction (with
the exception of d ¼ nλ=2, for n ∈ Z). This maximum
chirality condition only coincides with the maximum
emitter external decay rate when d ¼ ð2nþ 1Þλ=4, moti-
vating our choice of the waveguide length (φWG ¼ π=2),
which results in Γb

1D ¼ 0 (Γf
1D ¼ 2κem) at φc ¼ π=2.

To realize complex coupling strengths, we rely on a
periodic modulation of the photon hopping rates from the

(b)(a)

(c)

FIG. 1. Chiral atom coupled to a waveguide. (a) Schematic of chiral atom-waveguide system. The emitter atom couples to the
waveguide at two points separated by a distance d ¼ λ=4. Time-modulated coupling imparts a phase of φlðrÞ at the left (right) point; the
relative phase φc ¼ φr − φl tunes interference between the two radiation pathways. φc ¼ π=2 results in maximum coupling to forward-
propagating modes (blue) and no coupling to backward-propagating modes (red). Left-hand inset: varying φc results in coupling to
waveguide modes of opposite directions. (b) Optical image of the fabricated device. The emitter transmon (E, yellow) couples to a
microwave coplanar waveguide (WG, orange) at two points separated by d ¼ 4.590 mm. At each point, radiation to the waveguide is
mediated by a frequency-selective dissipation port containing a tunable coupler (ClðrÞ, purple) and a filter cavity (RlðrÞ, blue) directly
coupled to the waveguide (orange). A pair of flux bias lines (ZC;lðrÞ, green) are used to drive the couplers parametrically.

(c) Transmission spectrum jtj ¼ jhâfouti=hâfinij of the device under the experimental settings used for achieving maximum chirality.
Parametric driving of the couplers leads to a visible sideband for the emitter transmon (E1) at the center of the measurement band. ClðrÞ
(RlðrÞ) mark the resonances corresponding to the couplers (filter cavities).
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emitter to the waveguide [46]. We achieve this by frequency
modulating a coupler device [47–49] that is capacitively
coupled to the emitter. In this configuration, the coupler is
modulated with a sinusoidal flux drive at the frequency Δ,
with an amplitude ϵlðrÞ and phase φlðrÞ, resulting in an
effective emitter-waveguide coupling term that picks up
the driving phase arg½g̃lðrÞ� ¼ φlðrÞ [50]. Consequently, the
relative phase between the two coupling pathways
φc ¼ π=2 can be precisely set by controlling the relative
phase between the flux modulation drives of the two
couplers. We point out that, beyond shifting the emitter
frequency by Δ, the periodic flux modulation also creates
additional undesired frequency components in the emitter’s
spectrum (separated by integer multiples of Δ, hereafter
referred to as the “sidebands”; see Ref. [51]), which can act
as parasitic decay channels into the waveguide. To suppress
these decay channels, each dissipation port in our experi-
ment contains a compact microwave resonator, which
filters the emission into the waveguide spectrally.
Figure 1(b) shows an image of the full device, with the
emitter transmon, two frequency-tunable couplers, and the
filter resonators. Figure 1(c) shows the transmission spec-
trum through the waveguide for a coherent drive, where we
can identify the resonant features corresponding to the filter
resonators (Rl;r), the couplers (Cl;r), and the first-order
sideband of the emitter qubit (E1 at ωE1 ¼ ωE þ Δ). For
clarity of visualization, the transmission trace in Fig. 1(c)
was recorded with input powers that result in moderate
saturation of the chiral atom, resulting in a low transmission
amplitude on resonance. We deliberately design the filter
resonators to have different resonance frequencies, with
their detuning far exceeding their external decay rates to the
waveguide. This condition is required to avoid mode
hybridization between the resonators via the photon-
mediated exchange interaction through the waveguide
[43]. We also note that a similar concept with an alternative
approach to sideband filtering has been theoretically
proposed based on photonic crystal waveguides [52]. At
optimal settings for chirality, we set the flux drive ampli-
tudes of the couplers to achieve equal emitter-waveguide
couplings via both dissipation ports [see Fig. 1(c)]. A full
analytical analysis of the parametric waveguide coupling
and the spurious sideband suppression is provided in
Appendix H.

III. DEVICE PARAMETERS

In our experiment, the emitter is a transmon qubit
with a maximum frequency of ωE=2π ¼ 5.636 GHz.
The tunable couplers are flux modulated with a frequency
of Δ=2π ¼ 805 MHz, creating the emitter first (blue)
sideband at a frequency of ωE1=2π¼ωge=2π¼6.441GHz
[see Fig. 1(c)]. Flux control of the tunable couplers is
enabled by SQUID loops with two symmetric Josephson
junctions (see Appendix A 4). The tunable couplers are

designed to operate in the transmon regime and are flux
biased to ωC;lðrÞ=2π ¼ 6.482 (6.402) GHz. At the experi-
ment operation settings, the filter cavity frequencies are
ωR;lðrÞ=2π ¼ 6.184 (6.712) GHz (shifted from their “bare”
values due to interaction with couplers). We control the
external coupling rate Γf

1D=2π of the chiral artificial atom by
changing the couplers’ configuration (see Appendix A 3).
The distance between the two coupling points along the
waveguide is 4.590 mm, which corresponds to a λ=4
separation at ωE1=2π ¼ 6.441 GHz [λ ¼ 2πc=ðωE1

ffiffiffiffiffiffiffi
εeff

p Þ,
εeff ¼ 6.45]. Our fabrication methods and device parameters
are summarized in Appendix A.

IV. OBSERVATION OF CHIRALITY

We characterize the response of the atom by performing
transmission spectroscopy by applying a weak microwave
drive of variable frequency to one end of the waveguide.
This measurement is performed at a sufficiently low power
such that the atom’s excited state’s population remains
negligible. In a system with a partial directional response
(the most general case), coherent scattering from the atom
results in a Lorentzian line shape with a transmission
coefficient given by

tðδωÞ ¼ 1 −
Γf
1D

iδωþ Γtot=2
;

Γtot ¼ Γf
1D þ Γb

1D þ Γ0; ð5Þ

where δω ¼ ω − ωge is the atom-drive detuning. Here, Γf;b
1D

are the rates of the atom’s spontaneous emission in the
forward and backward directions, and Γ0 is its intrinsic
decoherence rate. For a chiral atom in the strong coupling
regime, when the atom couples dominantly to the forward-
propagating modes (Γf

1D ≫ Γb
1D þ Γ0), we expect to see a

2π change in the phase imparted to the transmitted probe as
the frequency is swept across the resonance. In contrast,
this phase change cannot exceed π when the atom-
waveguide coupling to the forward- and backward-
propagating modes are symmetric (see Refs. [53–55] and
Appendix A 2).
Figures 2(a) and 2(b) show the measurement results for

two different phase settings. As evident, when φc ¼ π=2,
we observe the canonical signature of chirality as a 2π
phase across the resonance, which is consistent with our
expectation for Γb

1D=Γ
f
1D → 0. Conversely, when we set

φc ¼ 3π=2 (via digital control of the phases of the
couplers’ flux drives), the atom’s interaction with the
forward-propagating drive disappears, consistent with
Γf
1D=Γb

1D → 0. This phase-sensitive directional behavior
can be controlled with a fine resolution by varying φc
in small steps across a full 2π range. Figure 2(c) shows
the Γf

1D obtained from a fit to the measured complex
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transmission coefficient, where we observe a sinusoidal
dependence on the relative coupling phase. At each phase
setting, we repeat the experiment with the drive tone
propagating backward (this is done using a pair of
electromechanical switches; see Appendix A 2) to obtain
Γb
1D. As evident, the backward emission also varies

periodically with an out-of-phase profile with respect to
the forward emission.

These observations verify our understanding of the
underlying physical principles governing the operation
of our device. We then proceed to benchmark directionality,
defined as ηd ¼ Γf

1D=Γb
1D (at the optimal φc), as a figure of

merit for a chiral atom. Figure 2(d) shows the extracted
directionality bounds in a series of experiments in which
we change the magnitude of atom-waveguide coupling by
changing the emitter-coupler detuning. As evident, we can

(a) (c)

(b) (f)(e)

FIG. 2. Elastic chiral response under weak drives. (a) The phase of the complex transmission coefficient measured with a weak
microwave tone propagating in the forward direction through the waveguide. At φc ¼ π=2 (blue curve), the atom is dominantly coupled

to forward-propagating modes (Γf
1D ≫ Γb

1D þ Γ0) and we observe a 2π change in the phase imparted to the microwave tone as its
detuning is swept about the resonance—a signature of chirality. When φc ¼ 3π=2 (red curve), the atom is chiral in the backward
direction and the emitter interacts minimally with the forward-propagating probe. The inset shows the amplitude of the transmission
coefficient. Solid lines show fits to theory. These measurements are performed with extremely weak drives (Pin ¼ −140 dBm) such that
the chiral atom is not power saturated. (b) Measured transmission coefficient in the complex plane. At resonance (δω ¼ 0), the
transmission coefficient lies to the left of the origin in the case where the atom is dominantly coupled to forward-propagating modes

(blue curve). This results in the 2π phase change shown in (a). In contrast, in a nondirectional system (Γf
1D ¼ Γb

1D), the transmission
coefficient would always stay to the right of the origin (yellow curve), and as a result, the transmission phase change cannot exceed π.
(c) Periodic behavior of the emitter-waveguide coupling rate Γ1D when the relative phase φc is varied. The blue (red) curve corresponds
to the measurement with the probe propagating forward (backward). Solid lines are fits to theory. (d) Measured directionality ratio

ηd ¼ Γf
1D=Γb

1D for various atom-waveguide coupling rates. (e) Measured fluctuations in the modulation phase of one of the couplers
across 10 h. The measurements correspond to a relative phase variance of hδϕ2

ci ¼ 3 × 10−3 between the two couplers, and a phase-
fluctuation limited bound of ηd < 1.3 × 103 on the directionality. (f) Measured values of the ratio between the atom’s emission into the

waveguide’s mode of interest and its total decoherence rate, β ¼ Γf
1D=ðΓf

1D þ Γb
1D þ Γ0Þ. The dotted purple line and shaded region show

the fit results and the corresponding uncertainty for a model accounting for decoherence due to emitter-coupler hybridization and finite
waveguide temperature. Red circle corresponds to the extracted β factor for the data shown in (a) and (b). All error bars denote
95% confidence intervals.
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achieve ηd ≳ 100 consistently, which indicates a near-
perfect chiral response. We note that the extracted bounds
are conservative estimates limited by the sensitivity of
our characterization technique (due to the difficulty of
extracting a vanishingly small Γb

1D from the spectral
response; see Appendixes A 2 and C), and the actual
directionality ratios are likely to be higher. As an additional
test, we characterize the phase stability of the parametric
drives, which can affect the chiral response due to the
interferometric nature of our experiment. We do this by
directly measuring the phase fluctuations of a coupler’s
modulation drive over a long time span and using it to
calculate a bound on directionality analytically. We find
that the phase fluctuations of the flux drives do not play a
significant role in our experiments [see Fig. 2(e)].
Having established the chiral response, we now tend

to a more general figure of merit in waveguide QED,
namely, the ratio between the atom’s emission into the
waveguide’s mode of interest and its total decoherence rate,
β ¼ Γf

1D=ðΓf
1D þ Γb

1D þ Γ0Þ [10]. The measured values of β
in our experiment are shown in Fig. 2(f). As the coupling to
the backward-propagating modes is suppressed nearly
completely, the measured β factors are dominantly deter-
mined by the intrinsic decoherence rate Γ0. We observe an
improvement in the measured β values with increasing Γf

1D,
consistent with a model assuming a constant Γ0. From a fit
to the data, we find Γ0=2π ¼ 350� 45 kHz. The increasing
trend of β factors saturates at larger values of Γf

1D,
indicating an increase in the decoherence rate concurrent
with the increasing emission rate into the waveguide. This
behavior may be attributed to increased decoherence due to
the finite temperature of the waveguide and an increase in
the emitter-coupler mode hybridization (Appendix D). The
highest measured value of β ¼ 0.89� 0.03 in our experi-
ment is comparable to the highest reported values in optical
chiral systems [16]. Moreover, we estimate that an order-of-
magnitude improvement (Γf

1D=Γ0 > 100) is within reach in
our system with improved device design (see Appendix D),
corresponding to β factors close to unity.

