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Pathological morphological changes in tumor tissue enable collective cancer cell unjamming, a cellular
motility transition. However, fundamental questions remain: Is unjamming essential for tumor progression?
Which different unjamming states can be found in patients? Here, vital cell tracking in patient-derived solid
tumor explants (N ¼ 16) reveals that states of cell unjamming can be recognized by elongated cell and
nucleus shape (CeNuS) and low nucleus number density. These static variables serve as a morphodynamic
link to map the broad range of morphologies and associated motility states found in histological slides of
1380 breast cancer patients to generate a comprehensive state diagram of cancer cell unjamming. An
increase in predicted cell motility in primary tumors through unjamming significantly correlates with
distant metastases that may even occur a decade later. Patient risk groups are quantified via a decision
boundary in the state space found by machine learning. The resulting clinical prognostic potential is
evaluated using a range of quantifiers, including Harrel’s concordance index. Using multivariable Cox
models, we find that cell unjamming as a prognostic parameter adds a 26% information gain in the
concordance index when combined with the established prognostic criteria (tumor diameter, tumor grade,
lymph node status) used in the Nottingham index. Unjamming complements the information on affected
lymph nodes in patients regarding metastatic risk. The derived state diagram of cancer cell unjamming
reconciles conflicting observations regarding shape- or density-induced unjamming and stresses the
nuclei’s mechanical importance, which is not considered in current theories of cell unjamming. We
conclude that cancer cell unjamming is part of the metastatic cascade; thus, an emergent physical
phenomenon contributes to tumor progression.
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I. INTRODUCTION

Epidemiologically, an estimated 2.1 million women
were diagnosed with breast cancer worldwide in 2018.
Unfortunately, in the same year, over 600 000 women with

breast cancer died [1], primarily because of the systemic,
invasive nature of the disease [2].
Currently, the invasion of nearby lymph nodes (LN) is

the key indicator of cancer cell motility in diagnostics, and
it constitutes the most important marker for the prognosis
of distant metastases [3]. Significant ambiguity remains
since around 30% of women without lymph node invasion
develop distant metastases. In contrast, around another
30% of women with lymph node invasion remain distant-
metastasis-free 10 years after surgery [4]. Current histo-
pathological cell motility markers rely on cancer cells
leaving the tumor and invading the lymph or vascular
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systems [5,6]. There are no immediate, established mole-
cular markers for cancer cell motility. Furthermore, no
marker—neither molecular nor histopathological—reliably
accounts for the onset of cell motility within the cancer cell
clusters of a tumor [7], which is an early and essential step
in the metastatic cascade [8].
We address this problem by introducing a simple

biomechanical cell motility marker based on soft matter
physics that describes the squeezed state of a migrating cell
in dense tissue and the nucleus number density as dis-
criminators that detect potentially motile cells in static
images of primary tumors, thereby acting as a morphody-
namic link. We show that these variables describe cell
unjamming, which occurs in carcinomas [9], and signifi-
cantly correlate with distant metastatic risk, thereby sug-
gesting that unjamming in the primary tumor increases
cancer aggressiveness by promoting distant metastasis.
Furthermore, our patient data-derived unjamming state
diagram identifies cell and nucleus shapes in conjunction
with nucleus number densities (ρ) as drivers of unjamming.
Since jammed cells form a metastable state, we use the
term state diagram instead of phase diagram. Cancer cell
unjamming as a collective motility transition may be an
important early event in the metastatic cascade, different
from the epithelial-mesenchymal transition (EMT) [10].
Thus, it may complement the current diagnosis as a
prognostic marker for distant metastasis.
The notion of “unjamming” in the context of cellular

systems describes a transition from collective arrest of cell
motion to mobile tissue behavior. The term emphasizes
arrest due to constraints of degrees of freedom, e.g., from
neighboring cells. The theoretical framework of glass
transitions is also suited to describe collective cell arrest.
These transitions are predominantly associated with a
diverging viscosity controlled by a critical temperature
(for cells, a critical activity). Both concepts are closely
related, but here we stick with the notion of “jamming”
since, for our interdisciplinary research, this term eases
the understanding and intuition, e.g., for physicians or
biologists.
In standard histological slides of breast carcinomas used

in clinical routines, we typically find regions of dense
cancer cell clusters embedded into the extracellular matrix.
In our histological data, 90% of cancer cells are in clusters
bigger than 600 μm2 (compare Fig. 5). These clusters are
the focus of this study. By optical microscopy, no space is
visible between the cells in the primary breast cancer cell
clusters depicted in Fig. 1. With the given optical resolution
of roughly 0.25 μm, Grosser et al. [9] estimated the lower
bound for the cells’ volume fractions to be around 95%,
meaning that the cells are close to volume fraction
of 1. This estimate is true for both distinct regions in the
clusters with elongated [Fig. 1(b)] and roundish [Fig. 1(a)]
cancer cells and nuclei. For these dense cellular islands

with no space for a cell to move [9], it is not intuitively
comprehensible how cells divide or migrate against their
obstructing neighbors.
Cell unjamming of a majority of softer deformable

cancer cells solves this problem [9,11]. These cells in a
cluster move by collectively exchanging positions [9,12–
15]. Cell aggregates with elongated cell and nucleus shapes
permit cells to pass each other by T1 transitions [15–17].
T1 transitions are topological rearrangement processes that
describe neighbor exchanges in confluent tissues [16].
Collective T1 transitions induced by elongated cells result
in unjammed, motile regions within the cell clusters,
whereas jammed regions are characterized by more round-
ish cells and nuclei that hinder collective rearrangement [9].
Therefore, one essential prerequisite for cancer cell motility
is the active deformation of cells and nuclei to squeeze
through and exchange positions with their neighbors,
validated below by vital cell tracking and segmentation
in patient-derived tumor explants; see Figs. 2 and 4.
This shape-dependent unjamming process is further

modulated by the nucleus number density (number of
nuclei/cells per area), which—up to now—was not incor-
porated as a mechanical variable in unjamming models.
When cells squeeze by each other, the rigid nuclei touch
each other as obstacles by the mechanical stress mediated
by the softer surrounding cytoplasm. Since the cytoplasm
is much softer than the nuclei, more cytoplasmic space

FIG. 1. Cancer cell clusters in patient-derived explants of
primary invasive breast cancer stained for actin (green) and
DNA (red). White lines emphasize nuclei and cell outlines. The
left column (a) represents a region of more roundish cells and
nuclei, while the right column (b) contains more elongated cells
and nuclei. In both samples, cells are packed close to a volume
fraction of 1.
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between the nuclei might foster cell unjamming and less
space jamming, respectively. Similar to the stiffening of
cytoplasm in atomic force microscopy (AFM) experiments
when indenting thin cell regions against the underlying
rigid substrate [18], a stiffening between the nuclei of the
clusters should occur when the cytoplasmic space that
surrounds the nuclei is lowered, which will favor jamming.
In real cancer cell clusters, there are several variables

related to packing: One is the cell volume (area)
fraction, which is close to or equal to 1 and thus practi-
cally invariable, as seen in Figs. 1, 4(c), and 5(a). Another
packing density is the nucleus volume (area) fraction
discussed later. The critical density under investigation
here is the nucleus number density ρ, which is highly
variable within the clusters [see Fig. 4(c)] and is equal to
the cell number density. Increased cell volumes, i.e., more
cytoplasmic space around the nuclei and lower number
densities, have been observed for unjammed cancer cell
spheroids [9,19,20].

The remainder of this paper is structured as follows: In
Sec. II, we present dynamic data of cancer cell unjamming
via vital tracking in patient-derived tumor explants. Because
of the limited availability of vital patient-derived tumor
explants (N ¼ 16), they cannot comprehensively probe
the entire state space of unjamming. Compensating for this
limited size, we conduct our exploratory retrospective
histopathological study in Sec. III, where we systematically
probe the space of unjamming states with both shape a
nd density as static variables of motility to assign and
classify the histological slides of 1380 breast cancer patients
with respect to distant metastases. The patient data span an
extensive and physiologically relevant state space [Figs. 4(b)
and 4(c)] that is highly correlated with metastatic events
(Fig. 6). Finally, the conjecture that these metastases were
favored by cellmotility in the primary tumor as an early event
in the metastatic cascade is discussed in Sec. IV, as are the
consequences of our state diagram to understand cell
unjamming and its potential clinical relevance.

FIG. 2. Vital cell tracking in primary breast cancer explants. (a) Explant of a primary breast carcinoma stained with a vital DNA stain.
Yellow lines indicate the tracks of the movement of the nuclei in a 150-minute time interval. An unjammed region of uncorrelated cell
motion in the lower middle of the sample becomes visible. This region is surrounded by jammed cells. (b) Cell nuclei were segmented,
and their corresponding AR was color-coded according to the color map on the right side (red is for high AR, elongated; green is for
small AR, round). The region of motile cells exhibits more elongated nuclei shapes with respect to the surrounding neighbors. This
analysis is conducted for the same sample as in panel (a) for an xy plane in the middle of the sample. (c) Zoom of individual tracks of a
cell nucleus within the region of the motile cancer cells (green outlines) and of a cell nucleus within the surrounding matrix of jammed
cells (blue outlines). The observation time is 35 minutes, displayed in 5-minutes time steps. The moving cell is actively deforming
and elongating, while the resting one exhibits a constant round shape. (d) Displacement of a motile cell (green line) and a resting
cell (blue line). The displacement of the moving cell increases over time and exceeds a typical cell radius (dashed red line, 8 μm).
The displacement of the resting cell only increases for the first 15 minutes due to fluctuations within the cage formed by the
surrounding cells.
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II. DYNAMICS IN VITAL PRIMARY SAMPLES

For dynamic cancer cell tracking data, we initiate pilot
experiments with vital patient-derived tumor explants of
two different carcinomas (four breast carcinomas and 12
cervix carcinomas) to show that the ability of cells to move
in dense tissues can be recognized by cell and nucleus
shape. Cancer cells are tracked during a six-hour observa-
tion period in 3D within primary tumors by live nucleus
staining with a spinning disk microscope [9,21,22]. After
the cell tracking experiments, we measure the cell shapes in
fixed tumor tissues using an actin cytoskeleton stain. In the
vital tumor explants of eight out of 16 patients, we find both
areas of motile cancer cells and areas of jammed cancer
cells within the cancer cell clusters. In the other explants,
the cancer cell clusters are solely jammed. We refer to

Appendix L for detailed information on the vital primary
samples and their fluidity status. The motile regions show
that cancer cell unjamming occurs in solid tumors.
Motile regions are characterized by cells squeezing

through their neighbors, clearly visible by nuclei elonga-
tions; see Fig. 2(c), Fig. 4(a), and the video of the vital
patient-derived breast cancer explant given in the
Supplemental Material [23]. Nuclei tracks cross each other
in motile regions, and the displacements exceed cell sizes.
In contrast, nonmotile regions exhibit vanishing nucleus
movement and only show small fluctuations around their
positions [Fig. 3(a)]. Motile, unjammed areas fundamen-
tally differ from the healthy epithelium, which is jammed
everywhere [24]. We measure the mean nucleus displace-
ments relative to the next neighbors [cage-relative

FIG. 3. (a,b) Quantification of the motile and nonmotile regions in vital tumor explants. (a) Measured mean displacements within
3 hours relative to nearest neighbors (cage-relative MSDs). Motile (N ¼ 22) regions exhibit significantly (2sKS p < 0.0001) higher
displacements above an average cell radius compared to jammed regions (N ¼ 22) in primary carcinoma (breast, cervix). (b) Nuclei
aspect ratios in primary breast carcinoma explants (shown in Fig. 2), which show a more elongated shape for motile (N ¼ 36) compared
to jammed regions (N ¼ 145). 2sKS test: p < 0.0001. (c) Relationship between nucleus shape and cell shape. We show the linear
correlation between the nucleus and cell aspect ratios, measured in primary breast and cervix cancer, fixated and stained for DNA and
actin. The Pearson correlation coefficient is r ¼ 0.73. (d) Correlation between mean and variance of the nuclei aspect ratios measured in
H&E-stained breast cancer sections. One data point corresponds to one patient from the training or test collective (N ¼ 1380). The
Pearson correlation coefficient is r ¼ 0.79. (e,f) Nucleus packing in histological slides (N ¼ 1380) of invasive breast cancer. (e) Blue:
correlation between the mean cell area and mean nucleus area in histological images of breast cancer patients. The Pearson correlation
coefficient is r ¼ 0.86. The red area shows the correlation of the mean cytoplasmic space (cell area minus nucleus area) and the mean
cell area in histological images of invasive breast cancer patients. The Pearson correlation coefficient is r ¼ 0.95. (f) Correlation of the
mean nucleus area and the mean cytoplasmic area in histological images of invasive breast cancer patients. The Pearson correlation
coefficient is r ¼ 0.67. (g) Correlation of individual cell speed measured by nucleus tracking in vital breast cancer explants with a
nucleus volume that scales inversely with nucleus number density [compare Fig. 15(b)]. We measure the mean cage relative speed within
2 hours. Cancer cell motility and, thus, unjamming increase with nucleus volume. We use a moving average with a window width of
100 μm3. Details and filtering can be found in Appendix D.
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mean-squared displacement (MSD)] during a 3-hour
period. The nonmotile areas exhibit cage-relative MSDs
not exceeding an average cell radius (8 μm) [Fig. 3(a)]. In
addition, the median relative distance traveled in motile
regions is significantly higher than every movement in the
area with nonmotile cells [two-sample Kolmogorov-
Smirnov (2sKS) test: p < 0.0001; see Fig. 3(a)]. The
150-minute trajectories of the nucleus centers are depicted
as yellow lines in Fig. 2(a). Cancer cells can have a fluidlike
movement in the unjammed regions, while in the jammed
regions, cancer cells are frozen in their positions as in a
heterogeneous solid or glass.
Live nucleus tracking data are analyzed in motile and

