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We describe and benchmark a new quantum charge-coupled device (QCCD) trapped-ion quantum
computer based on a linear trap with periodic boundary conditions, which resembles a race track. The new
system successfully incorporates several technologies crucial to future scalability—including electrode
broadcasting, multilayer rf routing, and magneto-optical trap (MOT) loading—while maintaining, and in
some cases exceeding, the gate fidelities of previous QCCD systems. The system is initially operated with
32 qubits, but future upgrades will allow for more. We benchmark the performance of primitive operations,
including an average state preparation and measurement error of 1.6ð1Þ × 10−3, an average single-qubit
gate infidelity of 2.5ð3Þ × 10−5, and an average two-qubit gate infidelity of 1.84ð5Þ × 10−3. The system-
level performance of the quantum processor is assessed with mirror benchmarking, linear cross-entropy
benchmarking, a quantum volume measurement of QV ¼ 216, and the creation of 32-qubit entanglement in
a GHZ state. We also tested application benchmarks, including Hamiltonian simulation, QAOA, error
correction on a repetition code, and dynamics simulations using qubit reuse. We also discuss future
upgrades to the new system aimed at adding more qubits and capabilities.

DOI: 10.1103/PhysRevX.13.041052 Subject Areas: Atomic and Molecular Physics,
Quantum Physics, Quantum Information

I. INTRODUCTION

Several technology platforms are viable candidates for
large-scale quantum computation, including trapped ions [1],
neutral atoms [2], and superconducting circuits [3]. However,
existing demonstrations face scaling challenges to achieve

the qubit numbers and fidelities necessary for fault-tolerant
quantum computing. In addition, all platforms need refine-
ment in reliability, power consumption, form factor, and cost.
This concept, known as Rent’s rule, has been discussed
rigorously in terms of classical computing technologies and
recently generalized to include quantum processors [4].
In this work, we characterize a trapped-ion quantum

computer with a new trap design based on the QCCD
architecture. The new machine, Quantinuum System
Model H2, significantly increases the qubit number and
decreases the physical resources per qubit, all while
matching—and in some instances surpassing—the high
circuit fidelity of our previous generation system [5].
The QCCD architecture was proposed as a scalable

method for trapped-ion quantum computation [6,7].
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Trapped-ion systems with a single trapping zone are limited
in qubit number due to challenges in individually addressing
single qubits within a large ion crystal, as well as motional
mode crowding, which complicates achieving high-fidelity
operations in a large crystal [8,9]. QCCD trapped-ion
systems instead have multiple trapping zones allowing
operations to always be performed with a small number
of ions, thereby facilitating low-crosstalk addressing and
maintaining high fidelity [10]. Two-qubit gates between
arbitrary pairs of qubits are enabled by ion transport during a
quantum circuit, which brings pairs to be gated into the same
trapping zone. Such dynamic rearrangement enables the
execution of circuits with arbitrary connectivity without
the overhead of logical SWAP gates typically incurred for
platforms with fixed and limited connectivity [11]. This
transport requires traps with a large number of program-
mable electrodes, which can be achieved using microfabri-
cated surface traps [12–14].
Our first generation hardware, H∅ and H1 (based on

the same linear trap design) [5,15], demonstrated many
key components of the QCCD architecture and achieved
high-fidelity gates with arbitrary two-qubit couplings. Since
the initial operation of the linear trap, the qubit number N
increased fivefold, from 4 in its initial mode of operation [5]
to 20 in its latest [15], while two-qubit gate errors decreased
by roughly a factor of 5. By increasing both the transport
speeds and the number of gate zones, the average time
required to execute a layer of N single-qubit (1Q) gates and
N=2 two-qubit (2Q) gates on a random pairing of all N
qubits was kept roughly constant as N increased.
This progress notwithstanding, linear geometries pose

severe scaling challenges. The time to rearrange ions for
arbitrary circuit connectivity scales poorly for the linear trap
design as the number of qubits increases (proportional to
N [16]). The future of QCCD systems is likely in 2D traps
that offer better scaling of rearrangement times (proportional
to

ffiffiffiffi
N

p
[17]) and are alsowell suited to many error-correcting

codes [18,19]. However, 2D traps present new engineering
challenges that are still under development, such as junction
transport [20,21] and signal routing under the trap’s top
metal layer. Many other aspects of QCCD scaling still
in development include coupling multiple surface trap
die [22,23], control of a sufficient number of electrodes,
laser-light generation and delivery [24,25], and detection
[26]. Not all of these challenges will be met simultaneously,
but rather, advances will be inserted as they are available.
This paper marks the first major trap design advance-

ment in the H-series QCCD quantum computers.
Specifically, the new trap (shown in Fig. 1) introduces
the following: (1) rf tunnels, so that rf voltage electrodes do
not need to be connected on the top surface that defines the
trapping potential (Sec. II A), (2) voltage broadcasting to
multiple control electrodes, thereby reducing the number of
independent voltage sources needed to control the device
(Sec. II A), and (3) MOT loading of the trap to increase the

ion loading rate, thus decreasing the initialization time [27]
(Sec. II B). In addition to the upgraded system design,
we also report on upgraded operations, including higher
performance and more efficient gating primitives. We
present detailed benchmarking of the system performance
with component benchmarking in Sec. III, system-level
benchmarking in Sec. IV, and algorithmic benchmarking in
Sec. V. Similar to the H1 series, the configuration described
in this report is only the first of the H2 series, and we expect
to make significant qubit count and gate zone operation
upgrades in the near future.

II. OVERVIEW OF THE HARDWARE

A. Trap design

As shown in Fig. 2, H2 has a race track geometry similar
to traps fabricated by other groups [28–30]. Two concentric
rf electrodes circumscribe the center region and are driven
at about 200 Vand 42 MHz, creating an rf-null 70 μm from
the surface where ions are trapped. The rf tunnels [29] are
required for the concentric rf electrodes and allow for dc
electrodes to tile the full trap perimeter shown in Fig. 2(c)
and 2(d). The trap has two rows of gate zones colored in
blue in Fig. 2, four on the top (UG01–UG04) and four on
the bottom (DG01–DG04). In this work, we use both rows
for ion rearrangement (physical swaps), but only the DG
zones are used for quantum operations (gating, state
preparation, and measurement). We plan to extend quantum
operations to both rows in future work.
The “conveyor belt” region of the trap is colored green in

Fig. 2(d). In this region, voltage “broadcasting” is used to
minimize dc control signals by tying multiple dc electrodes
within the trap die to the same external signal. As shown in

FIG. 1. Picture of the H2 surface ion trap microchip. The image
has been modified to enhance visibility of the trap features. The
trap sits in the isthmus in the center of the trap die. The long axis
of the trap is 6.58 mm (from the edge of the dc electrodes on
either side), and the isthmus width is 2.02 mm.
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Fig. 2(b), each conveyor belt region contains equally
spaced and sized electrodes tied together in a repeating
fashion (fa; b; c; a; b; c;…g). This requires only three total
voltage signals for each side, which can support 20 wells
(one for every three electrodes). Additional electrodes,
called shim electrodes, are located outside of the rf electro-
des and used to compensate micromotion and rotate the trap
principal axes. The load hole, visible in the middle of the
left-side conveyor belt region in Fig. 2(d), is surrounded by
six electrodes with independent signals.
The gate zone electrode configuration is similar to that in

Ref. [5], and the spacing between gate zones remains the
same (750 μm). An additional improvement to the signal
count was realized by reducing the number of electrodes in
the auxiliary regions around the gating zones [light gray in
Fig. 2(d)]. As expected, the linear transport through the
auxiliary zones is not degraded compared with H1.