V. RESONANCE FLUORESCENCE

Our experiments so far establish a chiral response at low
drive powers. In this regime, however, the elastic response
of two-level systems is identical to that of bosonic systems
such as cavities, which can also exhibit a unidirectional
response [18]. We next probe the quantum nonlinear
behavior of the artificial atom, which manifests as the
saturation of the elastic response. For a two-level system
under strong drives, the transmission coefficient through
the waveguide is given by (see Appendix E)

tðδωÞ ¼ 1 −
Γf
1DΓ1ðΓ2 − iδωÞ

Ω2
RΓ2 þ Γ1ðδω2 þ Γ2

2Þ
: ð6Þ

Here, ΩR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4PinΓ

f
1D=ℏωge

q
is the Rabi frequency from

drive, Γ1 is the total energy relaxation rate, Γ2 ¼ Γ1=2þ Γϕ

is the total decoherence rate, and Γϕ is the pure dephasing
rate of the atom. Figure 3(a) shows the results of a
measurement in our system, where increasing the incident
power (Pin) leads to a monotonic reduction of the trans-
mission phase. In the complex plane, this power-
broadening effect manifests as a change in the shape of
the trajectory from circular to elliptical [Fig. 3(b)]. The
good agreement between the experiment and the fits
indicates our model’s validity, which assumes a single
two-level atom with unidirectional coupling to a 1D bath.
From these fits, we obtain Γ1=2π ¼ 1.35� 0.03 MHz and
Γ2=2π ¼ 0.67� 0.1 MHz.
Beyond the elastic response, we also verify the two-level

system behavior by measuring the resonance fluorescence
spectrum. Under strong drives, when ΩR ≫ Γtot, inelastic
scattering from an atom leads to the emergence of three
distinct peaks in the emission spectrum (at ωge and
ωge � ΩR) [23,56–58], known as the Mollow triplet. For
a chiral atom, the power spectral density (PSD) of the
incoherent emission is given by (see Appendix E)

SðωÞ ¼ 1

2π

ℏω0Γ
f
1D

4

�
Γs

ðδωþΩRÞ2 þ Γ2
s

þ 2Γ2

δω2 þ Γ2
2

þ Γs

ððδω −ΩRÞ2 þ Γ2
sÞ
�
: ð7Þ

Here, Γs ¼ ðΓ1 þ Γ2Þ=2 is the half width at half maxi-
mum of the Mollow sidebands. The measured resonance
fluorescence spectra in our system are shown in Figs. 3(c)
and 3(d), where we observe well-resolved Mollow triplets
over a wide range of drive powers. Solid lines are fits to the
model from Eq. (7), showing good agreement to our model.
From the fits, we extract Γ1=2π ¼ 1.34� 0.15 MHz,
Γ2=2π ¼ 0.72� 0.08 MHz, in agreement with the rates
extracted from the elastic response. The persistence of
chirality under strong drives is clearly manifested by the
constant total linewidth and the power under each peak, as
well as the rate of scaling of the Rabi frequencies with the
input power (see Appendix E). These measurements con-
firm that the chiral atom can be driven with large drive
powers (ΩR=Γ1 ≈ 10). The upper limit on the drive power
in our system is limited by the excitation of the couplers,
which are weakly driven due to their small detuning to the
emitter qubit. This constraint can be relaxed in future
experiments by increasing the coupler-emitter detuning at
the expense of an increased coupler-waveguide coupling.

VI. CHIRALITY OF THE jei → jf i TRANSITION

Our experiments so far have established a chiral two-
level system. However, the emitter transmon qubit in our
experiment is a nonlinear oscillator with a rich level
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structure, including a third energy level jfi [see Fig. 4(a)].
The distinct jei → jfi transition frequency (ωef ) of a
transmon has been used as an auxiliary degree of freedom
for time-domain control of the emission and implementa-
tion of qubit-photon entangling gates [59–63]. Here, we
demonstrate that similar functionalities can be implemented
with our chiral qubit.
We begin by investigating the energy level structure of

the chiral atom via two-tone spectroscopy, where we probe
the system with a weak drive through the waveguide while
populating the excited state jei with a strong drive at ωge.
The results are shown in Fig. 4(b), where we can identify a
resonant feature at ωef . From these data, we obtain an
anharmonicity of α ¼ ωge − ωef ¼ 283 MHz, in close
agreement with the designed anharmonicity value for the

emitter qubit (272 MHz). We next find the chiral settings
for the e − f transition by repeating the two-tone spec-
troscopy while varying the relative coupling phase φc. As
described previously, achieving strong coupling to the
waveguide requires cancellation of the backward emission
rate by satisfying the kdþ φc ¼ π criterion. Additionally,
we need to suppress parasitic sources of decay, which for
the case of e − f transition includes the radiative decay of
the g − e transition into the waveguide. While the filter
cavities in our device are designed for optimal spectral
filtering near ωge, we can find a chiral operation point for
the e − f transition by properly choosing the modulation
frequency Δ. Figure 4(c) shows the results of transmission
spectroscopy performed in the forward and backward
directions, where we observe a periodic modulation in

FIG. 3. Elastic and inelastic response of a strongly driven chiral atom. (a),(b) Coherent response of the emitter with increasing drive
power. The transmission amplitude t is initially circular in the complex plane and becomes elliptical with increasing drive power, a
signature of saturation of two-level atoms. Solid lines are fits to the expected theoretical response shown in Eq. (6). (c) Measured
resonance fluorescence spectrum of the chiral artificial atom, where we see well-resolved Mollow triplets. Solid lines are fits to Eq. (7),
showing good agreement between experiment and theory. We extract an energy relaxation rate Γ1=2π ¼ 1.34� 0.15 MHz, decoherence
rate Γ2=2π ¼ 0.72� 0.08 MHz, and a small pure dephasing rate of Γϕ=2π ¼ 50 kHz for the chiral atom from these fits. (d) Measured
power spectral density (PSD) for a range of drive powers. The Rabi frequency ΩR is varied from a few hundred kilohertz to 14 MHz,
indicating that the emitter can be driven strongly (ΩR=Γ1 ≈ 10).
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the contrast of the spectral feature at ωef via φc. At the
optimal choice of φc extracted from this measurement
[Fig. 4(d)], we confirm the chiral response for the e − f
transition using fits to a three-level system model and
obtain a directionality ratio ηd of 12 (see Appendix F).
We next employ time-domain control of the transmon to

realize a conditional phase response. We begin with pulsed
excitation of the emitter’s g − e transition through the
waveguide. Because of the absence of a readout resonator
in our experiment, we directly measure the emitted field
from the qubit with heterodyne detection and phase-
coherent averaging. This measurement provides the com-
ponent of the qubit’s Bloch vector in quadrature with the
drive hσxi, which evolves with time as (see Appendix G)

hσxiðt ¼ τPÞ ¼ sinðΩRτPÞ exp ð−ΓSτPÞ: ð8Þ

Here, ΓS ¼ ðΓ1 þ Γ2Þ=2 and τP is the duration of the
driving pulse [58]. Figure 4(e) shows the results, where we
observe Rabi oscillations of the qubit as it is driven through
and simultaneously decays into the open waveguide.

Using these measurements, we calibrate a π pulse to
prepare the emitter in the excited state [Fig. 4(f) inset].
We then measure the complex transmission coefficient near
the e − f transition by sending a pulse centered at ωef to the
waveguide and performing heterodyne detection at the
output. Figure 4(f) shows the measurement results, where
we observe a phase change across the resonance when the
qubit is initialized in the jei state. Further, repeating the
experiment without the π pulse results in a flat spectral
response near ωef. This state-dependent phase response can
be combined with dispersion engineering (to protect the
g − e transition from radiative decay to the waveguide)
for future implementations of qubit-photon gates [61–63]
with chiral qubits (see Appendix F).

VII. CONCLUSION

In conclusion, we use distributed parametric interactions
to break the time-reversal symmetry and realize unidirec-
tional emission from a superconducting qubit into a planar
microwave waveguide. In our system, we can achieve near-
perfect directionality and strong coupling to the waveguide

(a)  

(c)

(b)

(f)

(e)

(d)

FIG. 4. Chirality of the jei → jfi transition. (a) Level structure of the emitter transmon. (b) Two-tone spectroscopy of emitter
transmon. The artificial atom frequency is tuned by a magnetic flux through the emitter transmon’s SQUID loop. The bias-tuned
jgi → jei transition is continuously driven on resonance, populating jei. A microwave probe tone then excites the jei → jfi transition.
Dashed lines are added as visual guides for the relevant transmission features and obtained from fits to transmon frequency expressions.
(c) Transmission spectrum near jei → jfi transition as the relative phase between coupler drives (φc) is varied. Left- and right-hand
panels correspond to opposite excitation directions of the waveguide. We use a modulation frequency Δ=2π ¼ 930 MHz for this
measurement. (d) Transmission trace of chiral jei → jfi transition, with fitted theory and master equation simulation plots overlaid.
(e) Rabi oscillations for average drive power of −127 dBm. Inset: pulse sequence for Rabi oscillation measurements. The qubit is
excited by a Gaussian pulse of variable length τP via the waveguide. Qubit emission is averaged in a phase-coherent fashion to obtain
hσxi. (f) Transmission and phase of the jei → jfi transition under conditions for forward chirality, with (blue) and without (red) the
application of the π pulse. Inset: measurement protocol for pulsed spectroscopy of the jei → jfi transition. The qubit is excited to jei by
a resonant π pulse. A readout pulse then probes the jei → jfi transmission. M.E., Master equation and RO, readout.
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by controlling the forward and backward emission rates
in situ and suppressing the parasitic sources of decay.
We further verify the persistence of the two-level sys-
tem behavior of the chiral qubit under strong drives
(ΩR=Γ1 ≈ 10) with resonance fluorescence measurements.
Finally, we show a directional response from the second
transition of the chiral qubit and use it with pulsed control
to realize a qubit-state-dependent phase response for
traveling photonic wave packets. Our experiment thus
provides an integrated platform for artificial chiral atoms
with strong coupling to a one-dimensional photonic bath in
the microwave domain. Looking ahead, we anticipate
significant improvements in this platform by stronger
suppression of parasitic decay using metamaterial wave-
guides [64], reducing dephasing with asymmetric junctions
[65], and better waveguide thermalization with cryogenic
attenuators [66]. Implementing these measures is expected
to lead to Purcell factors (Γf

1D=Γ0) beyond 100 and further
device miniaturization. With these improvements, we envi-
sion chip-scale experimental studies of chiral quantum optics
with arrays of artificial atoms, which may enable quantum
state transfer immune to thermal noise [4,5], quantum
networks with all-to-all connectivity [11,67], and driven-
dissipative stabilization of many-body entanglement [8,68].

ACKNOWLEDGMENTS

This work was supported by startup funds from the
Caltech EAS division, a Braun trust grant, and the National
Science Foundation (Grant No. 1733907). C. J. gratefully
acknowledges support from the IQIM/AWS Postdoctoral
Fellowship. F. Y. gratefully acknowledges support from the
NSF Graduate Research Fellowship.