nonmotile regions in exemplary breast cancer explants
from our primary samples concerning the 2D aspect ratios
(AR) of the nuclei to connect cell motility and the (static)
form of cancer cells. Guided by the tracks and a visual
evaluation of three-dimensional videos [see the video of the
vital sample (shown in Fig. 2) given in the Supplemental
Material [23] ], regions of jammed and unjammed cells are
identified, as depicted in Fig. 2(b). The nuclear ARs are
indicated by color-coding in the outlines of the cell nuclei
for a spatial and temporal section of the tumor explant, as
displayed in Fig. 2(b). Comparing the static ARs of the
nuclei within the motile region with respect to the neigh-
boring nonmotile region shows that motile cancer nuclei
have significantly higher ARs than the jammed nuclei
(2sKS test, p < 0.0001), meaning that the motile cells have
a more elongated nucleus shape. A detailed look at the
dynamics of two cells, one in the motile region and one in
the adjacent jammed area, for an observation period of
35 minutes is shown in Fig. 2(c). The nucleus of the motile
cell strongly deforms while the cancer cell actively
squeezes itself through the dense microenvironment of
other cancer cells [green outline, Fig. 2(c)]. The jammed,
round nucleus does not change its low AR over time and
does not move [blue outline, Fig. 2(c)]. In agreement with
our cage-relative MSD measurements, the displacement of
the moving cell exceeds the average cell radius during the
observation time of 35 minutes, shown in Fig. 2(d). Our
tracking data reveal that an elongated nucleus can charac-
terize motile cancer cells squeezing through dense tissue.
The nuclei in the displayed image sequence are surrounded
by the cells’ cytoplasm, which is not fluorescently labeled
and thus not directly visible. However, when a nucleus
deforms to squeeze through the dense environment of
neighboring cells, the surrounding cytoplasm must also
deform. Accordingly, the deformation of the whole cell
correlates with the nucleus, as shown in Fig. 3(c). A motile
cancer cell is not solely squeezed by the surrounding cells
in the investigated cell clusters. The effect is reciprocal. The
surrounding cells, in turn, are also deformed or elongated
due to the moving cell, which results in the collective cell
unjamming transition that we observe in vital tumor tissue
(see video in the Supplemental Material [23]). Thus, we

conclude that elongated cell and nucleus shapes directly
indicate cancer cell motility in static pictures.
However, the degree of deformation depends on the

packing of nuclei and the number density since cells cannot
move when nuclei get stuck or when they are caged by
neighboring cells. Nuclei sizes directly correlate with the
cell sizes in tumor clusters [Fig. 3(e)], cytoplasmic sizes
around the nuclei [Fig. 3(f)], and the inverse number
density [Fig. 15(b)]. Importantly, the effective cytoplasmic
distance from the nucleus edge to the cell edge increases
with increasing nucleus sizes [Fig. 15(a)]. Consequently,
we expect unjamming for large nucleus sizes since this
corresponds to low number densities, more cytoplasmic
space, and longer distances between nucleus edges and cell
membranes, which increases the distance to neighboring
nuclei of adjacent cells.
Our vital tracking data in tumor explants, shown in Fig. 2

and the video in the Supplemental Material [23], indeed
reveal that nucleus volumes strongly influence the cell
motility detected, as shown in Figs. 4(a) and 3(g) (see also
Appendix D).
We summarize our tracking data and information on

shape and density in a first outline of the state diagram of
cancer cell unjamming in Fig. 4(a) (details are given in
Appendix D). We plot the binned nucleus volume (scales
inversely with number density; compare Appendix N)
versus the binned 3D nucleus ellipsoid shape (defined in
Appendix D) and color-code the space with the mean cell
speed within 2 hours. The black line plots an approximate
transition boundary separating caged (jammed) and unc-
aged (unjammed) cells. The boundary has been determined
by a binary support vector machine classification (see
Appendix I) of the binned tiles with displacements exceed-
ing a typical cell radius of 8 μm and those not exceeding
this radius in a 2-hour interval. Below the transition
boundary, average displacements never exceed 8 μmwithin
2 hours. Consequently, 55 of 55 tiles below the threshold do
not exceed a typical cell radius in their displacements.
Above the boundary, we find all the tiles that exceed an
average displacement of 8 μm. Out of a total of 25 tiles
above the threshold, 11 tiles exceed a displacement of a
typical cell radius. While motility correlations for both axes
are strong and depend on the region in the diagram
concerning which variable dominates, overall, the nucleus
volume as a measure of inverse number density and nucleus
spacing (see Appendix N) exhibits a more prominent role in
identifying the uncaged sections in the parameter space, as
seen from the decision boundary in Fig. 4(a).
The amount of vital tumor tracking data restricts the

detail in this state diagram. However, these observations
emphasize that nucleus number density and cell and
nucleus shapes are essential drivers of cancer cell unjam-
ming. This motivated us to probe the static unjamming state
space with an extensive number of retrospective histologi-
cal images of breast cancer patients. For simplicity and
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because most medical images are 2D, we use appropriate
2D shape and density variables for our state diagram. As
recently shown in [25], 2D observables measured on 2D
cuts from 3D cell packings still contain much information
with respect to the geometrical cell properties, especially if
the number of cells analyzed is high.

III. EXPLORATORY RETROSPECTIVE
HISTOPATHOLOGICAL STUDY

This section presents our exploratory retrospective his-
topathological study with no predetermined trial design.
Therein, we analyze the 2D H&E-stained breast cancer
tissue sections of 1380 patients and map them to our state
diagram with respect to the 2D static observables of
unjamming displayed in Fig. 4(b). The large amount of
patient data serves as the basis to determine the range
of jammed and unjammed states in solid tumors. We

hypothesize that cancer cell unjamming, as the onset of
cancer cell motility, favors distant metastasis. If our static
state space correlates with distant metastasis risk, it
suggests that cancer cell unjamming is an early part of
the metastatic cascade via the mechanism of cancer cell
motility within the primary tumor and justifies the useful-
ness of our unjamming-based static cell motility markers.
Representing the 2D-shape axis of the state diagram, we

have combined cell and nucleus shapes as static measures
of cancer cell motility into one ensemble variable: CeNuS
defined in Eq. (1). The nucleus shape is quantified by the
AR and the cell shape by a dimensionless measure of cell
elongation, the so-called cell shape index used in previous
theoretical publications [14,15,26] (p ¼ P=A0.5, where P is
the perimeter and A the area of a cell); see Fig. 5(e). For a
detailed explanation of the choice of quantitative measures,
see Sec. V. CeNuS is defined as the sum of the standardized
median cell shape index ¯̄pstand, the variance of the cell

FIG. 4. Derivation of the state diagram of cancer cell unjamming. (a) Tracking data in vital tumor explants. The nucleus volume and
nucleus ellipsoid shape sE are used as axes. These structural observables are binned, and the average speed within 2 hours
[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSDðt ¼ 2hÞp

=ð2 hÞ, where MSD is the cage-relative mean-squared displacement] of the tiles is depicted as a heat map. More
elongated nuclei and larger nuclei are strongly correlated with higher motility. The black line corresponds to a binary SVM classification
between tiles whose displacements exceed a typical cell radius (8 μm) on average and tiles that do not. (b) State diagram of cancer cell
unjamming based on histological images from 1380 breast cancer patients connecting tissue morphology with collective cancer cell
motility. Nuclei are depicted in purple, and cells are color-coded by a blue-to-green heat map, where blue indicates a jammed state and
green a motile state. Note that the diagram does not reflect a linear increase in motility. The region where blue turns to green depicts
where we expect the cell unjamming transition to occur. The abscissa varies the cell and nucleus shape (CeNuS) defined in Eq. (1). The
ordinate varies the standardized mean cell area Āstand

C , reflecting the inverse nucleus number density. The variables are measured on two-
dimensional histological images of tumors. The corresponding three-dimensional observables that we can measure in tracking
experiments [in part (a)] are depicted in gray: The nucleus ellipsoid shape corresponds to CeNuS, and the nucleus volume scales with the
inverse nucleus number density represented by Āstand

C in 2D. (c) Seven images of H&E-stained tissue sections of invasive breast cancer
associated with the indicated regions demonstrate that real breast cancer patient data span the whole state space. The scale bar
equals 50 μm.
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shape index σ2standp , the median nucleus AR ¯̄ARstand
N , and the

variance of the nucleus AR σ2standARN
:

CeNuS ¼ ¯̄pstand þ σ2standp þ ¯̄ARstand
N þ σ2standARN

: ð1Þ

Since the cell shape indices and the nucleus AR distribu-
tions are right-skewed (Appendix G), the median is used to
measure the average in the bulk population. However,
highly elongated shapes (cell, nucleus) in the tail of the
distribution could also contain vital information about
highly motile cells; therefore, the variance from the mean
is incorporated to reflect the distribution width. We average
overall cancer cells in the clusters because this is the most
robust measure. A significant linear correlation between
ensemble means of the nucleus ARs and their standard
deviations are visible for cases from the training and test
collective in Fig. 3(d). This agrees with an increase in
heterogeneity when regions in the cancer cell clusters
collectively unjam, driven by elongated cell and nucleus
shapes. The correlation between means and variances also
underlies the amorphous structure of the cancer cell
aggregates. A deformed nucleus necessitates a deformed
cell [Fig. 3(c)]. However, for a low nucleus number density
(large cytoplasmic spaces around a nucleus; compare
Figs. 3 and 15), the shape of a cell can be strongly
deformed while the nucleus is round. Thus, it is better
to use CeNuS instead of the sole elongation of the cell or

nucleus. The use of only one of these parameters as state
diagram axes is discussed in Sec. III, while the quantitative
analysis can be found in Appendix J.
To quantify the nucleus number density in 2D, the

average cell area in clusters ĀC is used since it indicates
how much space a single nucleus has around itself with
respect to the adjacent nuclei. The mean cell area is
proportional to the inverse nucleus number density
ĀC ∼ 1=ρ2D. The z-standardization of both state variables
was performed using the standard deviations and means of
a representative sample of a patient cohort of 530 con-
secutive cases provided by the Institute of Pathology
Hamburg-West; see Table VIII in Appendix E for exact
values. With these values, other researchers and physicians
can standardize their data to apply the presented physical
motility marker to evaluate metastatic risk.
The image analysis of H&E-stained breast cancer slides

to measure our state variables starts with a tissue segmen-
tation into cancer cell clusters, stroma, and white back-
ground, as depicted in Fig. 5(b). Nucleus shapes in the
cancer cell cluster are extracted with the StarDist model
[27]; see Fig. 5(c). We employ a watershed algorithm to
approximate the cell outlines by utilizing the nucleus
segments as initialization points and the edges of the
cancer clusters as constraints. This results in a good
representation of the cell outlines that lie halfway between
the nuclei and are constrained to the cancer cluster; see
Fig. 5(d). For a detailed description and benchmarking
of the reliability of the algorithms, see Methods and
Appendix C.
Before dividing our breast cancer patient collective of

1380 patients into a training and a test collective, we map
all histopathological slides to our state diagram with respect
to CeNuS and cell space. The heterogeneous cell clusters of
breast carcinomas span a large state space. Figure 4(b)
displays our unjamming state diagram with a schematic
representation of the observed tissue morphology as a
function of CeNuS and cell area. Figure 4(c) represents
examples of histological images from patients in different
regions of the state diagram. Based on our cell tracking data
[see Fig. 4(a)], we indicate by color-coding where we
expect the cells are jammed (blue) or unjammed (green).
The 1380 breast tumor cutouts represent the broad range of
unjammed or jammed states of cancer cells, which includes
regions that are dominated by shape-driven or nucleus-
number-density driven behavior. In our retrospective study
of breast cancer, a training set consisting of 688 patients
and an independent test set with 692 patients are used (see
Table XI). By independent, we mean that the collectives are
not overlapping with respect to the patients investigated.
The training set consists of patients treated only minimally
with endocrine (hormone) therapy and/or radiotherapy after
surgery. In this group of patients, no patient was treated
with cytotoxic chemotherapy. Therefore, we assume that
patients in the training set exhibit fewer treatment effects,

FIG. 5. Image analysis of the histopathological H&E-stained
slides to map breast cancer patients within our state diagram.
(a) Representative native H&E-stained tumor tissue of cancer cell
clusters surrounded by stroma. (c) Nuclei segmentation within the
cancer cell clusters to measure the nucleus AR. (d) Cell outline
segmentation within the cancer cell clusters to measure the shape
index. (e) Quantification of the nucleus shape by the AR (ARN),
the cell shape by the cell shape index (p), and of the inverse
nucleus number density by the cell area (A).
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which may alter the occurrences of distant metastasis. The
test collective did not exclude cases where the patients were
treated with chemotherapy or the therapy was not docu-
mented. After training, this collective of 692 patients
(descriptive statistic in Table XI) was used to validate
the hypothesis that the static state diagram of unjamming
correlates with distant metastasis. Chemotherapy may
prevent some of these patients from distant metastasis.
Nevertheless, the presented prognostic unjamming criterion
is not chemotherapy dependent (see Cox models in
Tables V and III) and should thus also be able to stratify
the patients with distant metastasis in this collective.
The clinical follow-up data with which we correlate the

state diagram are summarized in the descriptive statistics in
Tables IX–XI. Distant metastasis refers to the spread of
cancer from the primary tumor to distant organs. We have
chosen the reported distant metastasis in the patient’s
follow-up information as our main event under investiga-
tion since metastasis requires cell motility and unjamming
supports motility very early on. Our patients’ histories do
not discriminate between cancer-related deaths and deaths
from other causes. Therefore, distant metastasis as an event

is the more reliable parameter for risk assessment to
determine whether our static state diagram of cell unjam-
ming is connected to disease progression and bad prog-
nosis. For an analysis of the prognostic value of unjamming
with respect to reported “overall death,” we refer to Sec. IV
and Appendix M.
In the next step, we study where distant metastatic events

are found within the state diagram among the patients in
our training set; see Fig. 6(a). We notice that regions
characterized by round cancer cells and nuclei (small
CeNuS) and/or high nucleus number densities (small cell
areas) are nearly free of patients with distant metastatic
events. Conceptually, this fits our hypothesis that cancer
cell unjamming is an essential early event within the
metastatic cascade since we expect lower cellular motility
with rounder nuclei and cells and high nucleus number
density. Since current cell unjamming theories do not
consider the contribution of the cell nucleus [12] and do
not reflect the fact that unjamming depends on shape as
well as density, there are no useful quantitative predictions
where the cell unjamming transition occurs for our data. We
can use our tracking data to estimate where cell unjamming