In total, the trap has 376 gold-coated electrodes con-
nected to 268 independent voltage sources and 1 rf drive.
Similar to H1, H2 uses a 280-pin ceramic pin grid array to
connect the trap electrodes to the dc control signals. This is
a reduction in the number of electrical feedthroughs per
qubit in the system, which is an important metric as the
number of qubits grows. Eventually, electrode control from
within the vacuum chamber will be necessary, as the
number of physical connections into the vacuum chamber
will become unmanageable [17].

B. Ion loading and state preparation

H2 uses a 2D MOT as a source for neutral atoms instead
of an effusive atomic oven [32]. The MOT is connected to
the main vacuum chamber via a differential pumping tube.
The MOT cools both 171Yb and 138Ba neutral atoms, which
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FIG. 2. Overview of the H2 trap including upgrades in trap design and gating operations. (a) 2D MOT producing a collimated beam of
atoms, allowing for higher neutral atom density and faster loading than an effusive oven. (b) The abc tiling of electrodes for conveyor belt
transport. (c) rf tunnels to implement inner and outer rf electrodes. Ions are trapped 70 μm away from the trap surface. (d) Colored top metal
layer of the H2 trap. Green curved zones are conveyor belt regions for ion storage. The bottom blue zones are DG01–DG04 (from left to
right), which are used for quantum operations. The top blue zones are UG01–UG04 gate zones (from right to left), which are used for
sorting but not quantum operations. Darker gray loops are rf electrodes. Yellow circles represent qubits that are gated while red circles
represent qubits sitting in storage during gates (note that 138Baþ ions are omitted for simplicity). Yellow arrows indicate the Doppler sheet
beam direction while blue arrows indicate the Doppler repump sheet beam direction. (e) Ion configuration and beam direction for 2Q gates.
Large orange circles represent 171Ybþwhile smaller purple circles represent 138Baþ. (f) Ion configuration and beam directions for 1Q gates
on the left 171Ybþ. (g) Ion configuration and beam directions for state preparation and measurement (SPAM) operations on the left 171Ybþ

with micromotion hiding on the right 171Ybþ [31]. (h) Storage ion configuration in the conveyor belt region.
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are directed toward the backside load hole in the main
vacuum chamber. A fraction of the neutral atoms that pass
through the load hole are ionized by the photo-ionization
beams on the front side and subsequently cooled after
loading into the trap [see Fig. 2(a)]. In the best case, we
load one 171Ybþ in about 1.2 ms and one 138Baþ in about
40 ms; however, algorithmic latency and validation pro-
cedures limit the time to load the full trap (32
171Ybþ–138Baþ [YB] pairs in a deterministic orientation)
to about 3–4 minutes. Under normal operating conditions,
we observe no impact on the behavior of the quantum
processor with the MOT beam on. Once the trap is fully
loaded, we detect individual loss events and replace the
affected ion pairs, requiring only 10–15 seconds per
lost pair.
The qubit subspace occupies the hyperfine approximate

clock states of 171Ybþ in the 2S1=2 state, j0i≡ jF ¼ 0;
mf ¼ 0i and j1i≡ jF ¼ 1; mF ¼ 0i. The quantization axis
is set by an externally applied magnetic field in the plane of
the trap at 45° with respect to the long axis. After loading,
qubits are prepared in the j0i state via optical pumping,
similar to previous work [5,33]. State preparation is
currently only possible in the DG zones, so we prepare
eight qubits at a time and prepare all 32 qubits in four
rounds.

C. Quantum gates

Quantum gates are implemented in the DG gate zones by
stimulated Raman processes described in Ref. [5] with a
laser geometry shown in Figs. 2(d)–2(f). 1Q gates use
copropagating beams [Fig. 2(f)], and 2Q gates use pairs of
beams with Δk⃗ coupling to the axial modes of motion
[Fig. 2(e)]. The 2Q gates are performed on the second-
lowest-frequency axial mode of a Yb-Ba-Ba-Yb crystal and
are implemented with a phase-sensitive Mølmer-Sørensen
(MS) gate sandwiched between 1Q wrapper pulses (using
the same laser beams as the MS interaction) to generate the
parametrized gate UZZðθÞ ¼ exp ð−iθZZ=2Þ [34–39]. The
value of θ is controlled by varying the detuning, duration,
and Rabi rate of the MS interaction. Specifically, down to
an angle of 0.075π, we increase the detuning and decrease
the MS pulse duration while holding the laser powers
constant. For smaller angles, we keep the detuning and
gate duration fixed at their values for the 0.075π rotation
angle and attenuate one of the laser beam intensities while
holding the other laser beam intensity constant. Modeling
supports an average gate infidelity that decreases roughly
linearly with θ down to a finite offset of approximately
5 × 10−4 as θ → 0 as shown in Fig. 3. The finite offset at
zero angle exists because the wrapper pulses still occur with
a delay between them, and some fraction of the 2Q laser
light remains on at zero angle, leading to residual errors
predominantly from laser phase noise and spontaneous
emission.

The 2Q beams have the strictest requirements and
consume a large portion of the total laser power budget
(currently 5–10 mW are required per zone per arm for 2Q
light), with the current configuration using four 2Q laser
beam pairs to operate four gate zones. We note that adding
one more pair of beams would enable the operation of four
more gate zones on the other side of the trap, an upgrade we
plan to explore in future work. To address both sides of the
trap, the focus of the gate beams would shift by about
0.5 mm, which is less than the Rayleigh range (current spot
size is about 15 μm), in order to achieve the same spot size
for both sides of the trap. We expect that we would be able
to address all eight gate zones with about 35% more power
than the current setup.

D. Measurement

Measurement operations are performed in the DG zones
with resonant beams traveling perpendicular to the long
axis of the trap using state-dependent resonance fluores-
cence shown in Fig. 2(g). A photomultiplier tube array
allows independent detection in all eight gate zones
simultaneously, though we only implement measurement
operations in the DG zones.
Similar to previous work [5,15], qubit measurement and

reset may be performed in the middle of a quantum circuit
while quantum information is preserved on other qubits.
Midcircuit measurement and reset (MCMR) causes a small
crosstalk error that acts on neighboring qubits due to stray
light from the measurement and reset beams (see Sec. III
and Table II). For unmeasured ions in the gate zones, this
error is mitigated by the micromotion hiding technique
described in Ref. [31] and depicted in Fig. 2(g). Ions in the

FIG. 3. Average infidelity as a function of angle for the
parametrized 2Q gate UZZðθÞ. Each data point is obtained by
fitting the decay curves shown in Fig. 21 to an exponential decay
function. The infidelity at θ ¼ 0 is due to both the wrapper pulses
and memory error incurred during the cooling pulses, which
are still applied in the absence of an MS gate. The linear best fit
to the zone-averaged data is given by ϵðθÞ ¼ ð2.9ð2Þθ=π þ
0.46ð6ÞÞ × 10−3.
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conveyor belt regions suffer from a similar level of cross-
talk errors as ions in the gate zones, although we do not
attempt to apply the micromotion hiding technique to them.