APPENDIX A: METHODS

1. Fabrication

Our device is fabricated on a 1 × 1 cm2 high-resistivity
(10 kΩ cm) silicon substrate. Electron-beam lithography is
used to pattern the structures in separate metal layers on
the chip. Each lithography step is followed by electron-
beam evaporation of metal and lift-off in N-methyl-2-
pyrrolidone at 150 °C for 1.5 h. Device layers are as
follows: (i) 150-nm-thick niobium markers, deposited at
3 Å=s; (ii) 120-nm-thick aluminum ground plane, wave-
guide, flux lines, resonators, and qubit capacitors, depos-
ited at 5 Å=s; (iii) Josephson junctions evaporated (at
5 Å=s) using double angle evaporation and consisting of
60 and 120 nm layers of aluminum, with 15 min of static
oxidation between layers; (iv) 150-nm-thick aluminum
band-aids and air bridges, deposited at 5 Å=s. Band-aids
ensure electrical contact between Josephson junctions
and qubit capacitors. Air bridges are used to ensure the
suppression of the slot-line modes in the waveguide [69].
Air bridges are patterned using gray-scale electron-beam

lithography and developed in a mixture of isopropyl
alcohol and deionized water, followed by 2 h of reflow
at 105 °C [70]. Electron-beam evaporation of the band-aid
and air bridge layer is preceded by 7 min of Ar ion milling.

2. Measurement setup

Measurements are performed in a 3He=4He dilution
refrigerator. A schematic of our measurement setup is
shown in Fig. 5. The fabricated chip is wire bonded to a
printed circuit board and placed in an aluminum box. The
box is then mounted to the mixing plate which is cooled to a
base temperature of 10 mK.
The waveguide input line (WGIN) is used to excite

the chiral qubit from either waveguide direction. Toggling
both switches in Fig. 5 changes the excitation direction for

FIG. 5. Measurement setup. Schematic of dilution fridge wiring
for measurement. LPF, Low pass filter and MXC, mixing
chamber.
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transmission measurements. The waveguide input line
(WGIN) is attenuated at each temperature stage to minimize
thermal noise; the total attenuation is 70 dB. A tunable
attenuator (not shown) is also added to the input line at room
temperature to control input power. Two isolators are used to
reduce thermal noise in the waveguide output line (WGOUT).
The output is amplified by a high electron mobility transistor
(HEMT) amplifier at the 4 K stage and a room temperature
amplifier (not shown) outside of the fridge.
A low-noise, multichannel dc source provides current

biases (ZC;l, ZC;r, ZE) to flux tune the emitter and coupler
qubit frequencies. A low-pass rf filter (32 kHz cutoff
frequency) suppresses high-frequency thermal noise in
the dc lines, which are not attenuated. Coupler dc bias
lines are combined with rf inputs (rfC;l, rfC;r) using
microwave bias tees, enabling frequency tuning and para-
metric modulation of coupler frequencies. Coupler rf drives
(Rohde and Schwarz SMB 100A) are clocked by an
external rubidium clock, allowing for relative phase tuning.
rf inputs are attenuated at the 50 K, 4 K, and cold plates to
reduce thermal noise.

a. Transmission measurements

The coherent response of the device is measured using a
vector network analyzer (VNA, Agilent N5242A). The VNA
can be used to simultaneously measure the amplitude and
phase of the transmitted signal via heterodyne detection.
For the characterization of emitter qubit chirality, the drive
from the VNA is attenuated to sub-single-photon power
levels in order to ensure that the qubit is not saturated. To
obtain the atom-waveguide coupling rate Γf

1D and the total
linewidth Γtot, we use the circle-fit method when the
condition Γf

1D > Γb
1D þ Γ0 is satisfied. The circle-fit method

does not rely on initial conditions and provides more robust
estimation of the coupling rates [71]. When Γf

1D ≤ Γb
1D þ Γ0,

we use nonlinear least-squares fitting to Eq. (B17) to obtain
Γf
1D and Γtot. When the atom-waveguide coupling is chiral

and the atom couples dominantly to forward-propagating
modes (Γf

1D > Γb
1D þ Γ0), the transmission coefficient at

resonance (δω ¼ 0) lies to the left of the origin in the
complex plane (see Fig. 6). This results in a full 2π change
in the phase imparted to the transmitted field. In contrast,
when the atom-waveguide coupling to forward- and
backward-propagating modes is symmetric (Γf

1D ¼ Γb
1D;

Γf
1D ≤ Γb

1D þ Γ0), the transmission coefficient lies to the
right of the origin at resonance and the phase change
imparted to the transmitted field cannot exceed π (Fig. 6).
Our current measurement setup Fig. 5 is designed to perform
transmission measurements in both forward and backward
directions through the waveguide.

b. Resonance fluorescence measurements

Resonance fluorescence measurements are performed
with a rf spectrum analyzer (SA, Rohde and Schwarz

FSV3013); the microwave excitation tone is provided
by the VNA in zero-span mode. The spectrum analyzer
acquisition is performed with a resolution bandwidth of
20 kHz. The background power level in this measurement
is determined by the HEMT noise temperature THEMT of
3.5 K. Using Bose-Einstein statistics, this corresponds to a
power spectral density of 11 photons=s ⋅ Hz at the emitter
frequency (ωge ¼ 6.441 GHz). The HEMT background is
subtracted from the signal traces, and the resulting power
is normalized with the resolution bandwidth and the gain
of the output line to obtain the PSD shown in Figs. 3(a)
and 3(b). The output line gain is calibrated using

FIG. 6. (a) Complex transmission coefficient t calculated from
(B17) when the atom-waveguide coupling is chiral (dark blue)
and bidirectional (light blue). Here, we assume that the intrinsic
decoherence rate Γ0 is small compared to coupling to waveguide
modes. In the chiral case, symmetry of the atom-waveguide
coupling to forward- and backward-propagating modes is broken
and the atom can dominantly couple to forward-propagating
modes such that (Γf

1D=ðΓb
1D þ Γ0Þ > 1). At resonance (δω ¼ 0),

the transmission coefficient lies to the left of the origin
[ReðtÞ < 0], and is equal to −1 when Γ0 ¼ 0. In this case, there
is a full 2π change in the phase imparted to the transmitted field as
the detuning δω is swept around the resonance [see (b)]. When
the atom-waveguide coupling is symmetric for the forward- and
backward-propagating modes [Γf

1D ¼ Γb
1D, Γ

f
1D=ðΓb

1D þ Γ0Þ ≤ 1],
the transmission coefficient lies to the right of the origin
[ReðtÞ ≥ 0] and is equal to zero when Γ0 ¼ 0. In this case, the
total change in the phase imparted to the transmitted field cannot
exceed π [see (b)].
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thermometry measurements [72]. We note that data shown
in Figs. 3(a) and 3(b) correspond to PSD in linear frequency
and is equal to 2π × SðωÞ, where SðωÞ is given by Eq. (7).

c. Time-domain measurements

Time-domain measurements and pulsed excitations of
the device are performed using the Quantum Machines
OPX+ (QM) module, which is capable of arbitrary wave-
form generation and heterodyne detection. To generate the
drive, megahertz frequency intermediate frequency signals
from the QM module are up-converted via mixing with a
local oscillator (LO) supplied by a rf signal generator
(Rohde and Schwarz SMB100) using in-phase and quad-
rature mixers (Marki Microwave MMIQ-0520LS). For
readout, the signal from the output line is down-converted
using an in-phase and quadrature mixers, and the resulting
intermediate frequency signal is demodulated. The duration
of the π pulse for the jgi → jei transition is determined
from measurements of qubit Rabi oscillations. For the Rabi
oscillation curves, the output is averaged in a phase-
sensitive manner to obtain the qubit emission in quadrature
with the drive (see also Appendix G). For spectroscopy of
the jei → jfi transition, the excited state jei is first fully
populated by driving jgi → jei with the calibrated π pulse.
Spectroscopy is then performed by probing the jei → jfi
transition with a resonant readout pulse. Averaging is
performed over 4 × 106 samples to obtain the results shown
in Fig. 4(e).

3. Emitter-waveguide interaction
using tunable couplers

The frequency-selective dissipation ports mediate the
emitter decay to each waveguide coupling point. Each port
contains a flux-controlled tunable coupler and a filter
cavity. Figure 7(a) gives a schematic for the full device.
Each coupler (purple, Cr;l) is capacitively coupled to the
emitter with a coupling strength gEC and to the filter cavity
(blue, Rr;l) with coupling strength gCR. The filter cavities
are realized as compact resonators with capacitive coupling
to the waveguide. The emitter-coupler and cavity-coupler
coupling rates are shown in Fig. 7(b) and Table II and are
extracted by flux tuning the couplers into avoided crossings
with the emitter and resonators.

4. Device parameters

The emitter and couplers in our device are superconduct-
ing qubits designed in the transmon regime to mitigate
charge noise. Bare qubit parameters are provided in Table I.
Maximum frequency (ωmax=2π) and Josephson energy (EJ)
are extracted from fits to dc flux tuning curves, shown in
Fig. 8. Charging energy (EC) is obtained by measuring
qubit anharmonicity via two-tone spectroscopy. A single
microwave tone drives the qubit jgi → jei transition, which
populates the jei state. The jei → jfi transition then
becomes visible under waveguide spectroscopy.

(a)

(b)

FIG. 7. Atom-waveguide coupling scheme. (a) Schematic of the
chiral atom-waveguide coupling scheme. The emitter couples to
the waveguide at two points, separated by d ¼ λ=4. In each decay
pathway, a flux controlled coupler (Cr;l, purple) is capacitively
coupled to the emitter with a coupling strength gEC and to a filter
cavity (Rr;l, blue) with a coupling strength gCR. The filter cavities
are capacitively coupled to the waveguide with decay rates κe;rðlÞ.
The flux bias applied to the right (left) tunable coupler is sinus-
oidally modulated with a rf frequency Δ, resulting in time-varying
coupler frequencies ωC;rðlÞðtÞ ¼ ωC;rðlÞ þ ϵrðlÞ sinðΔtþ φrðlÞ).
This creates an effective time-dependent emitter-waveguide cou-
pling with a relative phase φc ¼ φr − φl between the two decay
pathways. Setting φc ¼ π=2 results in forward chirality (blue),
while φc ¼ 3π=2 results in backward chirality (red). (b) Avoided
crossings of couplers with the emitter and filter resonators,
obtained by flux tuning the frequency of the couplers. The top
(bottom) row corresponds to the left (right) coupler, and the left
(right) column corresponds to emitter-coupler (coupler-resonator)
avoided crossings.

TABLE I. Parameters for the emitter and coupler transmons.
The maximum frequency (corresponding to the flux sweet spot)
is reported for each qubit.

Qubit ωmax=2π (GHz) EJ (GHz) EC (−α) (MHz) EJ=EC

E 5.636 15.47 283.0 54.66
Cl 7.779 25.35 324.0 78.24
Cr 7.699 25.63 313.5 81.76
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The compact resonators consist of an inductive meander
and capacitive “claw.” The latter section is shaped to
engineer the coupler-resonator and resonator-waveguide
couplings. Because detuning between resonators exceeds
their individual external coupling rates, the waveguide-
mediated exchange interaction and correlated decay can be

safely neglected [43]. The filter cavity parameters are
provided in Table II.
Capacitive couplings in our device can be expressed

in terms of frequencies, mutual capacitances, self-
capacitances, and self-inductances of the two relevant
modes. Approximating qubits as linear oscillators and
assuming only nearest-neighbor coupling, the interaction
strength gij is given as

gij ¼
1

2

CmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðCi þ CmÞðCj þ CmÞ
p ffiffiffiffiffiffiffiffiffiffi

ωiωj
p

: ðA1Þ

Here, Cm is the mutual capacitance, Ci;j are bare self-
capacitances, and ωi;j are adjusted frequencies of each
mode. For two linear coupled oscillators, ωi;j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cj;i þ Cm=Li;jC2

Σ

q
, where C2

Σ ¼ CiCj þ CiCm þ CjCm.