FIG. 6. Distant metastasis and clinical relevance of cancer cell unjamming. The distribution of patient outcomes in terms of distant
metastasis is displayed with respect to the variables of the state diagram (cell area, CeNuS) for the training collective (N ¼ 688) and for
the test collective (N ¼ 692). The state diagrams are shown in panels (a) and (c), respectively. Patients who developed distant metastases
are indicated by red triangles. Patients who did not develop metastases are indicated by gray circles. The dotted line represents the
decision boundary that separates the low-risk patients for distant metastasis (below) from the high-risk group (above) estimated by SVM
classification; see Appendix I. Kaplan-Meier estimators are used for assessing the quality of our risk stratification based on cancer cell
unjamming. The resulting Kaplan-Meier plots are shown in panel (b) for the training set and panel (d) for the test set. They show that the
high-risk group (in red) is well separated from the low-risk group (in blue). The log-rank p-value for the training set is p ¼ 0.0012, and
for the test set, p ¼ 0.0080. In panel (e), we display only the lymph-node-positive (LNþ) patients from the test set (N ¼ 252) to
illustrate the complementarity of lymph node status and cell unjamming. The dotted line represents the decision boundary found in the
training set, which yields significant separation between risk groups, as seen in the Kaplan-Meier plot in panel (f) (log-rank p ¼ 0.018).
“Patients at risk” indicates the total number of patients who have not been censored or have not developed distant metastasis by a specific
follow-up time. In parentheses after the “Patients at risk” is the cumulative number of individuals developing distant metastases later.
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occurs qualitatively. However, our state diagram cannot fall
back on a theoretical, quantitative description of the
unjamming boundaries. Thus, we determine an empirical
unjamming threshold via the support vector machine
(SVM) distant metastasis classification in the state space
of our training set [Fig. 6(a)]. A kernel is employed that
constrains the boundary to our physical observations from
cell tracking [Figs. 4(a) and 4(b)]: Motility through
unjamming is correlated with the elongation of cells and
nuclei and low nucleus number density. We refer to
Appendix I for the model and training details. The resulting
boundary (see dotted line in Fig. 6) separates the space into
two regions such that a point above the boundary is
associated with unjamming and high distant metastatic
risk and a point below is associated with a jammed tumor
structure and low risk (see Fig. 6).
Among the 688 patients in the training collective, this

empirical unjamming threshold identified 21 of 30 patients
with distant metastases. The Kaplan-Meier representation
of the low- and high-risk groups in the training set in
Fig. 6(b) shows significant stratification with a log-rank
p-value of p ¼ 0.0012. Confirming this in the test set of
692 patients, most distant metastases (25 out of a total of
32 distant metastatic occurrences) are located in the high-
risk area [Fig. 6(c)]. The Kaplan-Meier estimators of the
low- and high-risk groups in the test set in Fig. 6(d) dis-
play significant discrimination with a log-rank p-value of
p ¼ 0.008. Unjamming as a prognostic marker yields
366=391 ¼ 93.6% false-positive patients in the high-risk
group. This is comparable to the false-positive rate in the
high-risk group defined by the current clinical standard, the
lymph node status, with 230=252 ¼ 91.3% false-positive
patients in the high-risk group that do not develop distant
metastasis despite their affected lymph nodes. Applying
the unjamming threshold to these patients, presented in
Figs. 6(e) and 6(f), reduces the false-positive rate in lymph-
node-positive patients to 138=156 ¼ 88.5%.
Regarding the false negative ratio within the low-risk

group in the test set (1-NPV; see Table I) defined by the
jamming threshold, we see that 7=301 ¼ 2.3% of patients
develop metastasis despite being in the low-risk group. For
the lymph node status, we observe 10=440 ¼ 2.3% patients
who develop distant metastases despite exhibiting unaf-
fected lymph nodes. Therefore, also in the false-negative
ratio (or negative predictive value), the jamming threshold
and the lymph node status yield comparable results.
In the test set, unjamming leads to a sensitivity of 0.78

(training 0.70) and a specificity of 0.45 (training 0.54)
(Table I; see details in Appendix H). Thus, the sensitivity is
higher compared to the lymph node status (0.78 versus
0.69) while the specificity is lower (0.45 versus 0.65).
To put this multitude of measures into perspective, we

use Harrel’s concordance index (c-index) as a unifying
evaluation metric [28] to verify that cancer cell unjamming
is highly relevant to distant metastasis prognostication. The

c-index measures a prognostic model’s or score’s ability to
differentiate patient outcomes. A c-index of 0.5 corre-
sponds to an entirely random prognosis while a value of 1.0
indicates the perfect ordering of prognosticated outcome
probabilities. A c-index of 0 means perfect anticoncord-
ance. One can interpret the c-index as the percentage of
patients that can be correctly ordered; e.g., 0.7 indicates
correct ordering in 70% of cases.
If cancer cell unjamming is essential to metastasis, which

has not yet been considered clinically, it provides additional
information with respect to the current diagnosis. This
becomes evident if the c-index increases when combining
current clinical information with our unjamming criterion.
Therefore, we validate via Cox models, survival models
based on regression analysis, that our measure of unjam-
ming is a complementary and independent addition to the
lymph node status, tumor grade, tumor size, and chemo-
therapy status with regard to distant metastases.
Considering these established clinical variables, the

Nottingham prognostic index [29] and the jamming thresh-
old independently in univariable Cox models (see Table V
in Appendix B), all variables (except the grade) provide
significant prognosis in the test collective, which demon-
strates the diagnostic relevance of these variables.
When combining the established prognostic criteria of

tumor diameter, tumor grade, and the lymph node status
(all parameters are used in the Nottingham index) with
the information of the unjamming threshold in a multi-
variable Cox model in Table II, only the unjamming
threshold and the lymph node status remain significant.
The regression coefficient b for the lymph node status is
positive [b ¼ 1.30, expðbÞ ¼ 3.69], indicating a worse
prognosis when one or more lymph nodes are affected;
that is, the estimated hazard increases 3.69 times. The
regression coefficient for the jamming threshold is −1.04,
and the hazard ratio is 0.36. Thus, the jamming threshold
shows a better prognosis for subjects whose jamming score
is larger since we defined it to be 1 for patients below the

TABLE I. Analyses of the sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), and
the c-index for the standardized mean cell area Āstand

C , CeNuS, the
decision boundary presented in Fig. 6 (DB), and the LNS as the
standard measure for distant metastatic risk. In brackets (…), we
show the order of magnitude of the ΔCI=2 of the 95% bootstrap
confidence interval (CI) for 1000 resamplings. Values are
calculated in the test set. We refer to Appendix H for details.

Āstand
C CeNuS DB LNS

Sensitivity 0.719 ð10−3Þ 0.781 ð10−3Þ 0.781 ð10−3Þ 0.688 ð10−3Þ
Specificity 0.473 ð10−3Þ 0.276 ð10−3Þ 0.446 ð10−3Þ 0.652 ð10−3Þ
PPV 0.062 ð10−4Þ 0.050 ð10−4Þ 0.063 ð10−4Þ 0.087 ð10−3Þ
NPV 0.972 ð10−4Þ 0.963 ð10−4Þ 0.977 ð10−4Þ 0.977 ð10−4Þ
c-index 0.606 ð10−3Þ 0.554 ð10−3Þ 0.627 ð10−3Þ 0.659 ð10−3Þ
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decision boundary presented in Fig. 6 and 0 otherwise,
reducing the hazard to 0.36 (36%) for subjects whose
tumor morphology indicates jammed cancer cell aggre-
gates. The c-index of this model equals 0.7126. The
c-index of the multivariable Cox model using only the
established prognostic criteria (tumor size, tumor grade,
and lymph node status; see Table VI in Appendix B)
without the information of the unjamming threshold
equals 0.6684. Thus, using the unjamming threshold in
combination with these established prognostic criteria
yields a ð0.7126−0.6684Þ=ð0.6684−0.5Þ¼ 0.26¼ 26%
information gain compared to the use of these established
prognostic parameters alone.
We still have to show that chemotherapy does not

influence our prognostic results. When adding the chemo-
therapy status as a predictor variable to the tumor size,
tumor grade, lymph node status, and unjamming threshold
to the multivariable Cox model shown in Table III, only the
jamming threshold and chemotherapy status remain sig-
nificant. This shows that the low- and high-risk groups
found by unjamming are not just caused by a treatment
effect. Chemotherapy may prevent distant metastasis in
some cases, but it does not alter the observed correlation
between cancer cell unjamming and distant metastasis.
As expected, the regression coefficient b for the chemo-
therapy status is positive [b ¼ 1.55, expðbÞ ¼ 4.71], indi-
cating a worse prognosis when chemotherapy is required:
The estimated hazard increases 4.71 times. The regression
coefficient for the jamming threshold is −0.97, and the
hazard ratio is 0.41. Thus, a jammed tumor structure
consistently indicates a better patient prognosis.
Static observables of cancer cell unjamming strongly

correlate with a breast cancer patient’s risk for distant
metastasis. Our results imply that unjamming as an increase
of cancer cell motility in the primary tumor is an early part
of the metastatic cascade, previously not considered in
diagnosis, since all observables are measured in the primary

tumor and not, for instance, in the blood vessels or
lymph nodes.
Unjamming is a new independent variable that provides

additional prognostic information to established clinical
parameters to better stratify breast cancer patients, leading
to more precise medicine as demonstrated via multivariable
Cox models. Thus, cancer cell unjamming could help
forecast distant metastasis that other diagnostic measures
would miss.
The metastatic cascade contains many more complex

steps, which are not all known yet, and even parallel
pathways through the lymph and vascular systems are
possible. Thus, it is impossible to establish a direct causal
relation between unjamming and distant metastases without
direct measurements of cell dynamics in vivo over several
(tens of) years. Not only is this unethical, but it is also not
technically feasible. The next best thing is to establish a
strong correlation between observables of cancer cell
unjamming and relapses through distant metastasis. Such
correlations are often used to initiate new diagnoses and
therapies. If clinically validated, the causal proof is no
longer required to be medically valuable. Moreover, the
observed correlation confirms the use of our static motility
marker and the state diagram.
The additional prognostic information that cancer cell

unjamming provides becomes particularly evident in the
complementarity of unjamming and lymph node status. In
our state diagram for both the training and the test
collective, low-risk and high-risk sections are not directly
correlated with the lymph node status (Pearson’s correla-
tion coefficient 0.08); see Figs. 6(e), 6(f) (test collective),
and 7 (training collective). The patients with positive lymph
node status who lie below the jamming decision boundary
(good prognosis) rarely developed distant metastasis.

TABLE II. A multivariable Cox model compares our unjam-
ming criteria (decision boundary in Fig. 6) with established
prognostic markers of breast cancer progression. The model
includes unjamming (1 for jammed states under the decision
boundaries, 0 otherwise), the largest tumor diameter, the tumor
grade, and the lymph node status (1 if lymph node-positive, 0
otherwise). All variance inflation factors of the used predictor
variables are smaller than 1.6, indicating vanishing collinearity.
Likelihood Ratio Test p < 0.0001. The c-index of the model
equals 0.7126. While without unjamming a c-index of only
0.6684 is achieved; see Table VI.

Coefficient b SE(b) exp(b) p

Jamming threshold −1.04 0.44 0.36 0.018
Tumor diameter 0.19 0.14 1.20 0.199
Grade −0.19 0.28 0.83 0.513
Lymph node status 1.30 0.43 3.69 0.002

TABLE III. A multivariable Cox model is used to evaluate the
independent prognostic power of the unjamming threshold (de-
cision boundary in Fig. 6) with respect to established prognostic
markers and the chemotherapy status. The model includes the
jamming threshold (1 for jammed under the decision boundary, 0
otherwise), the largest tumor diameter, the grade, and the lymph
node status (1 if nodes are infiltrated, 0 otherwise) and the
chemotherapy status (0 for treatment is unknown or not indicated,
1 for treatment). The jamming threshold and the chemotherapy
status are the only significant contributors in the model and thus
are not interdependent. All variance inflation factors of the used
predictor variables are smaller than 1.7, indicating vanishing
collinearity. Likelihood Ratio Test p < 0.0001. The concordance
index of the model equals 0.7706.

Coefficient b SE(b) exp(b) p

Jamming threshold −0.97 0.44 0.38 0.026
Tumor diameter 0.15 0.16 1.16 0.334
Grade −0.35 0.29 0.70 0.221
Lymph node status 0.82 0.43 2.27 0.055
Chemotherapy status 1.55 0.50 4.71 0.002

PABLO GOTTHEIL et al. PHYS. REV. X 13, 031003 (2023)

031003-10



Below the jamming threshold in the test collective, only
4=96 ¼ 4.2% (training collective 0=41 ¼ 0%) of patients
developed distant metastases, while the group above the
jamming threshold exhibited 18=156 ¼ 11.5% (training
collective 5=60 ¼ 8.3%) patients who developed metasta-
ses; see Figs. 6(e), 6(f), and 7. Consequently, for all lymph-
node-positive patients, we see significant stratification by
using our unjamming criterion within the training set
(Fig. 7, log-rank p ¼ 0.009) but, more importantly, in
the test set [Figs. 6(e) and 6(f), log-rank p ¼ 0.018). Thus,
risk refinement for nodal-positive patients by the unjam-
ming threshold could lead to a more reliable prognosis and
could thereby prevent nodal-positive patients from over-
treatment since, from all the nodal-positive patients in our
collectives, 36.5% received chemotherapy, while from the
nodal-negative patients, only 7.3% received chemotherapy.
From a total of 252 lymph-node-positive patients in the test
set, 230 did not develop distant metastases and are false
positives. From these 252 patients, the jamming threshold
can identify a significant (log-rank p ¼ 0.018) low-risk
group of 96 patients, where the risk of relapse through
distant metastases is 0% within the first 5 years and about
10% after 15 years, compared to around 30% after 15 years
in the high-risk group.
Within the nodal-positive collective in the test set

[Figs. 6(e) and 6(f)], the jamming threshold achieves a
sensitivity of 0.82, a specificity of 0.40, and a c-index of
0.64; see Table IV.
In the more detailed analysis in Appendix A, we

combine the information on the lymph node status with
our prognostic measure based on unjamming. Together,
they provide more information, which is suited for finding a

very safe group of patients with a very low risk of distant
metastasis [no lymph nodes affected and jammed tumor
structure; see Fig. 8(a) and Table I “Combination 1”] and a
very vulnerable group of patients for distant metastasis
[lymph nodes affected and unjammed tumor structure; see
Fig. 8(b) and Table I “Combination 2”].
The prognostic connection between cancer cell unjam-

ming in the primary tumor and distant metastatic events
implies that unjamming is essential to tumor progression
and provides valuable information that is not covered by the
lymph node status.

IV. DISCUSSION

In agreement with Fredberg’s hypothesis that healthy
tissues are close to unjamming [30], we have found that the
pathological changes in tumors enable cancer cell unjam-
ming as a collective motility transition [9]. Unjammed cells
are found in embryonic morphogenesis in zebrafish [31–
33]. When development is finished, jamming freezes the
tissue in its state. Thus, jammed healthy tissue with its
mechanical stability may be close to a cell unjamming
transition [30], and small pathological perturbations may
induce large mechanical changes [32,33]. Therefore, patho-
logical changes such as neoplasia may induce unjamming
in cancer as an early step to disseminate significant
amounts of cancer cells into the human body [30]. As
already indicated for asthma [26], cell unjamming may play
a role in the pathological changes of other diseases. Our
findings on the relevance of cancer cell unjamming for
tumor progression may be paradigmatic for the importance
of unjamming in medicine. In particular, we expect that
cancer cell unjamming is relevant to all solid tumors, not
only carcinoma, which would concern around 92% of all
cancers [34].
This result explains and motivates the recent

focus on cell unjamming in soft matter physics [12,35].
Nevertheless, a complete understanding of cell unjamming
is lacking. Different experimental observations have led to
controversial interpretations, and theories had predictive
power for some experiments [26] but do not consider all
effects that impact cell unjamming. This illustrates the
inherent problem of finding the correct state diagram for
cancer cell unjamming since we cannot experimentally
control living tissues in a fashion that permits us to probe
the whole state space systematically. Previous experiments
could only capture small cutouts of the state diagram,
leading to a limited view concerning the drivers of cell
unjamming.
Here, we address this problem with a unique approach

that establishes a morphodynamic link similar to the use
of rings in a tree slice in dendrochronology. We use
vital cancer cell tracking to obtain fundamental dynamical
information. However, the problem remains that we
can only study small cutouts of the whole tumor (around
100 μm3) and a small ensemble size (breast cancer N ¼ 4

TABLE IV. Combining the prognostic lymph node status with
the prognostic unjamming criterion: Sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV) and c-Index are calculated for: “Combination 1 (C1)”
which is defined such that the low-risk group is lymph node-
negative and below the jamming threshold (all others are in the
high-risk group), “Combination 2 (C2)” which is defined such
that the high-risk group consists of patients with affected lymph
nodes and above the jamming threshold (all other are in in the
low-risk group), “Unjamming in LN- (ULN-)” which is the
jamming threshold applied to all lymph node-negative (LN-)
patients and “Unjamming in LNþ ðULNþÞ” which is the
unjamming threshold applied to all lymph node-positive patients
(LNþ). In brackets (…), we show the order of magnitude of the
ΔCI=2 of the 95% Bootstrap confidence interval (CI) for 1 000
resamplings. Values are calculated in the test set.