E. Ion transport

Arbitrary qubit connectivity is achieved via physical ion
transport. During 32-qubit operation, the ions can be
grouped into four “batches” of eight, with the four batches
occupying the DG zones, UG zones, and each of the two
storage regions, as shown in Fig. 2(d). The fundamental
transport operations are similar to those in Ref. [5] and
include split, combine, linear shifts, and physical swaps. A
special type of linear shift for H2 is the batch shift, which
shuttles batches of ions collectively to different regions of
the trap. This operation is comparatively slow and domi-
nates the circuit time. The fraction of total circuit time taken
up by transport varies from circuit to circuit but is 60% on
average (see Table I).
During ion transport, we cool all 138Baþ ions with

Doppler cooling “sheet beams,” illustrated on the top
and bottom of Fig. 2(d), which resemble sheets of laser
light that cover the entire trap. These sheet beams have
about a 25% variation in intensity between the center of
the trap and the edges, which does not present any
performance limitations.
A compiler generates a schedule of quantum gates and

transport operations with the goal of minimizing the total
transport time required to execute the circuit. The circuit is
first decomposed into layers, which are built iteratively by
looking ahead through the circuit and grouping together
(into one layer) the largest possible set of 2Q gates subject
to two constraints: (1) No ions participate in more than one
gate in each layer, and (2) the time ordering of 2Q gates that

share one or more qubits (or any time-ordering enforced
by an explicitly requested barrier) is respected. The circuit
is then converted into a layered directed acyclic graph, and
a modified Sugiyama algorithm [40] is applied to iter-
atively sort the qubits in each layer of the graph in an effort
to minimize the overall transport time required to execute
all layers. The periodic boundary conditions of the device
are explicitly taken into account, and the resulting trans-
port operations are computed using a parallel bubble sort
routine that allows qubits to move in both directions
around the device.
After compilation, the layers of the circuit are then

executed sequentially, with transport primitives used to
arrange the ions so that qubits scheduled to be gated in a
given layer are positioned next to each other. Once
arranged, we perform gates on each batch of ions, starting
with the qubits already in the DG zones. Ions are trans-
ported to the center of the gate zones for quantum
operations. The 1Q gates are performed after moving a
single YB pair into the center of the gate zone with shift
operations [Fig. 2(f)], while 2Q gates are performed
with two YB pairs combined into a single four-ion crystal
Yb-Ba-Ba-Yb [Fig. 2(e)]. Before 2Q gating operations, we
apply resolved sideband cooling to the 138Baþ ions in the
DG zones [5,41,42]. Ions in the UG zones are transported
to the nearby auxiliary zones so that they are not addressed
by the gating laser beams [see red circles in Fig. 2(d)]. After
the gates are applied, we perform batch shifts to move new
batches of ions into the DG zones and repeat the gating
procedure until the full layer is completed.
A spatial phase tracking routine accounts for inhomo-

geneities in the magnetic field and spatially dependent ac
Zeeman shifts from the rf current [43], which lead to
spatially varying qubit frequencies. The routine calculates

TABLE I. Example circuit resource estimates. Circuit time budgets are estimated from compiler information and broken into quantum
operations (e.g., 1Q and 2Q gates and SPAM), transport (e.g., physical swaps and shifts), and cooling (sideband cooling before
2Q gates). Shot time does not include overheads such as postchecks of ion crystal configurations, but it does include the overhead for
state preparation and initial cooling of about 17 ms=shot for a 32-qubit circuit. Number of 2Q gate rounds indicates the number of
parallel 2Q gate operations with up to four 2Q gates per round.

Circuit name
Number of
qubits

Circuits budget (%)
(quantum operations/
transport/cooling)

Shot
time (s)

Number of
2Q gates

Number of
2Q gate rounds

Number of
measurements

2Q RB, l ¼ 128
a 16 2=30=68 1.74 813 287 16

Transport 1Q RB, l ¼ 64 32 1=73=26 4.01 0 0 32
MB, l ¼ 10 32 1=67=32 1.05 320 80 32
QV 16 1=52=47 1.23 310 128 16
RCS 32 1=67=32 0.72 172 56 32
GHZ 32 2=64=34 0.18 31 14 32
TFIM, Jt ¼ 7 32 1=48=51 0.59 288 72 32
QAOA, p ¼ 2 32 1=69=30 0.97 96 66 32
QAOA w/qubit reuse, p ¼ 1 32 1=74=25 2.83 195 166 130
Phase flip rep. code, SE ¼ 9 32 2=57=41 5.4 540 540 301
HoloQUADS t ¼ 24 32 1=67=32 20.6 2130 1629 129

aThe 2Q RB is performed on eight qubits, and an additional eight qubits are required for the leakage gadget.
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extraneous phase shifts that each qubit accumulates
throughout the quantum circuit and compensates for them
by adjusting the phase of 1Q operations appropriately.
Imperfections in the spatial phase tracking—due to tem-
poral instabilities in the magnetic field environment and
imperfections in the calibration routines that set the 1Q
optical phases—lead to memory errors during the transport
operations and sideband cooling time. Additional sources
of memory error are the finite T1 time of several minutes,
transport failures, or background gas collisions leading to
an unintentional qubit reorder (the last two are difficult to
distinguish experimentally).

F. Classical programming and CPU-QPU interactions

Quantum algorithm developers can write programs
for H2 in different frameworks and languages so long as
their programs compile to either OpenQASM 2.0 or
QIR [44,45]. Both representations contain real-time sup-
port for classical operations in the middle of the circuit,
conditional expressions that rely on these classical calcu-
lations that are performed in real time, and elementary feed-
forward operations conditioned on measurement results.
Many quantum computing applications call for inter-

actions between classical and quantum processing units.
Perhaps the most notable example is quantum error correc-
tion schemes in which syndrome measurement results
are sent to a classical computer where a decoding algorithm
is used to determine recovery operations and update quan-
tum circuits in real time. As discussed in our previous
work [15,19], we have demonstrated this capability using
two different frameworks: (1) OpenQASM 2.0++, which
allows for real-time decision making, and (2) a more capable
classical compute environment, utilizing Web Assembly
(Wasm) [46], that can execute complex calculations.
Option (2) has significantly enhanced capabilities aimed
at the development of hybrid quantum-classical algorithms
and is crucial for applications like quantum error correction.

III. COMPONENT OPERATIONS
AND BENCHMARKS

As our first level of benchmarking, we measure the
errors from various component operations in the system.
Quantum operations (e.g., gates and SPAM) dominate the
error budget but are only performed in the DG zones, and
therefore, we measure the performance with a subset of
eight qubits (two per DG zone). Other errors that occur
during a circuit, such as memory errors, are measured with
an interleaved randomized benchmarking (RB) experiment
performed simultaneously on all 32 qubits. Details of each
component benchmarking experiment are given below:

(i) SPAM experiment: Prepare each qubit in the DG
zones in j0i and measure the probability of finding
j1i. Repeat for preparation in j1i and measure the
probability of finding j0i. The average is the SPAM

error per qubit. This procedure cannot differentiate
between state preparation and measurement errors;
however, detailed modeling predicts that the SPAM
error is dominated by measurement error for
171Ybþ [47,48].