For transmon qubits approximated as linear oscillators, the
effective inductance is L ¼ ðℏ=2eÞ2ð1=EJÞ, where EJ is the
Josephson energy. Capacitive couplings in our device are
extracted from avoided crossings observed in waveguide
spectroscopy (Fig. 7) and are listed in Table II.

5. Flux biasing crosstalk

The emitter and coupler frequencies are tuned via flux
lines (Z lines), which are biased with a low-noise, multi-
channel dc source. The current applied to Z line control the
magnetic flux through a SQUID loop. Because of close
proximity, the Z lines experience crosstalk. In order to
achieve independent frequency tuning in the presence of
this crosstalk, we extract a cross-inductance matrix for the
system of the emitter and couplers:

2
64
ΦL

ΦE

ΦR

3
75 ¼

2
64
MLL MLE MLR

MEL MEE MER

MRL MRE MRR

3
75
2
64
IL
IE
IR

3
75: ðA2Þ

TABLE II. Summary of experimental parameters. The asterisk
indicates values of Γf

1D, Γb
1D, and Γ0 that are experiment specific

and can be found in the text.

Description Symbol Value

Emitter (first) blue sideband ωge=ωE1 6.441 GHz
Emitter anharmonicity α 283 MHz
Left coupler bias-tuned frequency ωC;l 6.402 GHz
Right coupler bias-tuned frequency ωC;r 6.482 GHz
Emitter—left coupler coupling
strength

gEC;l 72.65 MHz

Emitter—right coupler coupling
strength

gEC;r 73.15 MHz

Left coupler—left resonator
coupling strength

gCR;l 149.50 MHz

Right coupler—right resonator
coupling strength

gCR;r 155.55 MHz

Left resonator (bare) frequency 6.337 GHz
Right resonator (bare) frequency 6.577 GHz
Left resonator external coupling rate κe;l 24.95 MHz
Right resonator external coupling
rate

κe;r 41.74 MHz

Coupler modulation frequency Δ 805 MHz
Wavelength (at ωge) λ 18.36 mm
Spontaneous emission rate
(forward)

Γf;�
1D

Spontaneous emission rate
(backward)

Γb;�
1D

Intrinsic decoherence rate Γ0
Directionality ratio ηd ¼ Γf

1D=Γb
1D ≥100

β factor β ¼ Γf
1D

Γf
1DþΓb

1DþΓ0 0.89 (max)

(a) (b) (c)

FIG. 8. Flux tuning curves. (a) Left and (b) right coupler flux tuning curves, obtained from VNA measurements. No crosstalk
corrections are made here, and fits are used to extract mutual inductances (MLL and MRR). (c) The tuning curve for the emitter’s first
blue sideband. The settings here correspond to the chiral configuration of Fig. 1(c). A rf modulation of frequency Δ ¼ 805 MHz is
applied to the couplers. A two-level system (TLS) defect coupled to the system is marked with the arrow.
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Here, L, E, and R represent the left coupler, emitter, and
right coupler, respectively. The matrix elements are
extracted by fits to the corresponding tuning curve. Two
of the elements MEL and MER are not measured due to the
absence of direct coupling between the emitter and the
waveguide. To correct for the small effect ofMEL andMER,
the emitter qubit is biased to the flux sweet spot prior to all
measurements. The extracted inductance matrix is

M ¼

2
64
1.382 −0.058 −0.065
0 1.086 0

0.095 0.052 1.398

3
75 pH: ðA3Þ

APPENDIX B: INPUT-OUTPUT RELATIONS
USING SLH FORMALISM

We derive the input-output relations using the SLH
formalism [73]. The SLH formalism is a powerful toolbox
for modeling cascaded quantum systems and is naturally
suited for obtaining master equations and input-output
relations for giant atoms [43]. We model our chiral emitter
as a giant atom with two coupling points, with a relative
coupling phase φc ¼ φr − φl between the two feet of the
giant atom [as shown in Fig. 1(a)]. As shown in Eq. (1), the
field of emission at each coupling point acquires a well-
defined phase φlðrÞ ¼ arg½g̃lðrÞ� due to the complex coupling
mediated by the time-modulated couplers between the atom
and the waveguide. In the rotating frame of the drive, we
decompose the (S, L, H) triplets for the two coupling
points as follows:

Gf;l ¼
�
1;

ffiffiffiffiffiffiffi
κem
2

r
σ̂−;

δω

2
σ̂z

�
; ðB1Þ

Gf;r ¼
�
1;

ffiffiffiffiffiffiffi
κem
2

r
eiφc σ̂−; 0

�
; ðB2Þ

Gb;l ¼
�
1;

ffiffiffiffiffiffiffi
κem
2

r
σ̂−; 0

�
; ðB3Þ

Gb;r ¼
�
1;

ffiffiffiffiffiffiffi
κem
2

r
eiφc σ̂−; 0

�
; ðB4Þ

where δω ¼ ωge − ω is the detuning of emitter qubit at ωge

from the drive at frequency ω, κem is the magnitude of the
decay rate of the giant atom at each of the two coupling
points, f and b denote forward- and backward-propagating
modes, respectively, and lðrÞ denote the left and right
coupling points. We assume that the system is driven by a
forward-propagating coherent tone with complex ampli-
tude α and write the (S,L,H) triplets for the drive (Gf;drive)
and the waveguide propagation (GWG) as

Gf;drive ¼ ð1;α; 0Þ: ðB5Þ

GWG ¼ ðeiφWG ; 0; 0Þ; ðB6Þ

where φWG ¼ ωged=v is the accumulated propagation
phase between the two coupling points [see Fig. 1(a)].
The SLH triplet for the forward and backward moving parts
is then given by

Gf ¼ Gf;r ⊲ GWG ⊲ Gf;l ⊲ Gf;drive; ðB7Þ

Gb ¼ Gb;l ⊲ GWG ⊲ Gb;r: ðB8Þ

Using cascading rules from the SLH formalism, we obtain
the following SLH triplet Gsyst ¼ Gf ⊞Gb [43]:

Ssyst ¼
�
eiφWG 0

0 eiφWG

�
; ðB9Þ

Lsyst ¼
�
αeiφWG þ ffiffiffiffiffiκem

2

p ðeiφWG þ eiφcÞσ̂−ffiffiffiffiffiκem
2

p ð1þ eiðφWGþφcÞÞσ̂−

�
; ðB10Þ

Hsyst

ℏ
¼ δω

2
σ̂z −

i
2

ffiffiffiffiffiffiffi
κem
2

r
½ασ̂þð1þ eiðφWG−φcÞÞ

− α�σ̂−ð1þ e−iðφWG−φcÞ�: ðB11Þ

Here, Ssyst is the scattering matrix of the system, Lsyst ¼
ðLf; LbÞ⊤ denotes the collapse operator for the forward-
propagating ðLfÞ and backward-propagating (Lb) modes,
and Hsyst is the Hamiltonian. The driven Hamiltonian for
the system can then be obtained by writing the master
equation using the SLH triplet and is given by [43]

Hdriven

ℏ
¼ δω

2
σ̂z − i

ffiffiffiffiffiffiffi
κem
2

r
½ασ̂þð1þ eiðφWG−φcÞÞ

− α�σ̂−ð1þ e−iðφWG−φcÞ�: ðB12Þ

We note that the term corresponding to the complex
amplitude of the drive α in Lf [see Eq. (B10)] contributes
to the final driven Hamiltonian in addition to the terms
in Eq. (B11).
The input-output relations can be written in terms of

the collapse operators for the forward- and backward-
propagating modes,

t ¼ hLfi
αin

¼ eiφWG þ 1

αin

ffiffiffiffiffiffiffi
κem
2

r
ðeiφc þ eiφWGÞhσ̂−i;

r ¼ hLbi
αin

¼ 1

αin

ffiffiffiffiffiffiffi
κem
2

r
ðeiðφcþφWGÞ þ 1Þhσ̂−i; ðB13Þ

where t and r are the complex transmission and reflection
coefficients, respectively. From Eq. (B13) it is clear that the
emission in the backward direction can be nulled when
the condition φWG þ φc ¼ π is satisfied. This is the

RESONANCE FLUORESCENCE OF A CHIRAL ARTIFICIAL … PHYS. REV. X 13, 021039 (2023)

021039-13



interference condition to obtain perfect chiral behavior.
Equation (B13) can be further simplified by calculating
hσ̂−i using the Heisenberg equation of motion h _̂σ−i ¼
−i½σ̂−; Hdriven� − ðΓtot=2Þσ̂− ¼ 0. Here, Γtot is the total
decay rate of the emitter, including radiative and non-
radiative decay, and dephasing. In the limit of weak drive
such that the two-level system is not saturated, we obtain in
steady state:

hσ̂−i ¼
−

ffiffiffiffiffiκem
2

p
α½1þ eiðφWG−φcÞ�
iδωþ Γtot

2

: ðB14Þ

Combining Eqs. (B13) and (B14), we obtain the trans-
mission coefficient:

t ¼ eiφWG

�
1 −

κem½1þ cos ðφc − φWGÞ�
iδωþ Γtot

2

�
: ðB15Þ

From Eq. (B15), we identify the effective atom-waveguide
coupling for the forward-propagating modes:

Γf
1D ¼ κem½1þ cos ðφc − φWGÞ�: ðB16Þ

The transmission can be written in terms of Γf
1D to be (up to

a global phase factor)

t ¼ eiφWG

�
1 −

Γf
1D

iδωþ Γtot
2

�
: ðB17Þ

Note that the transmission expression is equivalent to that
of a single-sided cavity with an external coupling rate Γf

1D.
The emitter-waveguide coupling for the backward-
propagating modes can be similarly evaluated by assuming
a drive from the right side of the waveguide and repeating
the analysis above. The coupling rate for the backward-
propagating modes is then given by

Γb
1D ¼ κem½1þ cos ðφc þ φWGÞ�: ðB18Þ

We write the master equation for the case where the
condition for perfect chirality is satisfied. Simplifying
Eq. (B12) for the case φWG ¼ π=2;φc ¼ π=2, we obtain
the Hamiltonian

Hdriven

ℏ
¼ δω

2
σ̂z þ

1

i

ffiffiffiffiffiffiffi
κem
2

r
½2ασ̂þ − 2α�σ̂−�: ðB19Þ

Assuming without loss of generality that the drive α is real,
and using the relations σ̂� ¼ 1

2
ðσ̂x � iσ̂yÞ [58], we obtain

Hdriven

ℏ
¼ δω

2
σ̂z þ α

ffiffiffiffiffiffiffiffiffi
2κem

p
σ̂y: ðB20Þ

Using the fact that Γf
1D ¼ 2κem for φc ¼ π=2;φWG ¼ π=2

[see Eq. (B16)], we obtain

Hdriven

ℏ
¼ δω

2
σ̂z þ

ΩR

2
σ̂y;

ΩR ¼ 2α
ffiffiffiffiffiffiffiffi
Γf
1D

q
: ðB21Þ

The master equation for the chiral atom can then be
written as

_ρ ¼ −
i
ℏ
½Hdriven; ρ� þ Lρ; ðB22Þ

where the Liouvillian L is given by [22,58]

L ¼ ðn̄th þ 1ÞΓ1D½σ̂−�ρþ n̄thΓ1D½σ̂þ�ρþ
Γϕ

2
D½σ̂z�ρ;

ðB23Þ

where Γ1 is the total energy relaxation rate of the qubit
at zero temperature, Γϕ is the pure dephasing rate, and
n̄th ¼ 1=ðeℏω=kBT − 1Þ is the thermal occupation of the
bath. The total energy decay rate is the sum of the radiative
decay rate to the waveguide Γf;b