C1 C2 ULN- ULN+

Sensitivity 0.906 ð10−3Þ 0.563 ð10−3Þ 0.700 ð10−3Þ 0.818 ð10−3Þ
Specificity 0.306 ð10−3Þ 0.791 ð10−4Þ 0.470 ð10−3Þ 0.400 ð10−3Þ
PPV 0.060 ð10−4Þ 0.115 ð10−3Þ 0.030 ð10−4Þ 0.115 ð10−3Þ
NPV 0.986 ð10−4Þ 0.974 ð10−4Þ 0.985 ð10−4Þ 0.958 ð10−3Þ
c-Index 0.605 ð10−3Þ 0.680 ð10−3Þ 0.602 ð10−3Þ 0.635 ð10−3Þ
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and uterine cervical cancer N ¼ 12; compare Appendix L).
A solid tumor is highly heterogeneous, which may be why
we did not find unjamming in all vital tumor pieces
(Appendix L). Since we cannot investigate a significantly
higher number of vital explants and since we have no
sufficiently long patient histories for these patients, we have
developed a morphological cancer cell motility marker via
CeNuS and Āstand

C that permits us to evaluate a large number
of histological patient slides. With this morphodynamic
link, we have sampled and mapped to our state diagram the
broad range of jammed or unjammed states present in
breast tumors.
Direct immunohistochemical markers for a cancer cell

that moves in the primary tumor do not exist. Tumor
biology discusses the EMT with its specific molecular
changes as the onset of cancer cell motility [36,37].
However, cancer cells do not show a clear, complete
transition; instead, they assume a spectrum of molecular
transitional states [38,39]. Thus, a molecular state defining
cell motility has not yet been found. Therefore, detecting
the morphological prerequisites for cell motility by our
state diagram for static pictures may become a needed
universal histopathological cell motility marker.
We stress the role of the nucleus in cell unjamming

since it has not been considered previously. Besides by
Grosser et al. [9], the nucleus is not mentioned in the
cell unjamming literature, to our knowledge, which is
surprising considering the central role of nucleus jamming
in the stroma [40,41]. Our state diagram paints a com-
pletely different picture of the role of the nucleus since
the nucleus enters both state variables. Notably, as cell and
nucleus shapes are correlated, we find that either one
may be used as a state diagram axis to significantly assess
distant metastatic risk in histological patient data (see
Appendix J for detailed analyses). However, we use
CeNuS since this measure better reflects that both cells
and nuclei must be elongated during migration in dense
tissues and since it yields the most significant separation
of risk groups.
The role of nuclei in cell unjamming leads to density

effects that are not considered in purely shape-induced cell
unjamming. The mean area fraction of the nuclei sur-
rounded by the cells’ cytoplasm in the histological images
range from about 0.25 up to about 0.45 per patient, with an
overall mean of 0.35 and a standard deviation of 0.039.
This shows that the nuclei are statistically so far apart—
spaced by the cytoplasm—that nuclear jamming in the
sense of colloidal jamming cannot occur. Since nuclear
jamming is not possible, we assume that the nuclei strongly
modulate the effective cell stiffness, which has been
demonstrated to modulate jamming behavior [11]. With
close spacings between the nuclei [high number densities,
see Fig. 3(e); small nuclei, see Fig. 3(f)], the cytoplasm
becomes strongly compressed between two nuclei, leading
to stiffening and thus fostering jamming. This stiffening

may be attributed to strain stiffening in the semiflexible
cytoskeletal network [42], a denser network with less
water content [20], a stronger cytoskeleton due to an
enhanced expression of cytoskeletal proteins caused by
mechanotransduction [43], or epithelial-like contractile
behavior [44]. Moreover, the strongly deformed nucleus
may lead to pronounced feedback mechanisms on the cells’
mechanical properties, such as enhanced cell motility
and mechanotransduction by YAP-signaling [45,46]. The
dependence on the spacing between nuclei may explain
previously observed density effects in cancer cell spheroids
[9,19]. Increasing the number density also increases the
membrane-to-membrane contacts in the clusters, which
could lead to more friction per area and consequently
higher viscosity fostering jamming. More compressed cells
and nuclei at high number densities may also be connected
to more nuclear excess envelope, which results in a lack of
actomyosin activity needed to generate the yield stress that
a motile cell requires [45]. We conclude that the nucleus is a
decisive mechanical element for the motion of cells in
dense tissues. In the ECM, this is well known, while in cell
clusters, this has previously been ignored.
In contrast to our state diagram, simulations that

neglected the nucleus were previously able to describe
the dynamics in 2D cell systems [26] but not in 3D cell
spheroids [9]. In two dimensions, the nucleus has an
additional unconstrained degree of freedom, the free space
above the cell monolayer, while at the same time, the
nucleus-to-cell area ratio is much smaller compared to 3D
tissues [13,14,26], which may be why the nucleus is
rendered less important in 2D systems. We conclude that
either the cell or nucleus shape is more important for
unjamming, which is why we have chosen to describe cell
shape and nucleus shape in CeNuS. We have fused density-
and shape-dependent jamming into one experimental state
diagram, considered the nucleus as a previously neglected
mechanical element, and approximated a physiologically
relevant transition boundary. An important aspect of our
state diagram is that it substantiates the need for refined
theories to combine shape and density as well as to include
the nucleus as an essential mechanical player.
Furthermore, with vital cell tracking, we can verify the

existence of jammed and unjammed regions in tumor tissue
in agreement with previous reports [9,11,47]. Thus, we
confirm that a motility transition exists in tumors. However,
we cannot directly observe the transition’s dynamics in our
experiments. To our knowledge, this is a common problem
for all reported phase diagrams from experimental studies
[19,31,47]. Nevertheless, the detected differences estimate
where the transition zone must lie, which must be between
the variables measured for the jammed and unjammed
regions. Since it is not possible to induce controlled
unjamming transitions, we cannot determine the transition
point more precisely. Thus, we can only display a transition
region in the state diagram. No direct experimental
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evidence exists for a first-order cell unjamming transition
[12,35] or for where precisely this transition occurs.
Besides these inherent limitations concerning the tran-

sition, we have solved a key sampling problem that has
hampered previous efforts to establish a detailed state
diagram of cell unjamming. Our unique approach to sample
states using the histological slides of 1380 patients probes
the entire physiologically relevant and statically accessible
state space. Based on our comprehensive histological
data, we present a state diagram in Fig. 4(b) that uses
CeNuS (shape) and cell area (density) as state variables
and thus unifies the suggested mechanisms of shape-
dependent jamming [9,14] and density-dependent jamming
[9,19,20,31], as well as adding the essential mechanical
effects of the nucleus [40,41]. Our state variables summa-
rize the emergent jamming process on a coarse-grained,
collective level. Many parameters introduced by previous
diagrams and models that categorize the driving effects of
unjamming are captured by our two static state variables.
For example, the cell shape as part of CeNuS includes the
effects of tissue surface tension, cell adhesion, cortical cell
contractility, and cell-cell adhesion. At the same time,
nucleus number density reflects mechanical interactions
between the cell nuclei, which become relevant at close
spacing and higher cell rigidities and even capture the effect
of external pressures on the cluster. The complete state
diagram has an additional dynamical axis, which is often
referred to as “effective temperature” [31] caused by
proliferation [48–52], inherent cell motility or activity
[14–16], and/or other active internal or external stresses.
This axis remains inaccessible using static histological
slides. Future yield stress measurements may estimate a
“critical activity” to unjam and may thereby help determine
the transition points on this axis. The patient data-derived
statically accessible state diagram shows the heterogeneity
of the cell clusters in breast tumors ranging from a more
nucleus-number-density behavior to a more shape-
dominated jamming behavior. This may explain why
invasive lobular carcinoma (ILC), which often shows
rounded nuclei and cell shapes [53], is known for its
ability to develop distant metastases.
The most significant advantage of using histopatholog-

ical patient data for our state diagram is that we can conduct
a retrospective study to correlate cancer cell unjamming
with distant metastasis and thereby derive its importance
for tumor progression. Without precise diagnostic guid-
ance, tumor boards must decide between a broad spectrum
of therapy options after surgery. This has resulted in a wave
of efforts to establish new prognostic molecular tumor
markers, such as novel gene signatures. However, therapy
decisions that consult gene expression tests do not neces-
sarily change the survival rate [5,54,55]. More information
is needed for a better prognosis. However, the existing
markers for motile cancer cells are not sensitive to cell
motility in the primary tumor before the cells invade the

lymph and vascular systems. Cancer cells in the primary
tumor are at the very beginning of the metastatic cascade
since they have not left the primary site. The cells at the rim
of cancer cell clusters in breast tumors are in contact with
the fibrotic ECM, which can be highly attractive to cancer
cells as a tumor promoter through mechanotransduction
and durotaxis [56–58]. Cancer cells at the cluster rim are
not jammed per se with respect to single-cell escape into
the ECM. Thus, carcinomas may disseminate cancer cells
very early on [59]. Cancer cells in the depth of a cluster
cannot escape, which makes collective unjamming neces-
sary for this process. In the cancer cell clusters that we find
in our histological images, 64% of the cancer cells are outer
cells and 36% are bulk cells. Unjamming can thus addi-
tionally transform more than 1=3 of the cancer cells into
motile cells. However, more importantly, unjamming
changes the quality of cancer cell escape. While the outer
cancer cells may escape in a process similar to evaporation
as single cells [19,47], depending on the ECM density,
unjamming of the inner cells permits collective escape of
cancer cell aggregates [47,60–63]. Several reports show
that cancer cell escape in clusters increases cancer aggres-
siveness and worsens prognosis [64–66].
Our histopathological data (Fig. 6) show that cell

unjamming is critical for tumor progression. However,
we cannot precisely measure the dynamic transition in
primary tumors because we use static histological images in
our retrospective histopathological study. Thus, we use
machine learning to find a decision boundary that divides
our state diagram into unjammed regions of high distant
metastatic risk and jammed regions of low risk via distant
metastasis classification. We have consciously chosen
distant metastasis as a clinical event since it requires cell
motility as a fundamental prerequisite and connects unjam-
ming with the metastatic cascade. Establishing a direct
causality between unjamming and the metastatic cascade is
unfeasible since the metastatic cascade contains many more
complex mechanisms that are not fully understood. Our
unjamming criterion adds a 26% information gain with
respect to established prognostic risk parameters used in the
standard Nottingham index.
Shape and number density are not separate criteria

since unjamming can only be described by both, as shown
in our tracking experiments [Fig. 4(a)] and our retrospec-
tive clinical study [Figs. 6(a) and 6(e)]. In Appendix H and
Table I, we show that the cell area Āstand

C alone has
prognostic power. CeNuS adds further prognostic informa-
tion to Āstand

C since we find that it provides an 18%
information gain with respect to sensitivity and specificity
(details can be found in Appendix H) when combining
CeNuS with Āstand

C instead of only using Āstand
C . This is

confirmed using another measure of prognostic power, the
c-index, where the combined use of CeNuS with Āstand

C

yields a 20% information gain over using only Āstand
C

(Appendix H).
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Since an unjammed state estimated by our state diagram
increases the risk for distant metastasis and even adds new
information to current prognosis, we conclude that cancer
cell unjamming is an important and previously unknown
part of the early metastatic cascade in the primary tumor.
We observe no time-to-event correlation of our prognosis,
meaning that the correlation between unjamming and
distant metastasis does not increase when decreasing the
follow-up time. It maintains prognostic power even for
events that occur a decade later. We attribute this effect to
dormant cancer cells, which are nonproliferating cancer
cells that have undergone cell cycle arrest and can hide in
distant organs for years or decades before being reactivated
and causing disease relapse [67].
Regarding the correlation of our state diagram with the

overall death, including deaths that are not related to breast
cancer, we find that the trained decision boundary, shown in
Fig. 6(a), generalizes to the overall death with a significant
log-rank p ¼ 0.031. For the detailed analysis, we refer to
Appendix M. A recent study including over 750,000 breast
cancer patients found that about 50% of the deaths reported
in overall death are not caused by breast cancer [68]. Thus,
our focus on distant metastases provides a stronger con-
nection to tumor progression.
Our retrospective study has been exploratory. A refined

clinical study with a predefined design may improve the
prognostic power of unjamming. A technical reason for the
restraint of the prognostic power of our unjamming criterion
might be that the tissue cutouts used in this study—
tissue microarray (TMA) cores of 1.0-mm diameter—do
not comprise the whole tumor mount, which is typically
much larger, in the range of centimeters (compare the
descriptive statistics in Table IX in Appendix K).
Pathologists have sampled the sites of the TMA cores from
themiddle of the respective tumors. Therefore, it is plausible
to assume that some TMA cores are not a representative
sample of the respective tumor’s jammed or unjammed state.
Thus, we assume that analyzing whole tumor mounts or the
tumor front in addition to the TMA corewould lead to better
clinical results.
Unjamming improves the prognosis since it adds new

information. Concerning the complementarity of unjam-
ming and the nodal status: not all cancer cells that leave the
primary tumor target the nearby lymph nodes. There are
other pathways for distant metastasis that bypass the lymph
nodes [3]. This agrees with reports that lymph node status
has limitations in predicting distant metastasis [4,69],
including a large-scale breast cancer study (N > 24 000)
[3]. Because of the complementarity to the nodal status, our
unjamming criterion can correct for currently made errors
in the prognosis and thereby has the potential to reduce
overtreatment by identifying a low-risk group among
lymph-node-positive patients [see Figs. 6(e) and 6(f)].
Vice versa, the information on the lymph node status also
corrects for prognostic mistakes made by unjamming.