(ii) 1Q gate randomized benchmarking (1Q RB): We use
the standard Clifford-twirl randomized benchmark-
ing for measuring the error of 1Q gates [49], with a
random final Pauli to fix the asymptote [50]. We
report the average infidelity per 1Q Clifford.

(iii) 2Q gate randomized benchmarking (2Q RB): Sim-
ilar to 1Q RB, we use the Clifford-twirl technique
[49] for measuring the error of 2Q gates. Each 2Q
Clifford is constructed with zero to three UZZðπ=2Þ
gates, and each sequence includes a random final
Pauli to fix the asymptote [50]. We scale the 2Q
Clifford average infidelity by the average number
of UZZðπ=2Þ gates per Clifford, which is 1.5, and
report that as the average infidelity per 2Q gate. An
example decay plot is shown in Fig. 4(a).

(iv) 2Q SU(4) gate randomized benchmarking [2Q
SU(4) RB]: We use the same general technique as
2Q RB, but instead of 2Q Cliffords, we use unitaries
randomly sampled from the Haar measure over
SU(4) constructed with three parametrized UZZðθÞ
gates, and for each sequence, we include a random
final Pauli to fix the asymptote [50]. We report the
average infidelity per SU(4) operation.

(v) 2Q parametrized gate randomized benchmarking:
We use a direct randomized benchmarking pro-
cedure [51] to measure the average infidelity of
the parametrized 2Q gate UZZðθÞ as a function
of angle θ. The details of the protocol are in
Appendix B 3. A plot of the average infidelity
versus angle is shown in Fig. 3.

(vi) Measurement and reset crosstalk depumping:
Measurement and reset crosstalk errors are estimated
with bright-state depumping experiments [31],
where a subset of qubits are prepared in j1i and
other qubits are measured or reset repeatedly. The
qubits in j1i decay due to crosstalk errors from the
repeated process, and the decay rate scales with
the average infidelity.

(vii) Interleaved transport randomized benchmarking
(Transport 1Q RB): During a circuit, qubits incur
errors in between successive 2Q gates due to idling
during transport and cooling (memory errors) and
the application of 1Q gates (errors from any mid-
circuit measurements or resets are considered
above). The contribution of these errors to repre-
sentative circuits is measured with an interleaved 1Q
RB experiment on all 32 qubits: 1Q Clifford gates
are interleaved with “dummy” 2Q gates on 16
random pairings (our choice for a representative
transport sequence). The dummy 2Q gates force ion
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rearrangement, transport for 2Q gating, and side-
band cooling but do not apply any 2Q lasers,
avoiding 2Q gate errors and leaving the 32-qubit
state fully separable. The resulting RB decay rate
depends on both the average 1Q gate infidelity and
memory errors, but we expect that memory errors
are the dominant contribution.

Additional experimental details and data can be found in
Appendix B. Results from these experiments are reported
in both Table II (averaged over zones) and Table VI. An
example breakdown of circuit timing for 2Q RB and
transport 1Q RB is shown in Table I.
For 1Q and 2Q RB, we also measured the rate of leakage

errors per gate by applying a “leakage detection gadget” at
the end of each circuit, as illustrated in Fig. 5. The leakage
detection gadget uses an ancilla qubit to flag shots that had
a leakage error, i.e., an error that moved population outside
of the computational subspace. In our system, leakage is
most likely due to the unavoidable spontaneous emission
that occurs in gates driven by a stimulated Raman process.

Specifically, one half of the spontaneous Raman scattering
errors are expected to result in leakage [53,54]. The leakage
rate per gate rL is defined as the rate that population leaves
the computational subspace (whether 1Q or 2Q). We can
estimate rL by repeating the gate l times, applying the
gadget to each gated qubit, and fitting the leakage detection
rate as shown in Fig. 4(b). Further details are given in
Appendix B 2.

IV. SYSTEM-LEVEL BENCHMARKS

Benchmarks of component operations are a crucial
fine-grained tool for estimating the contribution of various
errors to quantum circuits. However, there are many
potential ways in which they can mischaracterize device
performance, for example, when crosstalk or non-
Markovian errors are present. Therefore, it is important
to also benchmark performance on a variety of more
complex, multiqubit circuits, and to assess to what extent
that performance can be understood from the measured
performance of the constituent operations. Here, we present
results from four system-level benchmarks: (A) mirror

FIG. 4. The 2Q randomized benchmarking decay curves for
each zone and for the combined average across all zones.
(a) Standard RB decay curve. The average infidelity per 2Q
gate is 1.83ð5Þ × 10−3 across all four gate zones. (b) Decay of
fraction of shots without leakage on either qubit as identified by
the leakage detection gadget, which gives a measured leakage
rate per 2Q gate of 3.9ð2Þ × 10−4 across all four gate zones.

TABLE II. Average component benchmarking results for the
tests outlined in Sec. III. All values are in terms of average
infidelity and ×10−4. The values reported here are averaged over
all four zones along with the one-sigma uncertainty from semi-
parametric bootstrap resampling [52]. Data from individual zones
are detailed in Table VI.

Test Average infidelity (×10−4)

1Q RB 0.25(3)
1Q leakage 0.04(2)
2Q RB 18.3(5)
2Q leakage 3.9(2)
2Q SU(4) RB 41(1)
2Q parametrized RB See Fig. 3
Transport 1Q RB 2.2(3)
Measurement crosstalk 0.045(6)
Reset crosstalk 0.038(6)
SPAM 16(1)

FIG. 5. Leakage detection gadget, adapted from Ref. [55]. The
gadget uses an ancilla qubit “a” to detect whether qubit “q” has
leaked. The ancilla is initially prepared in j1i. If q has leaked, the
2Q gates have no logical effect, and a is measured as j1i. If
instead a has leaked, then a will still be measured as j1i since the
leakage results in the ion being in a bright state. If neither q nor a
has leaked, then the gadget (within the barriers in the circuit
diagram) acts as XaIq, and a is measured as j0i.
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benchmarking [56,57], (B) quantum volume (QV) [58,59],
(C) linear cross-entropy measurements for random 2D
circuits [60], and (D) creation and certification of N-partite
entanglement in GHZ states.
In benchmarks (A)–(C), the random structure of the

circuits justifies simple heuristic arguments relating the
overall circuit performance to the component operation
fidelities. This allows us to assess how accurate our
component-level error model translates to actual circuit
implementations and identify potential gaps in our under-
standing of error sources. In each case, we assume that
all non-SPAM errors can be attributed to the 2Q gates
themselves and come in the form of a depolarizing channel
(with uniform fidelity) attached to each 2Q gate. This
approach accumulates all errors that happen to qubits
between 2Q gates, primarily due to 1Q gate errors and
memory errors, and lumps them in with the 2Q gate to form
an effective “per 2Q gate” error rate, which we denote by
ϵ2Qeff . To obtain a simple but reasonable estimate for ϵ2Qeff
based on the component benchmarks, we first determine
the average angle θ̄ of 2Q gates used in the system-level
benchmark. The data and linear fit reported in Fig. 3 then
allow us to estimate the 2Q gate contribution. We then add
this 2Q gate contribution together with twice the error from
Transport 1Q RB, giving a predicted effective error