1D and energy decay to loss
channels Γloss. Here, Γloss includes radiative decay of other
emitter sidebands to the waveguide and radiative decay
of the qubit to channels other than the waveguide, such as
due to coupling to two-level systems (TLSs) and dielectric
loss. The decoherence rate of the qubit is given by
Γ2 ¼ Γ1=2þ Γϕ. The Lindblad operator is defined in its
standard form as

D½X�ρ ¼ XρX† −
1

2
X†Xρ −

1

2
ρX†X: ðB24Þ

APPENDIX C: LIMITS ON CHIRALITY

1. Extraction of directionality ratio (ηd)

In our device, the atom-waveguide coupling is varied by
changing the emitter-coupler detunings. At each maximal
chirality setting, the directionality ratio (ηd ¼ Γf

1D=Γb
1D) is

extracted from transmission traces obtained by exciting the
waveguide from the forward and backward directions. We
apply nonlinear least-squares fits to the transmission traces
according to

t ¼ 1 −
ΓfðbÞ
1D eiϕf

iδωþ Γtot
2

: ðC1Þ

Equation (C1) is obtained from Eq. (B17) by the inclusion
of a “Fano” parameter eiϕf to account for asymmetric line
shapes [71]. The external coupling to forward (backward)

waveguide modes is given by ΓfðbÞ
1D . Detuning is given by
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δω, and total decay rate is given by Γtot. Confidence
intervals for the fitted atom-waveguide coupling rates
(Γf

1D;Γb
1D) are used to obtain the final 95% confidence

bounds on directionality, making use of the uncorrelated
noncentral normal ratio distribution [74].
Small values of backward atom-waveguide coupling

make extraction of Γb
1D challenging. For a perfect chiral

atom, Γb
1D ¼ 0. This implies that transmission t → 1 [see

Eq. (C1) and Fig. 9(a)]; the atom becomes invisible to
photons propagating in the backward direction. Similarly,
for small values of Γb

1D, the backward transmission trace
approaches unity. As a result, the extraction of atom-
waveguide coupling becomes susceptible to small varia-
tions in the transmission background. We observe such
variations (“ripples”) in backward transmission traces,
which are shown in Fig. 9(b). These ripples translate to
larger uncertainties in extracting the near-zero backward
emission rates at the points of maximum chirality.
We emphasize that this parasitic effect primarily com-

promises our characterization method for bounding the
chirality ratio and not necessarily the directionality of the
artificial atom. A more sensitive measurement scheme in
which the emitter is driven in the forward direction while
simultaneously measuring the backward scattered power
will likely put tighter bounds on the backward emission
(equivalent to a larger directionality ratio). These measure-
ments were not possible in our dilution fridge at the time of
performing this experiment.
We additionally observe that ripples of the transmission

trace backgrounds fluctuate in time, which we attribute to

two-level system defects. Such defects may couple to
emitter or coupler qubits [75]. An example of a TLS defect
is indicated in Fig. 8(c). Measurements over longer periods
of time have a larger chance of capturing these fluctuations,
which manifests as slight dispersive changes in the trans-
mission profile.

2. Phase stability of the coupler drives

To determine an upper bound on experimentally achiev-
able chirality, we characterize the phase stability of the
microwave source used for coupler modulation (Rohde and
Schwarz SMB 100A). The microwave source output is
measured with a VNA in zero-span mode, and phase
fluctuations are measured over 10 h. The variance in phase
over this duration is hdφ2i ¼ 4.9 deg2. Using Eqs. (B16)
and (B18), and setting φWG ¼ π=2, we have a directionality
ratio ηd ¼ ½1þ sinðφcÞ=1 − sinðφcÞ�. Taylor expansion
about φc yields ηd ≈ ð4=dφ2

cÞ. Treating the two source
phases as independent random variables, we bound chi-
rality as ηd ≈ ð2=hdφ2iÞ. This yields an upper chirality
bound of ηd ¼ 1.3 × 103. Phase variability of the micro-
wave source is potentially caused by temperature fluctua-
tions in the measurement environment.

APPENDIX D: ANALYSIS OF THE
DECOHERENCE SOURCES

Our measured β factor [β ¼ Γf
1D=ðΓf

1D þ Γb
1D þ Γ0Þ] is

set by the intrinsic decoherence rate Γ0 of the chiral atom.
A related commonly used figure of merit for light-matter
interaction is the Purcell factor, which is defined as the
ratio of the emission rate of the atom to the desired
waveguide modes (Γf

1D) to the intrinsic decoherence rate
Γ0 of the atom [76]. The intrinsic decoherence rate
is given by Γ0 ¼ 2Γ2 − Γ1D ¼ Γloss þ 2Γϕ. Here, Γloss

includes nonradiative loss from various sources such as
dielectric loss and coupling to two-level systems as well
as parasitic radiative decay of spurious modulation side-
bands to the waveguide. For vanishingly small Γb

1D, the
Purcell factor is given by β=ð1 − βÞ. The measured Purcell
factors for our chiral atom are shown in Fig. 10. These
measurements are performed at the phase settings corre-
sponding to maximum chirality (φc ¼ π=2), such that the
atom-waveguide coupling is dominantly in the forward
direction (Γb

1D=Γ
f
1D→0). We measure a maximum Purcell

factor of 8 and find that both the β factor and the Purcell
factor saturate at large Γf

1D due to a corresponding
increase in Γ0.
The observed increase in Γ0 with increasing Γf

1D can be
partially explained by the decoherence from the couplers.
The tunable couplers operate far away from their flux sweet
spot and experience significant dephasing from flux noise.
As a result, increasing Γf

1D by reducing the frequency
detuning between the emitter and the couplers results in

(a) (b)

FIG. 9. Extraction of directionality ratio. (a) Theoretical trans-
mission traces for backward excitation of the waveguide, for
ϕf ¼ π=2 and ϕf ¼ 0. Here, we set Γf

1D ¼ 2.5 MHz, Γ0 ¼ 0, and
vary Γb

1D ¼ 0, 25, or 125 kHz. (b) Representative transmission
traces show background fluctuations when exciting the qubit
from the waveguide in the backward direction.

RESONANCE FLUORESCENCE OF A CHIRAL ARTIFICIAL … PHYS. REV. X 13, 021039 (2023)

021039-15



an increase in the emitter decoherence from a weak
hybridization with the coupler modes. Based on the
measured decoherence rate of the couplers, we estimate
that ∼220 kHz of emitter decoherence can be attributed
to this source at the maximum value of Γf

1D (Fig. 10).
This source of decoherence can potentially be miti-
gated by using tunable couplers fabricated using
SQUID loops consisting of asymmetric Josephson junc-
tions [65].
In addition to emitter-coupler hybridization, the finite

thermal occupation of the waveguide can also lead to
excess decoherence at larger values of Γf

1D [22]. The master
equation Eq. (B22) can be solved for a mean thermal
occupation n̄th in the waveguide to obtain the thermally
enhanced decay rate Γth

1 ¼ ð2n̄th þ 1ÞΓ1 and decoherence
rate Γth

2 ¼ Γth
1 =2þ Γϕ, where Γ1 is the relaxation rate of the

emitter at zero temperature [22]. The thermally enhanced
intrinsic decoherence rate can then be obtained as
Γ0 ¼ 2Γth

2 − Γ1D. Assuming Γth
2 ≈ Γth

1 =2, we can write the

intrinsic decoherence rate Γ0 as

Γ0 ¼ Γth
1 − Γ1D

¼ ð2n̄th þ 1ÞΓ1 − Γ1D

¼ 2n̄thðΓ1D þ Γ0
0Þ þ Γ0

0; ðD1Þ
where Γ0

0 is the internal dissipation rate of the emitter at
zero temperature (n̄th ¼ 0) and Γ1 ¼ Γ1D þ Γ0

0. From fit to
the data, we obtain a waveguide temperature TWG ¼ 65�
12 mK and Γ0

0=2π ¼ 350� 45 kHz. Better thermalization
of the waveguide can be obtained using thin film micro-
wave attenuators [66]. Eliminating the dependence of Γ0 on
Γf
1D (e.g., by using asymmetric junction SQUIDS and

cryogenic attenuators) translates to a 2× improvement in
the measured maximum Purcell factor in our experiment.
We highlight the difference between the intrinsic

decoherence rate of the chiral sideband (Γ0
0=2π ¼ 350�

45 kHz for small values of Γf
1D) with that of the emitter

baseband when all the modulation drives are off (measured
to be Γ0 ¼ 2π × 160 kHz; see Fig. 11). The difference
between these two values may indicate the presence of
energy leakage to spurious sidebands. Such parasitic
radiative decays can be suppressed using a more aggressive
sideband filtering scheme, such as replacing the filter
cavities in our experiment with a dispersion-engineered
metamaterial waveguide. The complete elimination of these
decay channels in our experiment translates to an additional
2× improvement in the maximum measured Purcell factor.
Finally, we note that modest improvements to the

intrinsic lifetime of the qubits (to 5–10 μs corresponding
to an internal linewidth less than 30 kHz) translate to an
additional 5× improvement to our maximum measured
Purcell factors. As a result, a combination of improved
coupler design, waveguide thermalization, stronger spectral

FIG. 11. Characterization of the emitter baseband. Measured
transmission jtj response of the emitter baseband with all rf
modulation turned off. We tune the left coupler bias such that we
get sufficient external coupling for the baseband to be visible
when probed with a weak microwave tone via the waveguide. We
measure the baseband frequency to be 5.616 GHz. The emitter
baseband is undercoupled, with an internal decay rate Γ0 ¼
2π × 160 kHz and an external coupling rate κe ¼ 2π × 76 kHz.

(a)

(b)

FIG. 10. Emitter decoherence. (a) Measured excess
decoherence (Γ0 − Γ0

0) for increasing Γf
1D. The increase in

decoherence can be attributed to a combination of emitter-coupler
hybridization (dotted red line) and thermal occupation of the
waveguide (dotted blue line). From these data, we estimate a
waveguide temperature of TWG ¼ 65� 12 mK. The offset
Γ0
0=2π ¼ 350� 45 kHz corresponds to the decoherence rate in

the limit of weak emitter-coupler hybridization and small Γf
1D.

(b) Measured Purcell factor as a function of Γf
1D. The dashed blue

line and shadow denote the calculated Purcell factor after
accounting for emitter-coupler hybridization and finite wave-
guide temperature. Shadows correspond to a 95% confidence
interval from uncertainty in the waveguide temperature model.
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filtering, and improved qubit lifetime can lead to an order of
magnitude improvement in Purcell factors, resulting in
Γf
1D=Γ0 > 100. Such Purcell factors have been achieved in

nonchiral waveguide QED systems based on superconduct-
ing qubits [27,77].