With unjamming, we have found a potentially highly
clinically relevant histopathological tumor marker, which
fills the gap in detecting cancer cell motility in the primary
tumor. Unjamming as a prognostic marker provides a new
type of clinically relevant data that may add significant
information about the distant metastatic risk to existing
clinical prognostic indices. We need as many complemen-
tary data as possible to obtain an improved picture of the
disease and arrive at personalized predictions. We hope our
results will gain enough attention so that clinical studies
will further determine the prognostic value of unjamming.
While vital cancer cell tracking is not clinically feasible,
our unjamming state diagram, already parametrized with
2D variables, as a prognostic criterion is well suited for
clinical applications because it only requires H&E-stained
slides, which are readily available in a clinical routine. For
decades, histological sections have been used as a standard
procedure after tumor surgery to evaluate the tumor. Thus,
our morphodynamic link closes an essential histopatho-
logical gap. In the far future, our improved understanding
of the metastatic cascade may help identify drug targets for
adjuvant migrastatic anticancer therapies, which aim to
inhibit cancer cell motility, e.g., by targeting actin polym-
erization or cell contractility [70]. However, specifically
targeting the cytoskeleton of cancer cells is challenging
since the cytoskeleton is highly conserved in healthy and
malignant cells. Consequently, there exists a severe toxicity
problem [70]. Therefore, inhibiting collective unjamming
might be one solution to this problem.
Increased cell motility through cancer cell softening

and mechanical changes in tumor tissue has been impli-
cated as necessary in tumor progression for two decades
[71,72]. While tissue and cell mechanics have become a
quintessential part of the physics of cancer and have led to
new physics [9,11,26], it is still unclear whether these
results are of clinical relevance. Cancer cell unjamming
demonstrates that collective emergent effects are needed
in the early metastatic cascade, and they provide com-
plementary information for cancer prognosis that cannot
be provided by molecular approaches or an established
diagnosis.

V. MATERIALS AND METHODS

Vital primary sample preparation.—We obtained pri-
mary samples of cervical and breast carcinomas immedi-
ately after surgery. Patientswere asked to participate through
approved ethics votes (cervix ethics vote No. 090-10-
19042010, breast ethics vote No. 073-13-11032013). The
samples were classified as tumor tissue by pathologists at
Leipzig University Hospital.
Samples were transported in a buffer solution based on

Ringer’s lactate solution. The basis for the modified Ringer
tissue buffer is theRinger’s lactate solution (B.BraunMedical
AG, Cat. No. 3325950, Approval No. 6724011.00.00)
supplemented with 5% [w/v] glucose monohydrate and
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1%antibiotic–antimycotic solution (PAA,Cat. No. P11- 002)
to prevent possible contamination. To find cancer cell clusters
amidst the stroma and adipose tissue, samples were cut into
approximately half-millimeter-size pieces and stored in
Dulbecco’s Modified Eagle’s Medium (DMEM). These
pieces were then analyzed under a microscope to identify
cancerous cell clusters. Cancer cell clusters were separated
from the surrounding tissue and subsequently transferred to a
384-well plate with a microscopy bottom (Cat. No 88416,
Ibidi) filled with DMEM and 0.2 μM of SiR-DNA (Cat.
No. SC007, Spirochrome) using a 200-μl pipette tip and
microscopic vision. Multiple pieces of the same sample were
put in one well and independently imaged since they mostly
stayed in their positions.
Live imaging of primary samples.—The procedure is

similar to the one used for vital cell observations of
explanted tumors of mice [22].
We used water immersion objectives to achieve a high

NA with Zeiss Immersol W 2010 (Cat. No. 444969-0000-
000). The pieces should not be too far from each other in
order to keep the immersion for long-term observations.
We typically used 2 × 2 wells of the 384-well plate for
imaging.
For vital nuclei staining, we use SiR-DNA, which is

minimally toxic (for concentrations less than 0.25 μM [73];
we use 0.2 μM). The excitation wavelength is around
652 nm. In this far-red illumination regime, phototoxic
damage to the cells is minimal. The samples were kept in
medium containing 0.2 μM SiR-DNA during observation
to ensure a stable fluorescence signal.
We used the ZEISS Axio Observer equipped with a

Yokogawa CSU-X1A 5000 spinning disk confocal scan
unit for vital imaging. Fluorescence signals were recorded
every 5 or 7.5 minutes for an observation period of 6 hours.
The ZEISS Live Cell Imaging (LCI) Plan-Neofluar 25x/0.8
objective (Cat. No. 420851-9972-000) was used to provide
an appropriate field of view.
In order to account for occasionally occurring

whole-sample drift and rotation, registration of the 4D
stacks ðt; x; y; zÞ was performed with a MATLAB algorithm
explained in the Appendix of Grosser et al. [9].
To dynamically study the primary tumors’ trajectories

of the cancer cells, 3D live tracking of the nuclei was
performed using the open-source image analysis software
TrackMate [74]. Here, we used a spot size of 10 μm and a
threshold of 0.5. The detected spots were linked from
frame to frame using the TrackMate LAP Tracker, which
penalizes interspot differences in median spot intensity,
standard deviation of intensity, and estimated spot diam-
eter. This ensures accurate cell tracking, even when the
cells pass each other closely, and prevents tracks from
flipping between cells. The maximum allowed linking
distance was adjusted for every primary sample such
that the maximally allowed step size was slightly larger
than the corresponding maximal frame-to-frame veloc-
ities. The quality of the resulting tracks was verified by

visual inspection. Tracks shorter than ten frames were
excluded from the analysis.
Using nuclei tracking to quantify the cell displacements,

we calculate cage-relative (relative to the nearest neighbors)
mean-squared displacements (MSD) over time. Cage-
relative calculations enable us to measure single-cell
motility not collective cell motion. From the cage-relative
MSDs, we calculate the mean distance traveled per cell at a
specific time t as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSDðtÞp

.
Nucleus shape quantification in primary samples.—

To measure the static aspect ratios of the nuclei, nuclei
segmentation of static images for z ¼ const and t ¼ const
was performed with the open-source image analysis library
StarDist in PYTHON—which utilizes the predominant star
convex shapes of nuclei together with CNN learning [27]—
using the pretrained model for fluorescence images. Falsely
segmented nuclei were corrected by hand. The aspect ratios
were calculated as AR ¼ a=b, where a is the major axis
length and b the minor axis length of the ellipsewith the same
normalized second central moments as the segmented region.
Combined nucleus and cell shape imaging in primary

samples.—After live imaging, some tumor explants were
fixated with 4% [w/v] paraformaldehyde in PBS for
30 min. Next, fixated tissue was washed with PBS and
stored in 1% solution of Triton-X 100 for 24 h or longer,
resulting in higher transparency and a better intake of the
fluorophore. Next, tumor pieces were stained in Alexa-
Fluor 488 Phalloidin actin staining for 24 h and then stored
in IMM mounting medium (ibidi) to reduce the fluoro-
phores’ photobleaching to increase visibility by optical
clearing. Imaging was carried out using a Leica TCS SP2
laser scanning microscope with a Leica HC PL APO 20X/
0.7 CS Corr IMM objective. The refractive index of the
mounting medium was measured with a refractometer
to n ¼ 1.445. To avoid any refractive index mismatch
between mounting medium and immersion medium, an
80%/20% glycerol/water mixture (n ¼ 1.45) was used as
immersion medium.
Patients for retrospective study.—For our retrospective

histopathological study, we investigated 1380 breast
cancer cases in total. The nucleus and cell shape analyses
were based on H&E-stained digitized tissue sections of the
corresponding primary tumors. Patients were informed and
gave ethical, informed consent, approved by the ethics
committee of the Ärztekammer Hamburg (Medical Council
Hamburg) with Processing No. PV2946. The considered
cases were classified according to World Health
Organization histological classification of breast carcino-
mas, 3rd edition of 2003, which follows the TNM classi-
fication according to Union Internationale Contre le Cancer
in terms of grading and staging. All data used for this study
are from female patients. The clinic evaluated the sex of the
patients by specification. All available information can be
extracted from the descriptive statistics in Table IX in
Appendix K.
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H&E-staining and imaging of breast cancer tissue.—
H&E staining of patient breast cancer tissue was performed
following standard protocols using the Leica ST4040
automat. The formalin-fixated breast cancer tissue sections
were then optically inspected and digitized using the
Panoramic 1000 Flash IV Scanner of 3DHISTECH with
a Zeiss Plan Apochromat 40x objective.
Digital image acquisition and analysis.—The raw data

of 18 TMAs—each containing about 100 histological
images of breast cancer—are available as MIRAX files.
We opened each file with QuPath [75] and exported the
single TMA cores, which were annotated semiautomati-
cally as TIFF files. Each core, corresponding to one
patient, has a diameter of approximately 1200 μm and a
μm-to-pixel ratio of 0.249.
We filtered out patients as follows: (1) those with

H&E-stained images with less than 200 cancer cells [that
is, the total number of nuclei found in the regions that our
algorithms labeled as cancer cell clusters (explained
below)]; (2) those for which no clear distinction between
cancerous and other areas could be made (e.g., no clear
separation between breast cancer clusters and intermesh-
ing clusters of cancer-associated fibroblasts was possible);
and (3) those whose tissue had slipped out of the focus of
the scanner. As orienting information, it is helpful to
know that for all 1380 remaining cases, the mean (�SD)
cancer cell number per patient amounts to 3026 (�1803).
To analyze the shapes of cancer nuclei and cells, we use
nuclei segmentation of the StarDist algorithm with the
pre-trained model of the developers for H&E-stained
images [27]. In StarDist, every nucleus segmentation is
assigned a probability of its accuracy.We use the suggested
0.69 probability threshold for robust results. We have also
tried lower thresholds, as some nuclei are not found at the
0.69 threshold. However, nuclei were segmented incor-
rectly, and the shapes of the nuclei were often wrong, which
is why we decided to use the 0.69 threshold recommended
by the developers. Furthermore, distinct nuclei from
different z planes can optically overlap in stained tissue
sections. The software can account for this to a certain
degree by an overlap estimation. We allow an overlap of
30% of the nucleus area.
Tissue segmentation.—To quantify only the shapes of

nuclei and cells that are cancerous, we have developed a
custom MATLAB algorithm, called tissue segmentation (TS),
which distinguishes cancerous tissue from stroma, immune
cells, and adipose tissue. TS uses a copy of the mask of
segmented nuclei M, that is, 1 for nuclei and 0 otherwise.
First, the nuclei of potential immune cells are coarsely
filtered by identifying nuclei with a radius smaller than
5 μm and an aspect ratio smaller than 1.2, and they
are densely packed compared to surrounding nuclei.
Accordingly, only immune cells that exist in joint clusters
are filtered. Immune cells that are, for example, isolated in
the midst of cancerous tissue are not filtered. However, the

statistics of the nuclear and cellular shapes of the cancerous
tissue are hardly touched by these single immune cells
since their occurrence is rare. Potential nuclei of fibroblasts
are also coarsely filtered out of M by identifying nuclei that
exhibit AR > 2.1. The remaining nuclei on the mask M are
morphologically dilated, resulting in contiguous areas.
Contiguous territories with an area that is smaller than
ð11 μmÞ2 · π are typically groups of fibroblasts and are
deleted from M. Subsequently, M is smoothed by thresh-
olding the convolution of the binary matrix M with a
5 μm × 5 μm mask with all entries equal to 1=ð5 μm2Þ.
The resulting mask marks the cancerous regions. For
measurements, nuclei filtered in M but lying in the cancer
mask are considered since they are only deleted for
morphological operations.
Cell and nucleus shape quantification.—The StarDist

algorithm provides us with a binary mask labeling nuclei.
The TS algorithm results in a mask that identifies the
cancerous regions. Combining these two masks, we
approximate the cell boundaries in H&E images using
the marker-based watershed algorithm [76]. The quality of
the approximation is quantified in Appendix C. We
calculate the so-called cell shape index using these cell
boundaries, where P is the perimeter of the approximated
cell boundary and A is the area. Note that P is computed
using the MATLAB built-in function regionprops, which
calculates the distance between each adjoining pair of
pixels around the region’s border. Thus, small values of P
correspond to roundish cells while large values corre-
spond to elongated cells. We quantify nucleus shapes
using the aspect ratio of the ellipse’s major and minor axis
lengths, which have the same normalized second central
moments as the nuclei segments. We use aspect ratios for
nuclei shape quantification as most nuclei are convex and
the aspect ratio is a robust measure for these shapes. We
use the cell shape indices for cell shape quantification as
cells are often nonconvex and aspect ratios might not
capture the true shape of a cell. It is also a common
measure for cell shape quantification [14,15].
For the CeNuS and mean cell areas ĀC, standardization

of variables is performed with respect to the means
and standard deviations of a cohort of 530 cases, which
the Institute of Pathology Hamburg-West consecutively
received: ðX − X̄Þ=σX, where X denotes, for example, the
ensemble median of nucleus aspect ratios or cell shape
indices. The exact values for standardization can be found
in Table VIII. Cell and nucleus shapes corresponding to cell
segments smaller than ð1 μmÞ2 · π or larger than ð28 μmÞ2 ·
π being filtered since they often belong to falsely approxi-
mated cell outlines.
Statistical analysis
Two-sample Kolmogorov-Smirnov (2sKS) test.—The