ϵ2Qeff ¼ 10−3ð2.9ð2Þθ̄=π þ 0.9ð1ÞÞ: ð1Þ

Using analyses described in the appendixes, we also extract
an inferred ϵ2Qeff from the system-level benchmarking data
presented below and report the comparisons to the pre-
dicted values in Table III. The agreement is not perfect, nor
is it expected to be, given that memory errors can be highly
circuit dependent. For example, in QV circuits, multiple 2Q
gates happen with very little delay in between, whereas the
memory error per 2Q gate inferred from Transport 1Q RB
assumes a single random reconfiguration of ions between
every repeated gate on a given qubit, which likely con-
tributes to the overestimate of ϵ2Qeff reported in Table III.
Nevertheless, the overall reasonable agreement between
predicted and inferred values suggests that the results of
large-scale circuits are generally well aligned with expect-
ations based on the individual component benchmarks.

A. Mirror benchmarking

Circuit mirroring was introduced as a scalable way
to benchmark arbitrary quantum circuits [56,61]. We
perform a randomized circuit mirroring experiment that
we refer to as mirror benchmarking (MB). As described
in Ref. [57], MB circuits consist of layers of 1Q gates
on all qubits and 2Q gates between random pairings
of the qubits with full connectivity. The 1Q gates are
Clifford gates sampled uniformly at random, and each
2Q gate is the native UZZðπ=2Þ gate. The circuits are
“mirrored,” meaning that the inverse circuit is applied
in the second half. A final random N-qubit Pauli is
applied to randomize the ideal outcome for each circuit.
The circuits also employ Pauli randomization on the 2Q
gates so that the error channel per layer can be treated
as a stochastic Pauli [62]. The circuit-averaged prob-
ability of observing the ideal outcome as a function of
the number of circuit layers will then decay exponen-
tially. If the 2Q gate error channel is depolarizing,
then the decay parameter as a function of the 2Q gate
average fidelity is given by an analytic formula
[Eq. (C4) in Ref. [57] ]. In practice, the 2Q errors in H2
are not depolarizing, but this equation still provides a
useful heuristic. Fitting experimentally measured decay
curves to exponentials and inverting this formula
provides an effective 2Q infidelity for the system that
includes 1Q gates, 2Q gates, and the memory error for
random permutations.
We performed MB experiments on H2 with N ¼ 20, 26,

and 32 qubits. The decay plots are shown in Fig. 6, and
the results are listed in Table VII. For N ¼ 32, we find
ϵ2Qeff ¼ 2.6ð2Þ × 10−3. Importantly, we find that ϵ2Qeff does not
increase with qubit number.

TABLE III. Effective error per 2Q gate ϵ2Qeff inferred from
system-level benchmarks, compared to the average per 2Q gate
error estimated from combining the component benchmarks as
described in the text [see Eq. (1)].

Source θ̄
ϵ2Qeff ð×10−3Þ
(inferred)

ϵ2Qeff ð×10−3Þ
(predicted)

Mirror benchmarking 0.5π 2.6(2) 2.4(1)
Quantum volume 0.35π 1.7(1) 1.9(1)
Random circuit sampling 0.42π 1.9(2) 2.1(1)

FIG. 6. Mirror benchmarking experiments on H2. The se-
quence lengths correspond to half the circuit depths, so circuits
of length l contain 2lN 2Q gates with full connectivity. Ten
random circuits were run at each sequence length with 100 shots
per circuit. The average survival probabilities are fit to the model
pðlÞ ¼ Aul−1. The parameter u is used to obtain an effective 2Q
gate average fidelity for a constant 2Q depolarizing error [57].
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B. Quantum volume

Quantum volume is a system-level test designed to be
comparable across gate-based quantum computers. The QV
test is run with a collection of random circuits acting on N
qubits. Each random circuit is generated by randomly
pairing all qubits, applying random SU(4) unitaries to
each pair, and repeating for N rounds. The performance is
assessed with a heavy-output test that requires classical
simulation of the quantum circuits. The test is passed when
the probability of generating heavy outputs is greater than
2=3 with two-sigma confidence, which yields a measured
value of QV ¼ 2N [58]. A totally decohered circuit returns
heavy outputs half the time, so the QV test’s threshold of
2=3 requires that the errors are small enough to be strongly
distinguishable from a random distribution. Therefore, a
QVof 2N implies high performance on many circuits with
more than N qubits and/or depth greater than N, as
evidenced by several example algorithms run on all 32
qubits in Sec. V. QV has been measured on a variety of
different systems [63], with the largest previously reported
value of QV ¼ 215 from H1 [64].
We performed several QV measurements, with the

highest measured value being QV ¼ 216. The QV ¼ 216

test data are shown in Fig. 7; we used 200 randomly
generated circuits in each run with 100 shots and an average
of 296 parametrized 2Q gates. The measured heavy-output
probability is 68.2%, with a two-sigma lower bound of
67.3% calculated with the semiparametric bootstrap
method outlined in Ref. [59].

C. Random circuit sampling (RCS)

A system-level benchmark of recent interest is the
computational task of sampling the output distributions
of random quantum circuits. Like QV, RCS is not a scalable

benchmark as it requires classical computation time expo-
nential in N. It was recently proven [65] that at a fixed gate
error, RCS is not a scalable route to quantum supremacy at
large N; however, it still tests the quantum computer’s
ability to faithfully execute circuits for which classical
simulation methods are, at least in practice, extremely
difficult given high enough gate fidelities. It has also been
run on a variety of quantum computers in the context of
quantum advantage demonstrations [60,66,67], making it
useful from the standpoint of cross-platform comparisons.
We structure our circuits as if the qubits involved tile a

two-dimensional grid with nearest-neighbor interactions
[60], although we emphasize that this constraint is only
imposed for fair comparison with prior art and is not a
hardware constraint of H2. Future work may study whether
random circuits built from randomly gating pairs of qubits
with arbitrary connectivity achieve a greater degree of
classical simulation difficulty at a reduced circuit depth.
At each N, the grid dimensions are chosen to be as close
to square as possible. In each layer from the circuit,
a 1Q gate chosen randomly from f ffiffiffiffi