APPENDIX E: POWER BROADENING AND
RESONANCE FLUORESCENCE

Here, we analyze the behavior of the chiral atom
under strong drives. At zero temperature (n̄th ¼ 0),
Eq. (B22) can be solved to give the steady-state solutions
of the Bloch equations [58]. Using the relations
hσxi ¼ 2ReðρegÞ; hσyi ¼ −2ImðρgeÞ, and hσzi¼ρee−ρgg,
we obtain

h _σxi ¼ ΩRhσzi − δωhσyi − Γ2hσxi; ðE1Þ
h _σyi ¼ δωhσxi − Γ2hσyi; ðE2Þ

h _σzi ¼ −ΩRhσxi − Γ1ð1þ hσziÞ; ðE3Þ
where we use the commutation relations ½σx; σy� ¼ 2iσz,
½σy; σz� ¼ 2iσx, and ½σz; σx� ¼ 2iσy to evaluate Eq. (B22).
In steady state, we obtain the solutions [58]:

hσxi ¼
−Γ1Γ2ΩR

Γ1ðΓ2
2 þ δω2Þ þ Γ2Ω2

R
; ðE4Þ

hσyi ¼
−Γ1δωΩR

Γ1ðΓ2
2 þ δω2Þ þ Γ2Ω2

R
; ðE5Þ

hσzi ¼ −1þ Γ2Ω2
R

Γ1ðΓ2
2 þ δω2Þ þ Γ2Ω2

R
: ðE6Þ

Using the input-output relations shown in Eq. (B13) and the
relation σ̂− ¼ 1

2
ðσ̂x − iσ̂yÞ, we obtain the coherent response

of the driven chiral qubit,

t ¼ 1 −
Γf
1DΓ1ðΓ2 − iδωÞ

Γ1ðΓ2
2 þ δω2Þ þ Γ2Ω2

R
; ðE7Þ

where we use Γf
1D ¼ 2κem for kd ¼ π=2 and φc ¼ π=2.

The power spectrum of the output radiation field is given
by [78]

SðωÞ ¼ Re
Z

∞

0

dτ
π
eiωtha†outðtÞaoutðtþ τÞi: ðE8Þ

For the case of perfect chirality (φc ¼ π=2, kd ¼ π=2), the
output field is given by [see Eq. (B13)]

âoutðtÞ ¼ âinðtÞ þ
ffiffiffiffiffiffiffiffi
Γf
1D

q
σ−ðtÞ: ðE9Þ

Equation (E8) contains both the coherent and incoherent
part of the emission spectrum. The incoherent part can be

evaluated to be [78]

SðωÞ ¼ 1

2π

ℏω0Γ
f
1D

4

�
Γs

ðδωþΩRÞ2 þ Γ2
s

þ 2Γ2

ðδω2 þ Γ2
2Þ

þ Γs

ðδω −ΩRÞ2 þ Γ2
s

�
; ðE10Þ

where 2Γs ¼ Γ1 þ Γ2 is the full width at half maximum of
the Mollow sidebands.
We choose a setting with Γf

1D=2π ¼ 1 MHz for the
resonance fluorescence and coherent power-broadening
measurements. The emitter-coupler detuning is chosen to
be δCE=2π ¼ 105 MHz to avoid exciting the couplers under
strong drives. We perform nonlinear least-squares fitting of
the measured power-broadened coherent response of the
chiral emitter to the model in Eq. (E7) and the resonance
fluorescence data to the model in Eq. (E10). Γf

1D=2π ¼
1� 0.1 MHz was independently obtained using VNA
measurements at low powers and fixed while performing
the fits. The Rabi frequenciesΩR obtained from these fits are

shown in Fig. 12. For a chiral atom, we expect ΩR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Γf

1DPin=ℏωge

q
[see Eq. (B21)]. The drive power at the

chip Pin in Fig. 12 is calculated using input line attenuation
calibrated using thermometry measurements [72]. From
linear fits to the Ω2

R versus drive power data, we obtain a
slope m ¼ 123� 2 MHz2=fW for the Mollow data and
m ¼ 125� 6 MHz2=fW for the power-broadening data,
which are in agreement with each other. From measured
values of Γf

1D=2π ¼ 1� 0.1 MHz, we expect a slope

FIG. 12. Rabi frequency versus drive power. Ω2
R versus drive

power obtained from least-squares fitting to the Mollow triplet
data (blue) and power broadening data (red). Solid lines are linear
fits to the model Ω2

R ¼ 4Γ1DPin=ℏωge. From these fits, we obtain
a slope of m ¼ 123� 2 MHz2=fW for the Mollow data and a
slope of m ¼ 125� 6 MHz2=fW for the power broadening data.
Uncertainties on the slope represent 95% confidence interval
obtained from the least-squares fitting routine.
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m ¼ ½4Γf
1D=ð2πÞ2ℏωge� ¼ 150� 15 MHz2=fW, which is

close to the values obtained from Fig. 12. We attribute
the discrepancy to uncertainty in the line attenuation
calibration used to obtain the drive power (∼15%) [72].
The energy decay rate Γ1 and the decoherence rate Γ2

obtained from these fits are summarized in Table III,
showing good agreement with each other. From the
values of Γ1 and Γ2 obtained from the resonance
fluorescence data, we obtain a small pure dephasing rate
Γϕ=2π ≈ 50 kHz for this setting. We also obtain the

internal dissipation rate for the emitter qubit Γ0 ¼ Γ1 −
Γf
1D ¼ 2π × 364 kHz at this setting.

APPENDIX F: BOUNDING CHIRALITY OF THE
jei → jf i TRANSITION

Our device was originally designed for chiral operation
at the frequency of the g − e transition. However, we are
able to achieve chiral operation for the e − f transition
using a higher modulation frequency of Δ=2π ¼ 930 MHz
(compared to a modulation frequency of Δ=2π¼805MHz
used for demonstrating chiral operation for the g − e
transition). In addition, the flux bias applied to both
couplers was carefully adjusted to achieve adequate direc-
tionality of the e − f transition while minimizing the decay
of the g − e transition to the waveguide.
The chirality of the e − f transition is difficult to extract

because variations with respect to φc in Γf
1D and Γb

1D for
e − f are confounded with an analogous variation in
atom-waveguide coupling for the g − e transition. Hence,
we bound the e − f chirality by examining the atom-
waveguide coupling through each dissipation port.
We extract atom-waveguide couplings from fits to trans-

mission traces obtained from two-tone spectroscopy. Using a
master equation treatment [78] of a three-level system, we
obtain the input-output relations and the corresponding
complex transmission coefficient t for the e − f transition
under chiral and bidirectional settings, with the g − e
transition under a strong continuous drive. For the sake of
brevity, full analytical expressions are omitted. Fits to
analytical expressions are supplemented with corresponding
master equation simulations performed using QUTIP [79].
In our experiment, the e − f transition exhibits imbal-

anced atom-waveguide coupling between the two

dissipation ports (κlem ≠ κrem). For this case, expressions
for Γf

1D and Γb
1D can be obtained following Appendix B:

Γf;b
1D;e−f ¼

κlem þ κrem
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κlemκ

r
em

q
: ðF1Þ

Transmission traces are fit in the case of a continuous
drive tone at frequency ωge. Values obtained from fits are
used in Eq. (F1) to obtain Γf

1D;ef=2π ¼ 2.37 MHz, and
Γb
1D;ef=2π ¼ 0.2 MHz, corresponding to a directionality

ratio of ηd ¼ 12. In addition, these fits yield Γ0
ef=2π ¼

0.57 MHz, corresponding to Γtot;ef=2π ¼ 3.15 MHz. An
additional fit to the g − e transition measured independently
on the VNA yields Γ0

ge=2π¼0.7MHz and Γtot;ge=2π¼
1.3MHz. In this experiment, drive-induced frequency
splitting of the g − e transition (ac Stark effect) can result
in the emergence of the Autler-Townes splitting [80]. The
magnitude of this frequency splitting is expected to be
equal to the Rabi drive ΩR on the g − e transition. This
splitting becomes visible when ΩR exceeds the total
decoherence rate of the jfi transition. For the data shown
in Fig. 4(d) of the main text, this splitting is not visible as
the g − e Rabi drive was set to ΩR=2π ¼ 2.9 MHz and the
total decoherence rate of the jfi transition is given
by Γtot;ef þ Γtot;ge ¼ 2π × 4.45 MHz.
In principle, with pulsed excitation of the g − e tran-

sition, the parameters obtained above are sufficient to
observe a chiral response with strong coupling for the
e − f transition [Γf

1D;ef > 0.5ðΓtot;ef þ Γtot;geÞ]. However,
as the g − e transition is not protected from waveguide
decay, we use a readout pulse of 120 ns duration to
rapidly probe the e − f transition in the pulsed spectros-
copy measurement. To operate in the quasi-cw regime,
it is necessary to use a dispersion-engineered meta-
material waveguide, such that the e − f transition falls
in the passband while the g − e transition falls outside and
remains protected from radiative decay to the waveguide
[77]. Such a device architecture can be used to realize
conditional phase gates on itinerant photons [61,63,81].

APPENDIX G: RABI OSCILLATIONS

As our device is not equipped with a readout resonator,
we observe Rabi oscillations by directly driving the qubit
via the waveguide with a Gaussian pulse of variable
duration τP and measuring the in-quadrature component
of the qubit Bloch vector. We assume a coherent drive along
σy, and starting with a qubit ground state hσziðt ¼ 0Þ ¼ −1.
For a resonant drive at δω ¼ 0, with ΩR ≥ jΓ1 − Γ2j=2, the
qubit state is given by

hσxiðt ¼ τPÞ ¼ x∞ −
�
ΓSx∞ −ΩR

νR
sin ðνRτPÞ

þ x∞ cos ðνRτPÞ
�
expð−ΓSτPÞ; ðG1Þ

TABLE III. Summary of fit parameters from the resonance
fluorescence and coherent power broadening measurements
shown in Fig. 3 of the main text. For these measurements, we
independently measure the emitter-waveguide coupling rate to be
Γf
1D=2π ¼ 1 MHz.

Γ1=2π (MHz) Γ2=2π (MHz)

Mollow fits 1.34� 0.15 0.72� 0.08
Power broadening fits 1.35� 0.03 0.67� 0.1
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hσziðt ¼ τPÞ ¼ z∞ − ð1þ z∞Þ
�
cosðνRτPÞ

þ ΓS

νR
sinðνRτPÞ

�
expð−ΓSτPÞ: ðG2Þ

The resonant drive δω ¼ 0 results in hσyiðt ¼ τPÞ ¼ 0.

Here, ΓS ¼ ðΓ1 þ Γ2Þ=2 is the Rabi decay rate and νR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

R − ðΓ1 − Γ2Þ2=4
p

is the effective Rabi oscillation
frequency. The steady-state values of hσxiðt ¼ ∞Þ and
hσziðt ¼ ∞Þ are x∞ ¼ Γ1ΩR=ðΓ1Γ2 þ Ω2

RÞ and z∞ ¼
−Γ1Γ2=ðΓ1Γ2 þΩ2

RÞ, respectively. Rabi oscillation
measurements are fitted to Eq. (G1) assuming no dephasing
(Γ2 ¼ Γ1=2).
In the limit of large drives (ΩR ≫ Γ1;Γ2), νR ≈ΩR

and x∞ ≈ z∞ ≈ 0. Equations (G1) and (G2) may be
simplified to

hσxiðt ¼ τPÞ ¼ sin ðΩRτPÞ exp ð−ΓSτPÞ; ðG3Þ

hσziðt ¼ τPÞ ¼ − cos ðΩRτPÞ exp ð−ΓSτPÞ: ðG4Þ

After the drive is turned off, the qubit evolves freely and
decays due to energy dissipation and decoherence. The
evolution equations can be obtained by substitutingΩR ¼ 0
in Eq. (E3):

h _σxi ¼ −Γ2hσxi; ðG5Þ

h _σzi ¼ −Γ1ð1þ hσziÞ: ðG6Þ

The solutions to the above equations are given by

hσxiðt0Þ ¼ hσxiðτPÞ expð−Γ2t0Þ; ðG7Þ

hσziðt0Þ ¼ ½1þ hσziðτPÞ� exp ð−Γ1t0Þ − 1; ðG8Þ

where hσxiðτPÞ and hσziðτPÞ are obtained from Eq. (G3).
As we perform readout directly via the waveguide, the
signal-to-noise ratio (SNR) is limited by HEMT noise.
To obtain better SNR, we, therefore, perform phase-
sensitive averaging (with respect to the Rabi drive) of
the qubit emission after the drive is turned off. The
component of qubit emission in quadrature with the
drive gives us hσxi. We integrate the ringdown, resulting
in a signal

R
dt0hσxiðτPÞ exp ð−Γ2t0Þ, which is propor-

tional to hσxiðτPÞ.
To perform these measurements, we first generate

Gaussian pulses at the intermediate frequency of
60 MHz using the Quantum Machines OPXþmodule.
The pulses are next up-converted to radio frequencies by
combining them with a local oscillator using a mixer. After
driving the qubit with the resonant Gaussian pulse, qubit
emission is down-converted with another mixer using the
same LO that is used for generating the drive. The output is

then demodulated, and the in-phase (I) and quadrature (Q)
components of the output signal are averaged separately.
Combining the two (as I þ iQ) yields the projection of the
qubit state onto the Bloch sphere XY plane. The component
in quadrature with the drive maps to hσxiðτPÞ, which is
shown in the measurements in the main text.