2sKS test is a nonparametric hypothesis test that is
commonly used to test if two distributions are statistically
different. The test assesses the difference between the
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cumulative distribution functions of the distributions of the
two samples one wants to compare. The test statistic is
defined as D� ¼ maxxfF1ðxÞ − F2ðxÞg, where F1ðxÞ
[F2ðxÞ] is the proportion of x1 (x2) values less than or
equal to x. We use the MATLAB built-in function kstest2 to
compare distributions.
Kaplan-Meier estimator.—This estimator is a nonpara-

metric statistic used to define survival probabilities from
lifetime data. Specifically, it estimates the probability
of an individual or group not exhibiting a certain event
in a time interval. Throughout this study, the event is
distant metastasis. The estimator is defined as ŜðtÞ ¼
Σi∶ti≤t½1 − ðdi=aiÞ�, where ti are time steps where at least
one event happened, di is the number of events at ti, and ni
is the number of individuals known to have no event until
time ti.
Log-rank test.—The log-rank (sometimes referred to as

the Mantel-Cox test) test is a nonparametric hypothesis test
with a null hypothesis that two groups are sampled from the
same population. This test is commonly used to compare
risk groups from the Kaplan-Meier estimator and general
time-to-event measurements. The test statistic is defined as
χ2ðlogrankÞ ¼ P

m
i¼1½ðOi − EiÞ2=Ei�, where m is the num-

ber of groups, Oi the total number of observed events, and
Ei the total number of expected events.
Fisher’s exact test.—Fisher’s exact test is a nonparamet-

ric test for testing the null hypothesis that no nonrandom
associations exist between two categorical variables. The
alternative hypothesis is that there is a nonrandom associ-
ation between the variables. Especially when few samples
are available, it is advised to use this test instead of the also
commonly used chi-squared test. We use the test to compare
clinical features between patient groups in Appendix K.
The MATLAB built-in function fishertest is used.
Pearson correlation coefficient (PCC).—PCC is calcu-

lated by the covariance of two data arrays divided by the
product of their standard deviations. It is commonly used to
assess the strength and significance with which data are
correlated. A coefficient of 0 equals a nonexistent corre-
lation, and a coefficient of 1 means a perfect correlation.
We use the MATLAB built-in function corrcoef.
Median absolute deviation (MAD).—We calculate the

median absolute deviation by taking the median of the
absolute value of the differences of the data from its
median, that is, medianðkx −medianðxÞkÞ, where x is a
data vector.
Cox proportional hazardmodel.—TheCoxmodel defines

the hazard for an individual i as hiðtÞ ¼ h0ðtÞ · eXiðtÞ·β,
where h0 is the baseline hazard, Xi is the vector of covariate
values for individual i, and β is the coefficient vector.
The model is widely used to assess the degree and
significance of certain influences Xi on survival or other
time-dependent events. When multiple influences Xi are
considered, it can be checked if one ormultiple influences are
independent of other influences regarding hazard ratios. It

should be noted that the model only considers weighted
linear sums of the influences on an event. Here, we compare
our jamming threshold in the state diagramwith conventional
clinical prognostic factors such as the tumor grade or tumor
size. For Cox analyses, we use the MATLAB built-in function
coxphfit.
Sensitivity and specificity.—In binary classification, the

sensitivity is defined as the true positive rate tp=tpþ fn,
where tp is the number of true positives and fn the number
of false negatives. In our study, true positives are patients
who developed distant metastases, indicating an unjammed
tumor structure and false negative patients would be
patients who do not develop distant metastases but are
associated with the high-risk group.
The specificity is defined as the true negative rate

tn=tnþ fp, where tn is the number of true negatives
and fp is the number of false positives. In our study, true
negative patients are those who develop no distant meta-
stasis and whose tumor structure indicates a jammed state.
False-positive patients are those whose tumor structure
indicates a jammed state but who develop distant meta-
stases. Typically for cancer markers, there is a trade-off
between sensitivity and specificity.
PPV and NPV.—In binary classification, the PPV is

defined as tp=tpþ fp and is, therefore, the true positive
rate within the group classified as positives. In our study,
this would be the distant metastasis rate within the group of
patients located above the jamming threshold in Fig. 6. The
NPV is defined as tn=tnþ fn and corresponds to the
number of patients who did not develop distant metastases
divided by the number of patients in the low-risk group
(below the jamming threshold).
c-index.—The concordance index (c-index, Harrel’s

c-index) [28] is a measure of prognostic power. It measures
the ability of a score to separate patients with favorable and
poor outcomes. A c-index of 0.5 corresponds to a com-
pletely random score/model, a c-index of 1 to a perfectly
correlated score/model, and 0 to a perfectly anticorrelated
score/model. One can view the c-index as the percentage of
patient pairs that can be correctly ordered with respect to
their survival (event) times [28]. In this study, we use a self-
written implementation in MATLAB based on the work of
Harrell and colleagues [28].
Bootstrap resampling.—Bootstrap resampling is a stat-

istical technique used to estimate the uncertainty associated
with a statistic by resampling from the original data set.
This technique involves creating a large number of new
samples (called bootstrap samples, in this study N ¼ 1000)
by randomly selecting observations from the original data
set with replacement. By generating a large number of
bootstrap samples, which have the same size as the original
data set, one can estimate the variability of the statistic of
interest and construct confidence intervals.
Variance inflation factors (VIFs).—VIFs are a measure

of the degree of multicollinearity among predictor variables
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in multivariate regression analysis such as multivariable
Cox models. VIFs can be used to identify highly correlated
predictor variables that may be redundant or provide little
additional information in explaining the variation in
the dependent variable. VIFs can be defined by the diagonal
elements of the inverse of the correlation matrix of the
predictor variables [77]. A predictor variable with a VIF of
1 indicates no collinearity. VIFs smaller than 2.5 are
conservatively associated with a nonproblematic amount
of collinearity regarding multivariate regression analyses.
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APPENDIX A: COMBINING LYMPH NODE
STATUS AND UNJAMMING CRITERIA

This section discusses to what extent our prognostic
evaluation can be combined with the lymph node status.
In Fig. 7, the decision boundary presented in the main

text (Fig. 6) is applied to only nodal positive cases
from the training set, and the resulting stratification is
shown in Kaplan-Meier curves. No nodal-positive patient
develops metastasis if the patient is below the jamming
threshold, while 5=5metastases are above the threshold in
the more unjammed section of the state diagram. The
results for the test set can be found in the main text in
Figs. 6(e) and 6(f).
When the decision boundary presented in the main text

[compare Fig. 6(a)] is applied only to the nodal negative
patients within the training and test sets defined in the main
text, we find significant stratification within the training set
(log-rank p ¼ 0.018). Above the unjamming threshold, we

find 7=235 ¼ 2.98% (training 16=265 ¼ 6.03%) nodal-
negative patients with distant metastases (data not shown).
Below the jamming threshold, we find that 3=205 ¼ 1.46%
(training 9=322 ¼ 2.80%) of nodal-negative patients

FIG. 7. Stratification of all lymph-node-positive cases in the
training set by the decision boundary in the space of CeNuS and
Āstand
C presented in the main text. The y axis shows the probability

of the Kaplan-Meier estimator of developing distant metastasis
over time. Log-rank p ¼ 0.01. “Patients at risk” indicates the
total number of patients who have not been censored or have not
developed distant metastasis by a specific follow-up time. In
parentheses is the cumulative number of individuals who will
develop distant metastases at a later time.

FIG. 8. Combining LN status with the prognostic unjamming
criteria. (a) Training and test sets: The low-risk group consists of
the patients whose tumor structure indicates a jammed state and
who exhibit no affected lymph nodes (LN-). The high-risk group
consists of all other patients. (b) Training and test sets: The high-
risk group consists of patients whose tumor structure indicates an
unjammed state and who exhibit affected lymph nodes (LN+).
The low-risk group consists of all other patients. “Patients at risk”
indicates the total number of patients who have not been censored
or have not developed distant metastasis by a specific follow-up
time. In parentheses is the cumulative number of individuals who
will develop distant metastases at a later time.
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develop distant metastasis. These numbers (summarized in
Table I) are promising to establish a high-risk group among
nodal-negative patients. However, the risk stratification
over time only shows significance in the training set and
not in the test set. Stratification in the test set is not
significant (probably due to a few events within this
collective: N ¼ 10), with a log-rank p ¼ 0.38 and a distant
metastasis rate of 1.46% in the low-risk group and 2.98% in
the high-risk group.
In Fig. 8(a), we combine the information on jamming

and lymph nodes in order to achieve a very reliable low-risk
group, where the tumor structure indicates a more jammed
state and no lymph nodes were affected; this yields
significantly (log-rank p ¼ 0.006) separated risk groups
in the test set, with a distant metastasis rate in the low-risk
group of 3=205 ¼ 1.46% and in the high-risk group
29=487 ¼ 5.96%, such that the risk of developing distant
metastases is 4 times higher in the high-risk group
compared to the low-risk group.
In order to identify a reliable high-risk group, we further

combine the unjamming criterion and the lymph node
status such that the high-risk group is composed of patients
whose tumor structure indicates an unjammed state and at
least one lymph node is affected; see Fig. 8(b). We see
significantly (log-rank p < 0.001) separated risk groups in
the test set with a distant metastases rate of 14=536 ¼
2.61% in the low-risk group and 18=156 ¼ 11.54% in the
high-risk group.

APPENDIX B: COX PROPORTIONAL
HAZARD MODELS

The univariable (Table V) Cox models of classical risk
parameters for breast cancer and the presented jamming
threshold are presented here while the discussion of the
multivariable (Table III) Cox model is discussed in the
main text. Patients without distant metastases are cen-
sored. In Table V, the univariable Cox models are
shown for the variables’ jamming threshold (1 if below
decision boundaries presented in the main text, 0
otherwise); the largest tumor diameter in cm; the
histological grade; the lymph node status (1 if one or

more lymph nodes are invaded, 0 otherwise); the
Nottingham prognostic index (NPI), which was calcu-
lated as 0.2 · dt þ N þ G, where N is equal to 1 if no
lymph nodes are invaded, 2 if 1–3 nodes are invaded,
and 3 otherwise; and the chemotherapy status (1 if the
patient was treated with cytotoxic chemotherapy, 0
otherwise). Considered independently, only the tumor
grade is insignificant, while chemotherapy status, NPI,
lymph node status, tumor diameter, and jamming thresh-
old are significant.
As expected, the hazard for patients whose tumor

structure indicates a more jammed state (below threshold
in Fig. 6) decreases to 34%. Regarding the other
significant parameters, the risk of developing distant
metastasis increases with increasing tumor diameter, with
affected lymph nodes, with a high NPI and chemotherapy
indicated.
In Table VII, the multivariable Cox model is shown for

the variables’ tumor diameter, tumor grade, lymph node
status, and chemotherapy. In Table VI, we present the
multivariable Cox model for the variables’ tumor diam-
eter, tumor grade, and lymph node status. We present
these models without incorporating the jamming infor-
mation in order to compare these models with the ones
including the information on the jamming threshold
presented in the main text in Tables III and II.
Therefore, comparing the models, one can infer the
information gain based on our state diagram, which is
discussed in the main text.

TABLE V. Univariable Cox proportional hazard models for the
jamming threshold, the largest tumor diameter dt, the grade, the
lymph node status, the NPI, and chemotherapy.

Coefficient b SEðbÞ expðbÞ p

Jamming threshold −1.09 0.43 0.34 0.010
Tumor diameter 0.39 0.11 1.47 ∼10−4

Grade 0.53 0.28 1.70 0.060
Lymph node status 1.42 0.38 4.13 ∼10−4

NPI 0.52 0.17 1.69 0.002
Chemotherapy 1.78 0.46 5.93 ∼10−4

TABLE VI. Multivariable Cox proportional hazard model for
standard prognostic parameters: largest tumor diameter dt, tumor
grade, and lymph node status. The likelihood ratio test is
p < 0.0001. All variance inflation factors are smaller than 1.6,
indicating vanishing collinearity. The concordance index equals
0.6684.

Coefficient b SEðbÞ expðbÞ p

Tumor diameter 0.23 0.14 1.23 0.11
Grade −0.06 0.28 0.77 0.83
Lymph node status 1.21 0.43 2.16 0.005

TABLE VII. Multivariable Cox proportional hazard model for
standard clinical parameters: largest tumor diameter dt, tumor
grade, lymph node status, and chemotherapy. The likelihood ratio
test is p < 0.0001. All variance inflation factors are smaller than
1.7, indicating vanishing collinearity. The concordance index
equals 0.7497.

Coefficient b SEðbÞ expðbÞ p

Tumor diameter 0.21 0.16 1.23 0.1750
Grade −0.26 0.29 0.77 0.3733
Lymph node status 0.77 0.43 2.16 0.0724
Chemotherapy 1.57 0.50 4.82 0.0015
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APPENDIX C: CELL OUTLINE
APPROXIMATION IN HISTOLOGICAL SLIDES

We estimate cell outlines by watershedding the seg-
mented nuclei signal and the cancer cluster’s boundaries.
To find out how well this approximation matches actual cell
shapes, we compare the approximated outlines with seg-
mented outlines of one whole-slide digital image of HER2-
stained breast cancer tissue. The HER2 receptor located at
cell membranes can be used to find the actual cell outlines.
The first step of the segmentation is a color-deconvolution
that performs a basis transformation from RGB space to the
space of HER2, the blue nucleus signal, and a residuum
channel. The HER2-channel and the nucleus channel are
further manipulated to enhance proper signals and delete
noise. Next, the nucleus channel is used as input to the
StarDist algorithm referenced in the main text, which
segments the nuclei with the pretrained model for fluores-
cent nuclei. Finally, the cell outlines are segmented using
the watershed algorithm on the gradient image of the HER2
channel with regional minima where segmented nuclei
are. We further filter out segments with areas smaller than
ð32 · πÞ μm2 or larger than ð112 · πÞ μm2, with a weak
HER2 signal along the boundary and with too much HER2
signal within the segmentation. Thus, we arrive at a set of
segmented cell outlines based on the HER2 segmentation
and a set of outlines approximated by the watershed
algorithm using the positions of the nuclei and cancer
boundaries.
An illustration of the HER2-segmented and watershed-

estimated cell outlines can be found in Fig. 9(a), presented

below. The segmented and watershed-estimated cells
count as synchronized when their areas overlap by more
than 80%. There is a good correlation between segmented
and estimated cell aspect ratios, as seen in Fig. 9(b)
(Pearson correlation coefficient 0.59). In addition, a
moderate correlation is found between the cell shape
indices of the estimated and segmented cells (Pearson
correlation coefficient 0.42). The estimated cell shape
indices statistically underestimate the segmented cell
shape indices.

APPENDIX D: DYNAMICS AND STRUCTURAL
OBSERVABLES IN VITAL PRIMARY

CANCER SAMPLES

We estimate the correlation of the ability of cells to move
inside the dense three-dimensional tumor environment on
the nucleus ellipsoid shape and nucleus volume to check
whether the connection we report in Fig. 6 for the ensemble
average is valid on the level of individual cells. This
analysis is performed using tissue samples from an exem-
plary breast tumor with Internal ID No. 106; see
Appendix L.
The nucleus ellipsoid shape is defined as sE ¼ S · V−2=3,

where S is the surface of the ellipsoid that has the same
second moments as the pixel segment and V the respective
volume. In 3D, we use this robust measure of cell
elongation instead of the aspect ratio because a 3D aspect
ratio is not well defined without information loss since
there exist three major axes. The nucleus volume is of
interest because it is inversely correlated with the number
density of the cell packing [9,19]. We track the nuclei as
described in Sec. V [see Fig. 10(a)] and estimated the

FIG. 9. Comparison of the HER2-segmented cell outlines with
the watershed-estimated cell outlines. (a) Exemplary image of the
approximated and segmented cell segments (dark masks). (b) Di-
rect correlation of the aspect ratios of the segmented and
estimated cell segments (n ¼ 712). The Pearson correlation
coefficient is 0.59. (d) Direct correlation of the cell shape indices
of the segmented and estimated cell segments (n ¼ 712). The
Pearson correlation coefficient is 0.42.