X
p

;
ffiffiffiffi
Y

p
;

ffiffiffiffiffi
W

p g, where
W ¼ 1=

ffiffiffi
2

p ðX þ YÞ, is applied to each qubit. The 1Q gate
applied to a given qubit in one layer is omitted from the set
of possible 1Q gates applied to the same qubit in the next
layer. Subsequently, a 2Q gate is applied to pairs of qubits
following a particular tiling pattern on the grid (see
Ref. [60], Fig. 3). A final round of 1Q gates is applied
to all qubits before measurement. We implement the exact
same 2Q gate as in Ref. [60],

fSim
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π

2
;
π

6

�
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≃ SWAP · UZZ

�
−
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: ð3Þ

The SWAP gate is handled in software by relabeling and
transporting qubits, so the fSim½ðπ=2Þ; ðπ=6Þ� gate is
implemented on H2 with exactly one 2Q gate. In practice,
we generate the circuits using the Sycamore gate defined
in the pytket library [68]; pytket’s compilation to
Quantinuum hardware automatically rebases the circuits to
use a UZZð5π=12Þ gate with the opposite sign from the
above identity, by using a different choice of 1Q wrap-
per gates.
Since H2 currently supports 32 qubits, well within the

classically feasible regime, we focus on the “classically
verifiable” repeating EFGHEFGH gate tiling pattern
from Ref. [60]. As developed in Ref. [69], we use linear
cross-entropy benchmarking to quantify the success of

FIG. 7. Quantum volume QV ¼ 216 measurement on H2. The
average and two-sigma confidence intervals of the heavy-output
probability are plotted as a function of the circuit index. Passing
occurs when the green shaded region (two-sigma confidence
interval from semiparametric bootstrap method) is above the
dashed gray line at 2=3, which we satisfy in a data set with 200
randomly generated circuits.
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the quantum computer in sampling from the true output
distribution of each random circuit. This procedure com-
putes a quantity called the linear cross-entropy benchmark-
ing fidelity, FXEB. To match the parameters in Ref. [60],
we explore random circuits of depth 14 and average the
resulting FXEB over ten circuits at each fixed N, combining
the uncertainties on each measurement of FXEB by inverse-
variance weighting. The measured results on H2 are
displayed in Fig. 8. With future improvements to the
number of qubits in H2, assuming comparable ϵ2Qeff , we
expect the cross-entropy benchmark results will pose
serious challenges to classical simulations.

D. N-partite entanglement certification
in GHZ states

The N-qubit GHZ state [70] is defined as

jGHZNi ¼
1ffiffiffi
2

p ðj0i⊗N þ j1i⊗NÞ: ð4Þ

Producing GHZ states is a demanding test of qubit
coherence, as they are maximally sensitive probes of global
dephasing. Moreover, GHZ state fidelities have been
widely measured and reported across a variety of quantum
hardware [71–75], making this test helpful for assessing the
performance of the H2 device in a broader context.
We prepare GHZ states of N ¼ 20, 26, and 32 using the

log-depth circuit construction given in Ref. [76] and an
N ¼ 32 GHZ state using a constant-depth adaptive circuit
construction [77,78]. The adaptive circuit was submitted
via OpenQASM 2.0++, and it exemplifies how midcircuit
measurement and feed forward can be used to create

long-range-entangled states in constant depth [79–81].
Both circuit constructions are shown in Fig. 9.
We estimate the fidelity of the GHZ states using the

method of Ref. [82]. The fidelity of a density matrix ρ with
respect to the GHZ state is

Fðρ; jGHZNiÞ ¼
1

2
Trðρj0ih0j⊗NÞ þ 1

2
Trðρj1ih1j⊗NÞ

þ 1

2
Trðρðj0ih1j⊗N þ j1ih0j⊗NÞÞ: ð5Þ

The first two terms are the populations in the all-zero and
all-one states and are estimated by measuring all qubits in
the computational basis. The third term is estimated using
the fact that

j0ih1j⊗N þ j1ih0j⊗N ¼ 1

N

XN
k¼1

ð−1ÞkMk; ð6Þ

where the operators

Mk ¼ ðcosðkπ=NÞX þ sinðkπ=NÞYÞ⊗N; ð7Þ

for k∈ f1;…; Ng, correspond to the global parity of spin
along the axis θk ¼ kπ=N on the equator of the Bloch
sphere and can be measured with only 1Q rotations. The
complete fidelity estimation protocol requires N þ 1 meas-
urement bases.
We ran one circuit with 50 shots for each of the N

measurements of Mk, and N circuits with 50 shots for the
population measurements. All the log-depth unitary prepa-
ration circuits across the various N were run in a random
order. The results of the population and parity measure-
ments are shown in Fig. 10, and the estimated state
fidelities are listed in Table IV. For N ¼ 32, we obtain

FIG. 8. Linear cross-entropy benchmarking fidelity as mea-
sured on H2 for classically verifiable random circuits. Each data
point displays the combined results from ten circuits, each
executed with 100 shots. The details of the best-fit curve are
described in Appendix C 3.
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FIG. 9. GHZ state preparation circuits for (a) log-depth unitary
and (b) constant-depth adaptive preparation, here shown for
N ¼ 8, for simplicity.
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fidelities of 0.82(1) and 0.74(1) (without correcting for
SPAM errors) for the unitary and adaptive state preparation
circuits, respectively. By comparison, a GHZ fidelity
greater than 0.5 is sufficient to witness genuine multipartite
entanglement [83]. The adaptive circuit contains more 2Q
gates (46) and measurements (48), and therefore produces a
lower fidelity than the unitary circuit, which contains 31 2Q
gates and 32 measurements. Especially for systems with
limited connectivity and appreciable memory errors, the
constant-depth adaptive circuit should outperform the
unitary preparation circuit at large enough N.

V. APPLICATION BENCHMARKS

The system-level benchmarks of the previous section
serve to verify quantum computer performance on a well-
defined set of volumetric circuits. The measured effective
2Q error rates for these circuits, as given in Table III,
show that the component-level benchmark performance is
translated to larger circuits. However, problems of practical
interest tend to involve structured circuits with very specific
demands on gate set and connectivity. A comprehensive
survey of all such problems is beyond the scope of this
work (and difficult to define), but a sampling of such
applications is still helpful for evaluating the machine’s
capabilities with respect to plausible near-term use
cases and the demands they impose. In this section, we
present the results of four application benchmarks:
(A) Hamiltonian simulation, (B) QAOA, (C) large-distance

repetition codes, and (D) holographic quantum dynamics
simulation. We chose these benchmarks in a complemen-
tary way, as each places a different emphasis on particular
error sources. For example, Hamiltonian simulation is
highly dependent on 2Q gate error, QAOA performance
depends strongly on qubit connectivity, and repetition
codes and the holographic quantum dynamics simulation
require high-fidelity MCMR.