APPENDIX H: PARAMETRIC
QUBIT-WAVEGUIDE COUPLING

In our device, we generate time-harmonic coupling
between the emitter qubit and a filter cavity by modulating
the frequency of an intermediary mode, the coupler. This
approach can be used generally to obtain nonreciprocal
interactions between modes [82]. Previous works have
operated similar tunable couplers in the dispersive regime,
when the coupler is far detuned from both the emitter
and filter cavity (δC;E ≫ gEC; δC;R ≫ gCR, where δC;E ¼
ωC − ωE; δC;R ¼ ωC − ωR) [39,83]. Experimentally, we
improve emitter-waveguide coupling by breaking the dis-
persive assumption. We instead allow the couplers and filter
cavities to hybridize. To describe the tunable coupler in this
regime, we present an input-output model for harmonic
coupling between two modes by frequency modulation of
an intermediary mode. The model accounts for the appear-
ance of sidebands of the emitter as well as its effective
coupling strength to sidebands of other modes. We find that
the coupling strength between sidebands of distinct modes
depends on the relative sideband order, the modulation
frequency, and the modulation amplitude. These insights
provide the means for experimental optimization of direc-
tionality and external coupling in the chiral qubit.

1. Derivation of coupled mode equations

We focus our attention on one dissipation port of the
emitter. A coupler mode (âC) is directly coupled to the
emitter (âE) with strength gEC and directly coupled to a
filter cavity mode (âR) with strength gCR. The filter cavity
decays to photonic modes of a 1D waveguide. The coupler
mode is frequency modulated. The system is shown
schematically in Fig. 13(a).
The full Hamiltonian in the Heisenberg picture is given

as follows. We set ℏ ¼ 1 and assume linear cavities for
simplicity.

Ĥ ¼ Ĥsyst þ Ĥbath þ Ĥint; ðH1Þ
Ĥsyst¼½ωCþϵsinðΔtÞ�â†CâCþωRâ

†
RâRþωEâ

†
EâE

þgECðâ†EâCþ âEâ
†
CÞþgCRðâ†CâRþ âCâ

†
RÞ; ðH2Þ

Ĥbath ¼
X
q

ωqb̂
†
qb̂q; ðH3Þ

Ĥint ¼ −i
X
q

ðfqb̂qâ†R − f�qb̂
†
qâRÞ: ðH4Þ
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Here, Ĥsyst contains the three individual modes, the emitter-
coupler interaction term, and the coupler-filter cavity
interaction term. The coupler frequency is modulated at
frequency Δ with amplitude ϵ. Ĥbath describes the wave-
guide modes, and Ĥint describes the coupling between the
filter cavity and waveguide modes. Following Ref. [84],
Langevin equations are given as

_̂aR ¼ iωRâR þ κt
2
âR þ igCRâC −

ffiffiffiffiffi
κe
2

r
âin; ðH5Þ

_̂aC ¼ i½ωC þ ϵ sinðΔtÞ�âC þ γC
2
âC þ igCRâR þ igECâE;

ðH6Þ

_̂aE ¼ iωEâE þ γE
2
âE þ igECâC: ðH7Þ

Here, κt is the total decay rate of the filter cavity and κe is
the external coupling of the filter cavity to the waveguide.
The emitter and coupler do not couple directly to the
waveguide, and their total decay rates γE and γC are
composed of only internal loss. We note that, in the
absence of coupler frequency modulation (ϵ ¼ 0), these
expressions yield electromagnetically induced transparency
phenomena.
The time dependence of the coupler frequency can be

simplified by performing the following substitution:

ˆ̃aC ¼ âC exp

�
i
ϵ

Δ
cosðΔtÞ

�
: ðH8Þ

This is equivalent to performing a unitary transformation
of the form ˆ̃aC ¼ U†âCU, where

U ¼ exp

�
−i

ϵ

Δ
cosðΔtÞâ†CâC

�
: ðH9Þ

In the classical formulation of this problem, this transforma-
tion corresponds to an appropriate gauge transformation [85].
Next, we make use of the Jacobi-Anger expansion,

given below, to break the time dependence of the modified
coupler operator into discrete harmonics. Jn represents the
nth Bessel function of the first kind:

exp

�
i
ϵ

Δ
cosðΔtÞ

�
¼

X∞
n¼−∞

inJn

�
ϵ

Δ

�
einΔt: ðH10Þ

Performing the substitution then yields the following
modified Langevin equations:

_̂aR ¼ iωRâR þ κt
2
âR þ igCR

X
n

ð−iÞnJn
�
ϵ

Δ

�
einΔt ˆ̃aC

−
ffiffiffiffiffi
κe
2

r
âin; ðH11Þ

_̃̂aC ¼ iωC
ˆ̃aC þ γC

2
ˆ̃aC þ igCR

X
l

ilJl

�
ϵ

Δ

�
eilΔtâR

þ igEC
X
m

imJm

�
ϵ

Δ

�
eimΔtâE; ðH12Þ

FIG. 13. Parametric waveguide coupling input-output model. (a) Schematic of tunable coupler containing three modes—an emitter,
coupler, and filter cavity. The emitter-coupler and coupler-filter cavity interaction strengths are gEC and gCR, respectively. The coupler
frequency is modulated in time, and the filter cavity decays to a 1D waveguide. (b) Frequency domain picture of the tunable coupler.
Frequency modulation of the coupler generates sidebands for all three modes. Effective coupling strengths between sidebands of
different modes are indicated by arrows, and depend on the relative sideband order (D), modulation frequency (Δ), and modulation
amplitude (ϵ). The filter cavity baseband (R0) provides a decay channel to the waveguide. In experiments, the emitter’s first sideband
(E1) is used as the chiral qubit.
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_̂aE ¼ iωEâE þ γE
2
âE þ igEC

X
n

ð−iÞnJn
�
ϵ

Δ

�
einΔt ˆ̃aC:

ðH13Þ

Taking the Fourier transform then yields

iωâRðωÞ ¼ iωRâRðωÞ þ
κt
2
âRðωÞ

þ igCR
X
n

ð−iÞnJn
�
ϵ

Δ

�
ˆ̃aCðω − nΔÞ

−
ffiffiffiffiffi
κe
2

r
âinðωÞ; ðH14Þ

iω ˆ̃aCðωÞ ¼ iωC
ˆ̃aCðωÞ þ

γC
2

ˆ̃aCðωÞ

þ igCR
X
l

ilJl

�
ϵ

Δ

�
âRðω − lΔÞ

þ igEC
X
m

imJm

�
ϵ

Δ

�
âEðω −mΔÞ; ðH15Þ

iωâEðωÞ ¼ iωEâEðωÞ þ
γE
2
âEðωÞ

þ igEC
X
n

ð−iÞnJn
�
ϵ

Δ

�
ˆ̃aCðω − nΔÞ: ðH16Þ

In the frequency domain, the coupled mode equations
indicate that the emitter and filter cavity at frequency ω are
coupled to the coupler at frequencies ωþ nΔ; n ∈ Z, with
effective coupling strength determined by the Bessel
functions. In this picture, each of the emitter, coupler,
and filter cavity break into a spectrum of discrete harmon-
ics, or “sidebands.” We may displace each of the three
equations in frequency by nΔ; n ∈ Z, to generate equations
for each sideband of the coupler, emitter, and filter cavity.
This is completed in Eq. (H17), where the coupled mode
equations are arranged in a matrix-vector equation:

i

ffiffiffiffiffi
κe
2

r
2
666666664

..

.

0

ainðωÞ
0

..

.

3
777777775

¼

2
666666664

. .
. ..

. ..
. ..

.
⋰

… H−1 G1 G2 …

… G�
1 H0 G1 …

… G�
2 G�

1 H1 …

⋰ ..
. ..

. ..
. . .

.

3
777777775

2
666666664

..

.

aðω−ΔÞ
aðωÞ

aðωþΔÞ
..
.

3
777777775
: ðH17Þ

We refer to the left-hand side of this equation as the
waveguide input vector. The components of the waveguide
input are defined as follows:

0 ¼

2
64
0

0

0

3
75; ðH18Þ

ainðωÞ ¼

2
64

0

0

âinðωÞ

3
75: ðH19Þ

The only nonzero term in the waveguide input vector
corresponds to the baseband of the filter cavity, which acts
as the decay pathway to the waveguide. The right-hand side
is composed of the Hamiltonian matrix and sideband
vector. The sideband vector components contain the emit-
ter, coupler, and filter cavity sidebands of a single order and
are given as follows:

aðωþ nΔÞ ¼

2
64
âEðωþ nΔÞ
âCðωþ nΔÞ
âRðωþ nΔÞ

3
75: ðH20Þ

The Hamiltonian matrix is split into 3 × 3 submatrices,
defined as

Hn ¼

2
664
ΔE;n þ i γE

2
−gECJ0ð ϵΔÞ 0

−gECJ0ð ϵΔÞ ΔC;n þ i γC
2

−gCRJ0ð ϵΔÞ
0 −gCRJ0ð ϵΔÞ ΔR;n þ i κt;R

2

3
775; ðH21Þ

Gk ¼ −ðiÞk
2
64

0 gECJkð ϵΔÞ 0

gECJkð ϵΔÞ 0 gCRJkð ϵΔÞ
0 gCRJkð ϵΔÞ 0

3
75: ðH22Þ

The on-diagonal submatrices Hn account for the reso-
nance frequencies of the emitter, coupler, and filter cavity
in a single sideband order. The Hn also give the emitter-
coupler and coupler-filter cavity coupling strengths
between sidebands of the same order (different modes).
This coupling strength is scaled by the zeroth Bessel
function J0. As a result, ϵ ¼ 0 results in J0 ¼ 1, and
maximal coupling between sidebands of the same order.
Note that here we introduce the detuning Δi;n ¼ ω − ωE þ
nΔ (i ¼ E;C;R), which is distinct from the coupler
modulation frequency Δ.
Coupling between sidebands of different orders is given

by the Gk submatrices, with k dictating the order of the
Bessel function which scales emitter-coupler or coupler-
filter cavity interaction strength. As evidenced by the
Hamiltonian matrix Eq. (H17), k increases for Gk further
from the on-diagonal Hn. The relative distance between

RESONANCE FLUORESCENCE OF A CHIRAL ARTIFICIAL … PHYS. REV. X 13, 021039 (2023)

021039-21



sideband orders determines k. For example, the emitter’s
nth sideband and the coupler’s mth sideband have
k ¼ jm − nj, meaning the coupling strength between these
sidebands contains a prefactor Jkðϵ=ΔÞ. This scaling of
interaction strengths is shown schematically in Fig. 13(b).
When ϵ ¼ 0 (rf drive is off), there is no coupling to any
sidebands [because Jnð0Þ ¼ 0; n ≠ 0].
For a given frequency drive amplitude (ϵ) and frequency

modulation (Δ), the relative coupling strengths of side-
bands are determined by the Jnðϵ=ΔÞ. For low drives
ϵ=Δ < 1, only the Bessel functions of low order have
significant magnitude. Therefore, by properly truncating
the coupled mode equations (by only including coupled
mode equations for sidebands of a low order), we generate
a finite matrix equation that allows us to solve for the
transmission of the tunable coupler. Transmission is deter-
mined by the standard two-sided cavity input-output
relation:

âoutðωÞ ¼ âinðωÞ −
ffiffiffiffiffi
κe
2

r
âRðωÞ: ðH23Þ

We may solve for âRðωÞ by inverting the Hamiltonian
matrix of Eq. (H17).