FIG. 10. Correlation of individual cell motility with its nucleus
shape. (a) Visualization of 3D tracking in a breast cancer explant.
Stained nuclei are depicted in orange, spots found are depicted in
light blue, and the tracks are indicated in green. (b) Structural
properties of nuclei estimated with adaptive thresholding fol-
lowed by watershedding of the thresholded signal around the
tracked spots, allowing segmentation of nearby nuclei. The black
and white image of the thresholded nuclei contains multiple
errors that are filtered in a later step. (c) Mean cage-relative speed
of cells within 2-hour lag correlated with the nucleus shape
(average over each cell). The nucleus shape is estimated as the
shape parameter sE ¼ A=V2=3 of the ellipsoid with the same
second moments as the nucleus segment. The colored regions
indicate the confidence interval of the plots. The data are
averaged using a moving average with a window width of 0.1.
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nucleus shape with adaptive thresholding followed by
morphological opening and a watershedding around the
detected tracks, allowing segmentation of very close nuclei.
The nuclei shapes contain errors, as shown in Fig. 10(b),
filtered out using track statistics. The tracks are filtered in
order to minimize the impact of segmentation errors. The
first 50 frames are excluded because the nucleus stains are
not yet fully drawn in, reducing the tracking quality.
Furthermore, tracks with high variances of nuclei volumes,
high median absolute deviation of nuclei volumes, and
high median differences of nuclei volumes are excluded as
these are strong indicators of fluctuating errors in nuclei
segmentation. After filtering, we present our results in
Figs. 4(a), 3(e), and 10 using about 2600 tracks. Visual
inspection of the tumor explants shows that cells that can
move stay motile during the experiment and arrested cells
rarely move. Therefore, we average the studied quantities
for each cell, using the median values. Since motile cells
have higher absolute values of cage-relative motion, we use
the mean cage-relative speed within a lag of 2 hours as a
motility measure. Concretely, we calculate the absolute
displacements within 2 hours of the nuclei and their nearest
neighbors. We subtract the average displacements of
the neighboring nuclei and average the absolute value of
the resulting cage-relative displacement within 2 hours. The
speed estimation is calculated by dividing by the time frame
of 2 hours.
Figures 10, 3(e), and 4(e) show that the shape and

volume of cell nuclei in densely packed tumor explants
have predictive power on the ability of the respective cells
to move inside the tumor. As is visible in Fig. 3(e), low
nuclei volumes correlate with low cell motility, and
high nuclei volumes correlate with high cell motility.
Additionally, round nuclei correlate with low cell motility,
and elongated nuclei correlate with high cell motility, as
seen in Fig. 10(c). This underlines the importance of both
of these static features regarding the estimation of cell
motility.

APPENDIX E: STANDARDIZATION VALUES

APPENDIX F: QUALITY CONTROL OF
TISSUE SEGMENTATION

Qualitatively, the results of the TS algorithm
were independently verified by pathologists from the
Hamburg-West Pathology Department. Quantitatively,
we annotated the H&E images of 43 patients. For this
purpose, we annotated five areas of representative cancer
cell clusters and three representative areas in which
there are no cancer cells for each H&E image correspond-
ing to one patient. Annotations were independently
validated as being correct by pathologists at Hamburg-
West Pathology. In the next step, we compared the regions
annotated by hand with the regions of the TS algorithm.
Here, we compared the masks that the algorithm found
with the annotated ones, which is illustrated for one case
in Fig. 11. For cancer (noncancer) regions, we calculate,
for each annotated cancer (noncancer) cluster, the fraction
of the sum of pixels that the algorithm found correctly in
that region divided by the actual pixel number of that
region. The median [� median absolute deviation
(MAD)] ratio of the cancer regions found by the algorithm
and the annotated cancer regions is 0.95� 0.04. The
corresponding median (�MAD) for regions with no
cancer is 0.97� 0.03.

APPENDIX G: SHAPE DISTRIBUTIONS

The aspect ratio distributions of the nuclei of the patients
are typically highly right skewed, with a skewness (median
� median absolute deviation) of 1.45� 0.47. On the other
hand, the distributions of the cell shape indices of the
patients are most often highly right skewed, with a skew-
ness of 1.35� 0.19.

TABLE VIII. Standardization values for measures presented in
the main text. Means and standard deviations (SD) of a cohort of
530 patients for the standardization of cell shape (CS) indices,
nucleus AR, and cell areas in μm2.

Cohort mean Cohort SD

CS indices median 3.9273 0.0270
CS indices variance 0.0559 0.0072
Nucleus AR median 1.4659 0.0645
Nucleus AR variance 0.1422 0.0251
Cell area mean 79.781 14.477

FIG. 11. Illustration of the comparison of the annotated tissue
type and the tissue type found by the TS algorithm. (a) Red:
cancerous regions found by the TS algorithm; white: background;
blue: stroma found by the TS algorithm. (b) Annotations for
benchmarking the TS algorithm. Red annotated regions represent
cancerous regions while blue annotated regions represent regions
with no cancer cells.
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APPENDIX H: PROGNOSTIC INFORMATION OF
STATE DIAGRAM AXES

For an analysis of the prognostic value, we included
the specificity, sensitivity, positive predictive value,
negative predictive value, and concordance indices
based on CeNuS, cell area (inverse number density),
and the decision boundary presented in the main text in
Table I. These measures of prognostic relevance were
estimated in the test set using the thresholds for the
single variables as described in the following procedure,
where we also estimated the prognostic information gain
using cell area and CeNuS together, as in the main text
(compare the decision boundary in the state space in
Fig. 6) compared to only the cell area.
For the single variables Āstand

C and CeNuS, we find the
threshold that maximizes the separation between the two
classes (distant metastasis, no distant metastasis) within
the training set. Therefore, we calculate the receiver
operating characteristic (ROC) curve for the complete
threshold spectrum of the variables and measure the
distance for each point on the ROC curve to the nearest
point on the line y ¼ x (random model). The threshold
with the best separation corresponds to the point on the
ROC curve that exhibits the largest distance to a random
model. This maximization yields the optimal threshold
(Āstand

C ¼ −0.0201; CeNuS ¼ −1.6288), which we con-
tinue to probe in the test set.
Regarding the threshold for Āstand

C in the test set, we obtain
a specificity of 0.4727 and a sensitivity of 0.7188. The
distance to a random model y ¼ x,Dr, in the ROC space of
(1-specificity, sensitivity) in the test set is therefore
DAC

r ¼jð1−specificity−sensitivityÞj= ffiffiffi
2

p ¼0.1354. With
the decision boundary presented in the main text, we
calculate the following distance to a random model in
the test set DSVM

r ¼jð1−0.4455−0.7812Þj= ffiffiffi
2

p ¼0.1603.
Therefore, the use of CeNuS adds j0.1603− 0.1354j=
0.1354¼ 18.40% information gain compared to the single
use of the standardized mean cell area regarding sensitivity
and specificity.
This is confirmed when using another measure of

prognostic power, the so-called concordance index
(c-index). The c-index is a measure of how well a score
can sort pairs of patients with respect to an event time,
where a c-index of 0.5 corresponds to a completely
random score and a c-index of 1 or 0 corresponds to a
score that is completely correlated or anticorrelated,
respectively, with the event times. Using only the
threshold for Āstand

C , the c-index yields cAC
¼ 0.6059 in

the test set; using the boundary presented in the main
text in the space of mean cell area and CeNuS, the
c-index is cSVM ¼ 0.6271. The gain in c-index by com-
bining mean cell area and CeNuS compared to only using
the mean cell area is, therefore, ðcSVM−cAC

Þ=ðcAC
−0.5Þ¼

20.02%.

APPENDIX I: SVM MODEL FOR DECISION
BOUNDARY IN STATE SPACE(S)

We used the support vector machine algorithm to develop
a prognostic classifier with a customkernel. SVM is a binary
classifier introduced by Vapnik [78], which—given labeled
training data—will assign unseen examples to one class or
another without requiring a probability distribution. Hereby,
each data point is represented as an n-dimensional vector.
The classification is conducted by constructing an (n − 1)-
dimensional separating hyperplane, where a penalty func-
tion for points to the maximal margin—defined by so-called
support vectors—is minimized. Moreover, nonlinear func-
tions, i.e., kernels, can be used to transform data into a
multidimensional space. To build a custom kernel based on
the jamming state diagram, we used the hyperbolic tangent
function with custom kernel parameters. The PYTHON

Scikit-learn package was used to implement the SVM
classifier. A grid search was used to find the optimal penalty
parameter C and optimal class weights. The code with all
hyperparameter values for the different classifications
throughout the paper can be found in Ref. [79].

APPENDIX J: PROGNOSIS USING ONLY
CELL OR NUCLEUS SHAPE DISTRIBUTIONS

INSTEAD OF CeNuS

Since cell and nucleus shapes are correlated, in this
section, we discuss how well only cell shape distributions
or nuclei aspect ratio distributions can separate risk groups
regarding distant metastases in the state space measured in
the retrospective histopathological study.
The CeNuS is defined in Eq. (1) as CeNuS ¼ ¯̄pstand þ

σ2standp þ ¯̄ARstand
N þ σ2standARN

. To test if only the cell or nucleus
shape is sufficient for prognosis, we consequently use only
¯̄pstand þ σ2standp or ¯̄ARstand

N þ σ2standARN
, respectively. In order to

make it easier to compare to CeNuS, we multiply the latter
measures by 2 such that the interval approximately matches
the one of CeNuS.
We observe that both single measures are able to

significantly separate risk groups regarding metastatic risk
in the corresponding state spaces. For state spaces of
training and test sets as well as the corresponding
Kaplan-Meier plot, see Fig. 12 (only nucleus aspect ratio
distributions) and Fig. 13 (only cell shape distributions).
For training, we use the SVM model as described in
Appendix I with slightly varying hyperparameters that
can be found on the linked GitHub repository.

APPENDIX K: DESCRIPTIVE STATISTICS
FOR RETROSPECTIVE

HISTOPATHOLOGICAL STUDY

In the following, the descriptive statistics are shown for
the comparison of the training and test sets (Table IX), the
comparison of the high-risk and low-risk groups in
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the training set (Table X), and the comparison of the high-
risk and low-risk groups in the test set (Table XI).
The p-values are calculated for comparing training and
test sets in Table IX and high- and low-risk groups in
Tables X and XI. The p-values for continuous variables are
calculated with the 2sKS test and for categorical variables
with Fisher’s exact test.
Below, we give the source and an explanation for all of

the entries:
(i) Age.—Source: patient file. Explanation: Cancer is an

age-progressive disease; thus, the risk increases with
age. On the other hand, the risk of death is higher
in younger patients, as these patients are often
genetically predisposed and/or the tumor growth is
stimulated by hormone levels (e.g., estrogen and
progesterone), which may decrease after menopause.

(ii) Grade.—Source: Union Internationale Contre le
Cancer (UICC). Explanation: The nature of the
cancerous tissue can be an indicator of the aggressive-
ness or growth rate of the tumor on the basis of the
degree of differentiation (extent of degeneration).

Grading following the internationally accepted
standard by UICC:

G1: well differentiated (i.e., still similar to the
“healthy” cells and less aggressive in growth, thus
“low malignant”).

G2: moderately differentiated.
G3: poorly differentiated (i.e., completely degen-

erated and highly proliferative).
(iii) Tumor diameter.—Source: histological preparation,

measured by the examining pathologist. Explanation:
The tumor size will affect prognosis no matter how

FIG. 13. Clinical relevance of cancer cell unjamming using
only cell shape index distributions (p) instead of CeNuS as in
Fig. 6. The distribution of patient data is displayed with respect to
the variables’ standardized mean cell area Āstand

C and 2 · ð ¯̄pstand þ
σ2standp Þ (p denotes the cell shape distribution per patient) for the
training collective with minimal treatment (N ¼ 688) and in the
test collective of the remaining cases (N ¼ 692). The state
diagrams of the training and test sets are shown in panels (a)
and (c), respectively. Patients who developed metastases are
indicated by red triangles. Patients who did not develop meta-
stases are indicated by gray circles. The dotted line represents the
decision boundary that separates the low-risk patients (below)
from the high-risk group (above) estimated by SVM classifica-
tion; see Appendix I. Kaplan-Meier estimators are used to assess
the quality of the risk stratification. The resulting Kaplan-Meier
plots are shown in panel (b) for the training set and panel (d) for
the test set. These plots show that the high-risk group (in red) is
well separated from the low-risk group (in blue). Log-rank test in
the training set p ¼ 0.037 and test set p ¼ 0.044. “Patients at
risk” indicates the total number of patients who have not been
censored or have not developed distant metastasis by a specific
follow-up time. In parentheses is the cumulative number of
individuals who will develop distant metastases at a later time.

FIG. 12. Clinical relevance of cancer cell unjamming using
only nucleus aspect ratio (ARN) distributions instead of CeNuS
as in Fig. 6. The distribution of patient data is displayed with
respect to the variables’ standardized mean cell area Āstand

C and

2 · ð ¯̄ARstand
N þ σ2standARN

Þ (ARN denotes the nucleus aspect ratio
distribution per patient) for the training collective with minimal
treatment (N ¼ 688) and in the test collective of the remaining
cases (N ¼ 692). The state diagrams of the training and test sets
are shown in panels (a) and (c), respectively. Patients who
developed metastases are indicated by red triangles. Patients
who did not develop metastases are indicated by gray circles. The
dotted line represents the decision boundary that separates the
low-risk patients (below) from the high-risk group (above)
estimated by SVM classification; see Appendix I. Kaplan-Meier
estimators are used to assess the quality of the risk stratification.
The resulting Kaplan-Meier plots are shown in panel (b) for the
training set and panel (d) for the test set. These plots show that the
high-risk group (in red) is well separated from the low-risk group
(in blue). Log-rank p-value training set p < 0.001 and test set
p ¼ 0.015. “Patients at risk” indicates the total number of
patients who have not been censored or have not developed
distant metastasis by a specific follow-up time. In parentheses is
the cumulative number of individuals who will develop distant
metastases at a later time.
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TABLE IX. Descriptive statistics of all cases (training and test sets combined), the training set, and the test set.