A. Hamiltonian simulation

Simulating the continuous time evolution of many-
body quantum systems is an important and classically
challenging problem for which quantum computers are well
suited [84–86]. To benchmark the performance of the H2
quantum computer on this task, we simulate the dynamics
of an L ¼ 32-site transverse-field Ising model (TFIM) in
one spatial dimension, with Hamiltonian

H ¼ −J
XL
j¼1

ZjZjþ1 − h
XL
j¼1

Xj: ð8Þ

Here and elsewhere in this section, site subscripts are taken
modðLÞ to yield periodic boundary conditions. We simulate
a quantum quench where the initial state is prepared in
the ground state at h=J ¼ ∞, that is, jΨð0Þi ¼ jþi⊗L

j . The
Hamiltonian is suddenly quenched to h=J ¼ 0.2, and the
state is then evolved up to Jt ¼ 7 under the new
Hamiltonian. We evaluate the dynamics of the expectation
value of the Pauli X operator averaged over all qubits, i.e.,
hXi≡ ð1=LÞPL

j¼1hXji. We digitally simulate the dynam-
ics using first-order Trotterization of the time-evolution
operator [87],

UðtÞ ≈
�Y

j

exp

�
iZjZjþ1

Jt
r

�Y
j

exp

�
iXj

ht
r

��
r
; ð9Þ

FIG. 10. Populations and parities of N ¼ 20-, 26-, and 32-qubit GHZ states constructed with a log-depth unitary protocol, and also of a
32-qubit GHZ state produced with a constant-depth adaptive circuit. (a) Populations of j0i⊗N and j1i⊗N . The ideal GHZ state has
populations of 0.5 in these two states and zero in all other states. (b) Expectation values of the operatorMk defined in Eq. (7), plotted versus
angle θk ¼ kπ=N. The ideal GHZ state has values of 1 and −1 for even and odd k, respectively. The dashed lines denote the averages.

TABLE IV. GHZ state fidelities.

GHZ prep State fidelity

N ¼ 20 0.86(1)
N ¼ 26 0.83(1)
N ¼ 32 0.82(1)
N ¼ 32 adaptive 0.74(1)
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which approaches the true evolution as r → ∞. The 1Q and
2Q gates in this decomposition are X rotations and UZZðθÞ,
which are native on H2. The number of Trotter steps r is
chosen such that the errors on hXi due to Trotterization are
below 0.01, as determined by explicit calculations of the
noiseless Trotterized dynamics [88] and by comparison to
exact results for the continuous-time evolutions [89]. This
threshold ensures that Trotter errors are at or below the
scale of the expected, around 1%, statistical fluctuation in
the experiment (more details are given in Appendix D 1).
The results of our experiment, plotted in Fig. 11, show

reasonably good agreement between our quantum simu-
lation and the exact solution up to time Jt ¼ 7, suggesting
the quantum computer has small enough errors to coher-
ently simulate quantum dynamics up to a nontrivial time
(note that a completely depolarized state has hXi ¼ 0). The
data have not been postprocessed or error mitigated in any
way. Figure 11 also compares the circuit implementations
with and without the parametrized angle UZZðθÞ gate.
Without parametrized angle gates, every such gate has to be
decomposed into two UZZðπ=2Þ gates with additional 1Q
rotations, resulting in a doubling of the number of 2Q gates
and the possibility of more than doubling the error per
Trotterization step (see Fig. 21). The improvements to the
simulation results when using parametrized-angle 2Q gates
highlights their benefit for near-term applications of quan-
tum computers to simulating many-body physics.

B. QAOA

The quantum approximate optimization algorithm
(QAOA) [90] is a near-term heuristic algorithm for solving
combinatorial optimization problems of general interest

in many industries. As in previous benchmarking studies
[38,91,92], we focus on solving the MaxCut problem
restricted to the class of unweighted 3-regular graphs
G ¼ ðV; EÞ. The standard QAOA circuit consists of alter-
nating applications of a mixing unitary UBðβnÞ ¼ e−iβnHB

and a phase-splitting cost unitary UCðγnÞ ¼ e−iγnHC,

Uðβ; γÞ ¼
Yp
n¼1

UBðβnÞUCðγnÞ: ð10Þ

The 2p parameters βn and γn are found variationally, by
using a classical optimization algorithm to search for the
choice of parameters that extremizes the cost of the QAOA
final state,

hHCi ¼ hψ0jUðβ; γÞ†HCUðβ; γÞjψ0i: ð11Þ

The initial state is taken to be jψ0i ¼ jþi⊗N , the ground
state of HB ¼ P

i Xi, while for the unweighted MaxCut
problem, the cost Hamiltonian is

HC ¼ 1

2

X
ði;jÞ∈E

ð1 − ZiZjÞ: ð12Þ

Therefore, each term in the cost Hamiltonian comprising
the cost unitary UCðγnÞ can be implemented with a single
UZZðθÞ gate.
For the classical optimization procedure, we use the

derivative-free BOBYQA optimizer [93] as implemented in
the PY-BOBYQA package [94]. The BOBYQA optimizer
builds a local quadratic model to the objective function
within a trust region of size that decreases with iterations
of the optimizer. We set the optimizer convergence con-
ditions to be met when the precision of the variational
parameters reaches the same order as the measured 2Q gate
errors, 1 × 10−3.
We study two separate experiments in this work. The

first implements a larger-scale MaxCut QAOA problem
(N ¼ 130, p ¼ 1) on 32 physical qubits using qubit-reuse
compilation [38] and 100 shots per circuit. The second
experiment solves an N ¼ 32 MaxCut QAOA problem
at p ¼ 2 with 200 shots per circuit to demonstrate an
improvement in solution quality compared to p ¼ 1 with
the more expressive and deeper ansatz. The results for these
experiments are stated in terms of the average and mini-
mum dimensionless energies measured over the course of
the optimization, where the dimensionless energy corre-
sponds to the cut value computed by the cost Hamiltonian
in Eq. (12). For plotting purposes, the energy was rescaled
by a sign so that, in all cases, the optimum corresponds to
the solution of minimum energy.
In Fig. 12, we display the results from theN¼130, p¼1

experiment. The optimizer shows convergence within
the first ten circuits. Using the tensor network methods

FIG. 11. Dynamics of hXi for a 32-qubit TFIM Hamiltonian
simulation vs evolution time. The orange data are obtained by
directly implementing each ZZ rotation in every Trotter step
using our native parametrized angle UZZðθÞ gate with θ ¼ 2Jt=r.
The green data are obtained by decomposing each ZZ rotation
into two UZZðπ=2Þ (Clifford) gates with some 1Q rotations. Each
data point is obtained as the average of 100 shots of the associated
Trotterized circuit for that time.
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available in the PYTHON library quimb [95] in conjunction
with the global Bayesian optimizer in scikit-
optimize [96], we also exactly evaluated the best
average energy possible for any p ¼ 1 circuit. The con-
vergence of the blue data to the green line in Fig. 12
demonstrates that the optimization procedure succeeded
in locating the optimal parameters and that H2 evaluated
the circuits with sufficiently low noise to nearly saturate the
best-possible result. In Appendix D 2, we also display the
optimization trace on the energy landscape, further confirm-
ing that the optimizer succeeded in locating the optimal
parameters. To evaluate the performance of the algorithm in
solving the combinatorial problem, we also compare the
minimum value of the energy sampled in any given shot to
the exact value of the max cut computed in gurobi [97]. As
expected, since the circuit depth is only p ¼ 1, the best cut
value found on H2, 148, is substantially less than the exact
value of 178. Nevertheless, this experiment represents
substantial progress towards solving industry-scale combi-
natorial problems with QAOA on small quantum computers.
In Fig. 13, we demonstrate the results of the N ¼ 32,

p ¼ 2 optimization procedure. Comparing to the best
average energies possible for any p ¼ 1 or p ¼ 2 circuits,
the experimental data for p ¼ 2 consistently perform better
than the best-possible p ¼ 1 circuit and are close to
saturating the ground-state energy for p ¼ 2 circuits.
Furthermore, H2 succeeded in locating solutions with
the best-possible max cut of 42 for this graph.