2. External coupling rate of the emitter qubit

The derived input-output model provides several physi-
cal insights into the tunable coupler. First, by modulating
the coupler frequency, we generate sidebands of all three
modes. Any effective coupling between sidebands of the
emitter and filter cavity is mediated by sidebands of the
coupler [see Fig. 13(b)]. Any decay to the waveguide is
mediated by the filter cavity baseband. In order to maxi-
mize the coupling between an emitter or filter cavity
sideband and a coupler sideband, for a given modulation
frequency Δ, we may vary the coupler drive amplitude ϵ.
A larger relative distance between sideband order (k) will
require increased drive amplitude ϵ to optimize coupling.
This is because maxima of higher-order Bessel functions
occur at larger values of ϵ=Δ.
The derived input-output relations provide a method for

estimating the external coupling of the emitter and its
sidebands. In principle, there are infinitely many decay
pathways for a given emitter sideband; each pathway is
mediated by a coupler sideband of distinct order. This is
evident in the mapping of interaction strengths given in
Fig. 13(b). In this section, we make estimates for the
waveguide coupling rate of an emitter sideband En arising
from interaction with a coupler sideband Cm; the full decay
pathway is En → Cm → R0 (R0 is the baseband of the filter
cavity). We consider three cases: the dispersive regime,
hybridized coupler-filter cavity regime, and fully hybrid-
ized regime. We then apply these estimates to illustrate
waveguide decay pathways in our experiment.

For the radiation pathway En → Cm → R0, relevant
frequencies are ωEn ¼ ωE þ nΔ, ωCm ¼ ωC þmΔ, and
ωR. We refer to these relevant sidebands as the emitter,
coupler, and filter cavity.

a. Dispersive regime

When the coupler is far detuned from the emitter
and filter cavity [δCm;En ≫ gECJm−nðϵ=ΔÞ, δCm;R ≫
gCRJmðϵ=ΔÞ], the effective interaction strength between
the emitter and filter cavity is given by

geff ¼
gECgCR

2
Jm−n

�
ϵ

Δ

�
Jm

�
ϵ

Δ

��
1

δCm;En
þ 1

δCm;R

�
ðH24Þ

under the rotating wave approximation [83]. Provided that
δEn;R ≫ geff , where δEn;R ¼ ωEn − ωR, emitter external
coupling to the waveguide is then given by

κem ¼
�

geff
δEn;R

�
2

κe: ðH25Þ

b. Hybridized coupler-filter cavity regime

The coupler and filter cavity may be strongly hybridized
with the emitter far detuned from either of the hybrid
modes. In this situation, geff between the emitter and the
hybridized mode (i.e., the majority coupler hybridized
mode) can be expressed as

geff ¼ gECJm−n

�
ϵ

Δ

��
ζ2

ξ2 þ ζ2

�
; ðH26Þ

where the raising operator for the hybridized mode is

â†h ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ2 þ ξ2
p ðζâ†C þ ξâ†RÞ ðH27Þ

and has frequency ωh. With δEn;h ¼ ωEn − ωh, emitter
external coupling to the waveguide is then given by

κem ¼
�

geff
δEn;h

�
2
�

ξ2

ξ2 þ ζ2

�
κe: ðH28Þ

c. Fully hybridized regime

In the case of strong hybridization of the coupler and
filter cavity, we may also allow the emitter sideband to
hybridize with a coupler-filter cavity hybrid mode. The
emitter’s raising operator then becomes

â†d ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p ðâ†E þ αâ†hÞ; ðH29Þ

where α ≪ 1. External coupling is then given by the
following:

κem ¼
�

α2

1þ α2

��
ξ2

ξ2 þ ζ2

�
κe: ðH30Þ
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From this analysis, it can be seen that the external
coupling rate of the emitter qubit to the waveguide is
determined by three factors: (i) the dynamic coupling
strength between the emitter-coupler and coupler-filter
cavity pairs, (ii) the emitter-coupler and coupler-resonator
detunings, and (iii) the external decay rates of the filter
cavities to the waveguide (listed in Table II). For the
configuration used in our experiment, the first-order side-
band of the emitter qubit decays to the waveguide via the
zeroth-order sideband of each of the two coupler qubits and
the filter cavities (see Fig. 14). The dynamic coupling rate
between the first-order emitter and zeroth-order coupler
sideband is proportional to gECJ1ðϵ=ΔÞ, and the coupling
rate of the zeroth-order coupler sideband and the filter
cavities is proportional to gCRJ0ðϵ=ΔÞ. The static coupling
rates gEC and gCR are limited to ensure that the emitter and
coupler operate in the transmon regime (EJ=EC ≳ 50; see
Table I). In addition, the filter cavity decay rates are chosen
to avoid strong hybridization via waveguide mediated
interaction. The modulation index ϵ=Δ is experimentally
optimized to maximize Γf

1D. Increasing the modulation
amplitude ϵ beyond this optimal value results in an increase
in decay via higher-order emitter sidebands. It is possible to
increase Γf

1D by reducing the detuning between the emitter
and couplers, as was done to obtain the data shown in
Fig. 2(f). However, increasing Γf

1D in this way results in an
increase in the qubit decoherence from weak hybridization
with the coupler modes, resulting in a saturation of the β
factor [Fig. 2(f)]. To go beyond the limitations of our

current design, we aim to use a dispersion-engineered
metamaterial waveguide where the density of states is
enhanced in the passband [77,86]. This will result in large
Γf
1D and strong suppression of decay via parasitic side-

bands, ensuring β factors close to unity.

d. Chiral emitter sideband decay

In our application, we are primarily concerned with
improving the external coupling of the emitter qubit’s first
sideband E1. Our experimental settings correspond to
modest values of ϵ=Δ<1, so that only interactions between
adjacent sidebands are significant [Jn>2ðϵ=ΔÞ ≈ 0].
Hence, the potential decay pathways for E1 reduce to
either E1 → C0 → R0 or E1 → C1 → R0.
Our device is designed to maximize decay through the

first channel (E1 → C0 → R0), marked by red arrows in
Fig. 14. Because Δ > gCE; gCR in our device, this may be
done by positioning the emitter sideband and coupler
baseband frequencies near the cavity baseband frequency
(δC;E1 ≈ gEC; δC;R ≈ gCR). These frequency spacings allow
for the hybridization of the coupler and cavity basebands.
As a result, this dominant decay pathway operates in the
hybridized coupler-filter cavity regime.
Under these conditions, decay through the second

channel (E1 → C1 → R0) is suppressed due to detuning
between C1 and R0 (of approximately Δ). The second
channel operates in the dispersive regime.

e. Parasitic emitter sideband decay

We now consider the decay of the emitter baseband (E0)
to illustrate the spectral filtering provided by the cavities.
Again, because experiments operate within ϵ=Δ < 1, we
consider only interactions between adjacent sidebands. The
relevant decay pathways are then E0 → C1 → R0, E0 →
C0 → R0, and E0 → C−1 → R0. As shown in Fig. 14, the
first pathway, E0 → C1 → R0, operates strongly in the
(dispersive regime. The second channel, E0→C0→R0

(marked in gray arrows in Fig. 14), operates in the
hybridized coupler-filter cavity regime. In this case, the
detuning between the emitter baseband and the hybridized
coupler-filter cavity suppresses the external coupling. The
last channel, E0 → C−1 → R0 (marked in gray arrows in
Fig. 14), is not described by the three operating regimes
presented. In this pathway the emitter decay is suppressed
by the large detuning between the coupler sideband C−1
and filter cavity.

3. Experimental operation of tunable coupler

To operate the tunable coupler, we first dc bias the
coupler qubit to an appropriate working point, as shown in
Fig. 1(c). We then apply a microwave tone to the coupler
qubit flux line [Zl, Zr shown in Fig. 1(b)]. Because the
coupler qubit has a nonlinear dependence on the flux
threading its SQUID loop [shown in Figs. 8(a) and 8(b)],

FIG. 14. Decay pathways of emitter sidebands. The filter cavity
at its natural frequency R0 is the source of waveguide decay. The
first emitter sideband’s (E1) dominant decay pathway occurs
through interaction with the coupler baseband and cavity base-
band (red arrows, E0 → C1 → R0). Decay pathways of the
parasitic emitter baseband (E0) are suppressed by the filter cavity
(gray arrows). Note that the emitter sideband spectrum is offset
from the cavity and coupler sideband spectra byΔ, corresponding
to the experimental settings.
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the amplitude ϵ and coupler mean frequency ωC are
determined by both the dc bias point (Φdc) and the applied
rf power (Pin ∝ ϵ2). Taylor expanding the coupler qubit
frequency results in the following relations:

ωC½ΦðtÞ�¼ωC½ΦdcþϵΦ sinðΔtÞ�≈ ω̄CþϵsinðΔtÞ; ðH31Þ

where ω̄C ¼ ωC þ ðϵ2Φ=4ÞðdωC=dΦÞjΦdc
and ϵ ¼ ϵΦðdωC=

dΦÞjΦdc
. Note the change in the notation of ω̄C to represent

the coupler mean frequency (given by ωC in previous
sections).
In Fig. 15, we use the input-output model to reproduce

the qualitative behavior of the tunable coupler. In
Fig. 15(a), we record waveguide transmission while sweep-
ing the rf drive frequency of the right coupler qubit. All
qubits are set to the same dc flux bias as the chiral
configuration presented in Fig. 1(c). Additionally, the rf
drive frequency of the left coupler qubit is set to
Δl=2π ¼ 805 MHz. As a result, the Δr=2π ¼ 805 MHz
transmission trace in Fig. 15(a) corresponds to Fig. 1(c).
Figure 15(b) gives the waveguide transmission calcu-

lated using the input-output model, including only the right
decay pathway. As a result, the left coupler, filter cavity,
and left emitter sideband are not present.

The calculated transmission uses experimentally
extracted parameters for the emitter, coupler, and filter
cavity (given in Tables I and II). The drive amplitude ϵ is
calibrated by recording the shift in the coupler qubit mean
frequency while sweeping the rf drive power. For
Δ=2π ¼ 805 MHz, drive amplitude is ϵ=2π ¼ 364 MHz,
yielding ϵ=Δ ¼ 0.452. At this drive amplitude, J0ðϵ=ΔÞ ¼
0.95, J1ðϵ=ΔÞ ¼ 0.22, and J2ðϵ=ΔÞ ¼ 0.03. The Bessel
functions of higher order (> 2) may therefore be safely
ignored, and the input-output matrix equation is truncated
after the second-order negative and positive sidebands
(H0, H�1, H�2 are included).
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FIG. 15. Comparison of experimental transmission and input-
output calculation. (a) Measured device transmission as rf drive
frequency of the right coupler is swept from 500 MHz to 1 GHz.
The left coupler drive frequency is set to 805 MHz during the
entire measurement. The emitter’s first blue sideband frequency
(generated by the right coupler) increases with Δ=2π. The same
sideband, generated by the left coupler, remains at 6.441 GHz.
Spectrally overlapping these sidebands yields the interference
required for chirality. (b) Calculated device transmission for the
right coupler. The emitter’s first blue sideband, coupler baseband,
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Sciences et Lettres, 2018.

[59] P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J.
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