All Training set Test set p-value

Number of patients 1380 688 692

Age 0.0005
Mean 57.45 58.25 56.64
Standard deviation 8.68 8.51 8.78
Range 26–70 29–70 26–70
Grade
1 410 (0.30) 287 (0.42) 123 (0.18)
2 771 (0.56) 391 (0.57) 380 (0.55)
3 175 (0.13) 7 (0.01) 168 (0.24)
Missing information 24 (0.02) 3 (0.00) 21 (0.03)

Tumor diameter < 0.0001
Mean 1.66 1.32 2.01
Standard deviation 1.01 0.56 1.23
Range 0–12 0.2–4.5 0–12
Lymph node status < 0.0001
0 1061 (0.77) 623 (0.91) 438 (0.63)
1 312 (0.23) 64 (0.093) 248 (0.36)
Missing information 7 (0.01) 1 (0.00) 6 (0.01)

Lymph nodes affected < 0.0001
Mean 3.71 1.36 4.51
Standard deviation 5.07 2.70 5.43
Range 0–38 0–15 1–38
Estrogen receptor status < 0.0001
0 23 (0.017) 0 (0) 23 (0.033)
1 1354 (0.98) 688 (1) 666 (0.96)
Missing information 3 (0.00) 0 (0.00) 3 (0.00)

Progesterone receptor status < 0.0001
0 161 (0.12) 56 (0.08) 105 (0.15)
1 1213 (0.88) 631 (0.92) 582 (0.84)
Missing information 6 (0.00) 1 (0.00) 5 (0.01)

HER2/Neu receptor status < 0.0001
0 1018 (0.74) 589 (0.86) 429 (0.62)
1 42 (0.03) 8 (0.01) 34 (0.05)
Missing information 320 (0.23) 91 (0.13) 229 (0.33)

Endocrine therapy status < 0.0001
0 47 (0.03) 0 (0.00) 47 (0.07)
1 904 (0.66) 688 (1.00) 216 (0.31)
Missing information 429 (0.31) 0 (0.00) 429 (0.62)

Chemotherapy status < 0.0001
0 741 (0.54) 688 (1.00) 53 (0.08)
1 204 (0.15) 0 (0) 204 (0.30)
Missing information 435 (0.32) 0 (0) 435 (0.63)
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many lymph nodes have cancer in them. Breast
tumors that are 5 cm or larger are more likely to
come back after treatment than smaller tumors. Breast
tumors that are smaller than 1 cm and have not spread
to the lymph nodes have a very favorable prognosis.

(iv) Lymph node status and lymph nodes affected.—
Source: histological preparation,measured by the exa-
mining pathologist. Explanation: Nodal involvement

(number of regional nodes positive for cancer) is a
strong and independent negative prognostic factor.

When breast cancer begins to spread, the first stop
is often one of the neighboring lymph nodes. From
there, the tumor is able to spread via the lymphatic
system further into more distant lymph nodes and—in
the worst case—enters the bloodstream and forms
distant metastases (e.g., in the liver, lungs, or bones).

TABLE X. Descriptive statistics of the training set and the low-risk and high-risk groups resulting from the decision boundary in the
space of CeNuS and Āstand

C presented in the main text.

Training set Low risk High risk p-value

Number of patients 688 363 325

Age 0.05
Mean 58.25 57.43 59.16
Standard deviation 8.51 8.83 8.05
Range 29–70 29–70 32–70
Grade
1 287 (0.42) 215 (0.59) 72 (0.22)
2 391 (0.57) 144 (0.40) 247 (0.76)
3 7 (0.01) 3 (0.01) 4 (0.01)
Missing information 3 (0.004) 1 (0.00) 3 (0.01)

Tumor diameter 0.006
Mean 1.32 1.24 1.41
Standard deviation 0.56 0.49 0.62
Range 0.2–4.5 0.2–3.5 0.3–4.5
Lymph node status < 0.0001
0 623 (0.91) 339 (0.93) 284 (0.87)
1 64 (0.09) 23 (0.06) 41 (0.13)
Missing information 1 (0.00) 1 (0.00) 0 (0.00)

Lymph nodes affected 0.60
Mean 1.36 1.03 1.56
Standard deviation 2.70 2.66 2.73
Range 0–15 0–15 0–13
Estrogen receptor status
1 688 (1.00) 363 (1.00) 325 (1.00)

Progesterone receptor status 0.67
0 56 (0.081) 28 (0.08) 28 (0.09)
1 631 (0.92) 334 (0.92) 297 (0.91)
Missing information 1 (0.00) 1 (0.00) 0 (0)

HER2/Neu receptor status 0.48
0 589 (0.86) 325 (0.90) 264 (0.81)
1 8 (0.012) 3 (0.01) 5 (0.02)
Missing information 91 (0.13) 35 (0.10) 56 (0.17)

Endocrine therapy status 1.00
1 688 (1.00) 363 (1.00) 325 (1.00)

Chemotherapy status 1.00
0 688 (1.00) 257 (1.00) 431 (1.00)
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TABLE XI. Descriptive statistics of the test set and the low-risk and high-risk groups resulting from the decision boundary in the space
of CeNuS and Āstand

C presented in the main text.

Test set Low risk High risk p-value

Number of patients 692 301 391

Age 0.80

Mean 56.64 56.93 56.42
Standard deviation 8.78 8.44 9.03
Range 26–70 35–70 26–70

Grade
1 123 (0.18) 79 (0.26) 44 (0.11)
2 380 (0.55) 166 (0.55) 214 (0.55)
3 168 (0.24) 49 (0.16) 119 (0.30)
Missing information 21 (0.03) 7 (0.02) 14 (0.04)

Tumor diameter < 0.0001
Mean 2.01 1.79 2.18
Standard deviation 1.23 1.06 1.31
Range 0–12 0–6.5 0–12

Lymph node status 0.02
0 438 (0.63) 204 (0.68) 234 (0.60)
1 248 (0.36) 93 (0.30) 155 (0.40)
Missing information 6 (0.01) 4 (0.01) 2 (0.01)

Lymph nodes affected 0.40
Mean 4.51 4.79 4.34
Standard deviation 5.43 5.79 5.21
Range 1–38 1–38 1–38

Estrogen receptor status 0.20
0 23 (0.03) 7 (0.02) 16 (0.04)
1 666 (0.96) 292 (0.97) 374 (0.96)
Missing information 3 (0.00) 2 (0.01) 1 (0.00)

Progesterone receptor status 0.01
0 105 (0.15) 33 (0.11) 72 (0.18)
1 582 (0.84) 266 (0.88) 316 (0.81)
Missing information 5 (0.01) 2 (0.01) 3 (0.01)

HER2/Neu receptor status < 0.0001
0 429 (0.62) 201 (0.67) 228 (0.58)
1 34 (0.05) 7 (0.02) 27 (0.07)
Missing information 229 (0.33) 93 (0.31) 136 (0.35)

Endocrine therapy status 0.11
0 47 (0.07) 23 (0.08) 24 (0.06)
1 216 (0.31) 79 (0.26) 137 (0.35)
Missing information 429 (0.62) 199 (0.66) 230 (0.59)

Chemotherapy status 0.06
0 53 (0.08) 23 (0.08) 30 (0.08)
1 204 (0.30) 75 (0.25) 129 (0.33)
Missing information 435 (0.63) 203 (0.67) 232 (0.59)
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The five-year survival rate decreases in patients
with positive lymph nodes versus patients with neg-
ative lymph nodes. The higher the number
of regional lymph nodes involved, the higher the
chance of recurrent disease. Lymph node status
contains the information about whether any lymph
nodes are affected (lymph node status ¼ 1) or not
(lymph node status ¼ 0). Lymph nodes affected is
the number of lymphatic sites that were affected
during pathological screening.

(v) Estrogen or progesterone receptor status.—Source:
immunohistochemical staining, interpreted by the
pathologist. Explanation: The hormones estrogen
and progesterone can affect the growth of breast
cancer cells. They dock to binding sites (hormone
receptors, HR) of the cell, which then transmit the
growth signal into the cell. In order to determine
whether a tumor becomes hormone dependent, we
examine how large the proportion of cells and the
amount of corresponding HR are. If more than 1% of
all tumor cells react to the special marking procedure,
it is assumed that the tumor is hormone sensitive. This
is expressed by the indication ER+ (estrogen receptor
positive) and/or PR+ (progesterone receptor positive).
About 75% of breast cancer patients test positive for
the estrogen receptor. As soon as one of the two
receptor types is positive, it is called hormone receptor
positive (HR+). If tumor cells grow hormone depen-
dent, their growth can be slowed down or stopped by
(anti)hormone or endocrine therapy, and thus some-
times chemotherapy can be spared.

(vi) HER2.—Source: immunohistochemical staining, in-
terpreted by the pathologist. Explanation: HER2
receptors are binding sites for growth factors on
the surface of cancer cells that stimulate the division
of these cells. If there is a particularly large number
of HER2 receptors on the surface of the cell, this is
often accompanied by a more aggressive course of
cancer. About 15% of newly diagnosed breast cancer
patients have HER2-positive tumors (HER2+).
Targeted therapies against HER2 block these recep-
tors and thus inhibit cell growth.

(vii) Endocrine therapy status.—Source: follow-up ques-
tionnaire, information provided by the patient and/or
treating physician. Explanation: It is indicated for
hormone receptor-positive tumors (antihormonal
therapy).

(viii) Chemotherapy status.—Source: follow-up question-
naire, information provided by the patient and/or
treating physician. Explanation: Through chemo-
therapy, the cancer cells are attacked and—in the best
case—destroyed. This therapy ismainly used formore
aggressive growths, such as highly HER2-positive
tumors. It is also increasingly recommended for
patients under 35 years of age. Before surgery,
chemotherapy can be used to shrink the size of
the tumor.

APPENDIX L: VITAL PRIMARY
SAMPLE INFORMATION

Table XII depicts the vital primary samples we obtained
from the University Hospital in Leipzig. The clinical infor-
mation is shown as well as whether we found motile areas in

TABLE XII. Overview of the investigated clinical samples for
dynamical analyses. Grading and staging were given to us by the
pathologist. The motility status was detected from live observa-
tion as described in the paper. Here, m1mic refers to a micro-
metastasis.

Internal ID Type Grade Stage Motility status

84 Cervix 3 � � � Motile
86 Cervix 3 4 Resting
87 Cervix � � � � � � Resting
88 Cervix � � � � � � Resting
90 Cervix 3 2b Motile
93 Cervix 3 3b Resting
95 Cervix � � � � � � Resting
96 Mamma 2 2 Motile
99 Cervix 2 2b Motile
100 Mamma 2 1c Resting
101 Mamma 1 1c Resting
103 Cervix � � � � � � Motile
104 Cervix 3 2b Resting
105 Cervix � � � � � � Motile
106 Mamma 2 m1mic Motile
108 Mamma 3 3 Motile

TABLE XIII. Known clinical parameters of the vital tumor
explants and their respective fluidity status.

Category No. moving/no. total samples

Total 8=16

Biopsies (cervix) 1=7
Mesometrial resections (cervix) 5=5
Mastectomies 2=4

Grading known 6=11

Tumor grade 1 0=1
Tumor grade 2 3=4
Tumor grade 3 3=6

Nodal status known 5=9

Node negative 4=6
Node positive 1=3

Histopathological staging known 4=9

Stage 1c 0=2
Stage 2, 2b 4=5
Stage 3b 0=1
Stage 4 0=1
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the respective specimens (“Motility status”). Table XIII
summarizes the clinical specifications with regard to the
information of existing motile areas. We find no significant
correlation between stage, grade, or nodal status to the
presence of moving areas using Fisher’s exact test.

APPENDIX M: RELATION OF STATE DIAGRAM
PROGNOSIS WITH REGARD TO

OVERALL SURVIVAL

The decision boundary presented in the main text was
derived using distant metastasis classification with sup-
port vector machines in the training set, compare Fig. 6(a).
The “distant metastasis” event recorded in retrospective
patient histories always originates from the primary breast
tumor and is therefore unambiguously connected to
the disease. Contrary to this, the “overall survival” is
the time from the surgery to death, regardless of the cause.
Therefore, we choose “distant metastasis” as the event of
choice to connect our unjamming criterion to patient
outcome. However, in this section, we discuss the prog-
nostic power of the decision boundary trained in the main
text (distant metastasis classification) with regard to the
overall survival. It is worth noting that a recent study in
the US with more than 750,000 breast cancer patients
found that only about 50% of the deaths reported by the
“overall survival” can be attributed to breast cancer. Of
course, the exact numbers for German breast cancer

patients and the breast cancer patients in our collective
might differ. However, it is clear that the information for
the overall survival is burdened by a substantial error
when attempting to link it to breast cancer.
Only the event “overall survival” is analyzed in the

following analyses, and all other patients (also those
developing distant metastasis) are censored.
In Fig. 14(a), we apply the decision boundary presented

in the main text to all patients in order to evaluate its
significance with regard to overall death. The Kaplan-Meier
plot in Fig. 14 shows weakly separated risk groups with a
log-rank p ¼ 0.031.

APPENDIX N: NUCLEUS PACKING AND
SPACING IN CANCER CLUSTERS

In this section, we show that increased nucleus
sizes with their associated increased cell [Fig. 3(e)] and
cytoplasmic sizes [Fig. 3(f)] correlate with an increase
in the effective distance between nucleus edges and
cell membranes and therefore with increased cytoplasmic
spacing of adjacent nuclei; see Fig. 15(a).
The effective cytoplasmic spacing between the nuclei

edge and the cell membrane is the difference in effective
radius of the cell segments rCeff¼

ffiffiffiffiffiffiffiffiffiffiffi
AC=π

p
and nucleus

segments rNeff¼
ffiffiffiffiffiffiffiffiffiffiffi
AN=π

p
, respectively. From this, we calcu-

late the (effective) cytoplasmic spacing d between the
nucleus border and cell border as d ¼ rCeff − rNeff . In
Fig. 15(a), we show that this effective distance between
the nucleus border and the cell border increases with
increasing nucleus volumes. Furthermore, in Fig. 15(b),
we show that the nucleus size scales with the inverse of the
number density. A power-law fit reveals that ĀN ∼ ρ−α2D,
where α ¼ 0.71� 0.02.

FIG. 14. Clinical relevance of cancer cell unjamming. The
distribution of patient data is displayed with respect to the
variables of the state diagram (cell area, CeNuS) for all available
cases (N ¼ 1380). Patients who exhibit no overall survival (death
from any cause) are depicted by red triangles. Patients with an
overall survival are indicated by gray circles. The dotted line
represents the decision boundary that separates the low-risk
patients (below) from the high-risk group (above) estimated by
SVM classification from the main text in Fig. 6(a). Kaplan-Meier
estimators are used for assessing the quality of the risk stratifi-
cation based on cancer cell unjamming for the overall survival.
The resulting Kaplan-Meier plot is shown in panel (b) and
exhibits a log-rank p-value training set p ¼ 0.0313. “Patients at
risk” indicates the total number of patients who have not been
censored or have a reported overall death by a specific follow-up
time. In parentheses is the cumulative number of individuals who
will develop an event (here, overall death) later.

FIG. 15. Nucleus packing and spacing in breast cancer cell
clusters measured in N ¼ 1380 patients. (a) Cytoplasmic spacing
d (effective distance between nucleus edge and cell edge) directly
correlating with the nucleus size. The Gaussian moving average
window size is 5 μm2, and the colored regions correspond to the
95% confidence intervals. (b) Mean nucleus area AN inversely
scaling with the number density ρ2D. The blue line corresponds to
a power-law fit: ĀN ∼ ρ−α2D, where α ¼ 0.71� 0.02. The root-
mean-squared error is 0.0001. All observables are ensemble
averages for one patient.
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