C. Error correction: Repetition code

Large quantum computations are widely thought to only
be possible through quantum error correction (QEC).

Therefore, in the context of fault-tolerant quantum com-
puters, perhaps the most important quantum algorithm is
not a particular targeted calculation but rather the QEC
algorithm being run in the background. Additionally,
given the large resource overheads of QEC, the design
requirements for large-scale quantum computers will likely
be driven by the optimization of these codes’ power and
efficiency, highlighting the importance of closely related
benchmarks.
Many QEC schemes are based on stabilizer codes that

encode logical information into the joint subspace of many
physical qubits, known as data qubits. Additional physical
qubits, known as ancilla qubits, are used to make nonde-
structive syndrome measurements [98], which discretize
errors into a manageable set of bit and phase errors, allowing
for general QEC. Repetition codes are examples of stabilizer
codes but can only correct a single type of error, typically
either bit or phase flip errors, and thus do not constitute a
full quantum error correction code. However, they make
good benchmark algorithms since they possess all the
components needed to implement a full quantum stabilizer
code. Specifically, a distance d repetition code can reliably
correct up to ðd − 1Þ=2 errors. Corrections are determined
by repeatedly measuring stabilizers of the code using
MCMR, syndromes are decoded using algorithms similar
to those used in quantum codes, and logical fidelities are
calculated in the usual way. Using all 32 qubits, we imple-
ment a d ¼ 31 repetition code with 31 data qubits and one
ancilla, maximizing the code distance that can be tested.
This low overhead implementation of the code is made
possible by H2’s qubit reuse capabilities and by performing
30 unique stabilizer measurements serially.
The syndrome measurements are processed in real time

using Wasm calls to the classical compute environment

FIG. 12. Optimization trajectory of N ¼ 130, p ¼ 1 QAOA
computed via qubit reuse on H2. The expectation value of the
energy as measured experimentally at p ¼ 1 (blue data) con-
verges well to the best-possible exact value (green line). Un-
certainties on the measured value of hHCi are plotted but are
smaller than the displayed point size (see Appendix D 2 for
details). The best sample taken at each iteration (orange data) is
also displayed relative to the true max cut (purple line).

FIG. 13. Optimization trajectory of N ¼ 32, p ¼ 2 QAOA on
H2. The expectation value of the energy as measured exper-
imentally at p ¼ 2 (blue data) surpasses the best-possible exact
value for a p ¼ 1 circuit (green dashed line). The best sample
taken at each iteration (orange data) is also displayed relative to
the true max cut (purple line).
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during the quantum circuit. At the end of the circuit, the
data qubits are also measured and are used to construct a
final syndrome measurement. We use this last syndrome in
addition to all previously recorded syndromes to decode the
logical output state and calculate the logical fidelities. The
decoding uses a minimum-weight perfect-matching algo-
rithm [99,100], which is performed online at the end of the
circuit as part of the control-system software execution of
each shot (i.e., while the hybrid quantum-classical program
is still being executed on the actual device). Since this is
performed after the logical qubit has been measured, the
operation does not perform midcircuit real-time decoding,
making these experiments insensitive to memory error
associated with the computation time of a correction.
Real-time decoding operations are possible with Wasm
and the advanced classical compute environment infra-
structure, but they are unnecessary for repetition-code
memory experiments.
Experiments on both the d ¼ 31 bit flip code and phase

flip code were performed while varying the number of
rounds of syndrome extraction and recording all syndrome
measurements, allowing us to process subsets of the
code after the program is completed. The subsets allow
us to reconstruct logical fidelities for all odd distance codes
less than d ¼ 31. These measurements are similar to
Refs. [101,102], which use a fixed architecture and parallel
syndrome measurements, allowing for a direct comparison
of different distances. In contrast, our architecture offers a
less-direct comparison between different code distances, as
syndrome measurements are performed serially, but allows
for larger distance codes with lower qubit overheads. We
note that the Wasm decoder was only used to calculate the
d ¼ 31 fidelities. All other code distance fidelities were
calculated by the same minimum-weight perfect-matching
algorithm offline.
The experimental results in Fig. 14 show that the larger

distance codes achieve higher logical fidelities, as expected,
with the bit flip code producing a higher logical fidelity
compared to the phase flip code for a given distance,
consistent with memory errors that are dominated by
magnetic field inhomogeneities. These results demonstrate
many of the necessary components for implementing scal-
able, real-time QEC, and show how the capabilities of the H2
system can help realize large-distance stabilizer QEC codes,
all of which will be the subject of future studies.

D. Holographic quantum dynamics simulation
(HoloQUADS)

High-fidelity MCMR is crucial for quantum error cor-
rection, and it can also help expand the reach of many near-
term algorithms [38]. In particular, such techniques have
been shown to enable the simulation of quantum dynamics
from initially correlated states directly in the thermody-
namic limit, with qubit number requirements set by the
evolving entanglement entropy of the state rather than its

physical size [105]. Based on the work in Refs. [106,107],
Ref. [108] recently proposed and demonstrated a bench-
mark for such methods by simulating exactly solvable dual-
unitary circuit models applied to initial matrix-product
states on H1-1. Here, we use the additional resources of H2
to extend those results to longer evolution times, where the
system contains more entanglement.
Following Ref. [108], we simulate time evolution under

dual-unitary circuits [106,107], which are one-dimensional
brick-work circuits [Fig. 15(a)] having generic properties of
typical circuits (e.g., exhibiting quantum chaos and ballistic
growth of entanglement [106]) and certain nongeneric
properties (e.g., their correlations spread at the maximal
possible velocity [109] and are confined to the light-cone
boundary rather than its interior), which allow quantities
such as entanglement entropy and correlation functions
to be analytically determined [106,107,110]. An initial
matrix-product state is prepared by applying gates between
the physical qubits and an ancilla “bond” qubit [blue gates
in Figs. 15(a) and 15(b)] and then time-evolving this state
using the self-dual kicked Ising (SDKI) model [106,111]
[green gates in Figs. 15(a) and 15(b)]. After t layers of
SDKI gates are applied to jψ0i, we measure the smoothed
correlation functions

Cxxðr; tÞ ¼ 1

2L

XL
j¼1

X
δ¼0;1

hψ tjXjXjþrþδjψ ti; ð13Þ

where jψ ti is the time-evolved state and L is the system
size; in Fig. 15(c), we compare the results to exact

FIG. 14. Logical fidelities of the phase (square, dotted) and
bit (circle, dashed) flip repetition codes as a function of
distance. As the number of syndrome extraction (SE) rounds
increases, more noise is injected into the system, degrading the
logical fidelity. For a given number of rounds of SE, as the code
distance increases, so does the logical fidelity. All error bars are
calculated using jackknife resampling [103], except for those
where the sampling number is too low to calculate an error
(i.e., 100% fidelities), in which case the statistical rule of three
was used [104].
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theoretical calculations from Ref. [107]. We use H2’s 32
qubits to simulate t ¼ 0, 8, 16, 24 layers of time evolution
applied to a length L ¼ 128þ t ¼ 128, 136, 144, 152
matrix-product state.
The experimental data show close agreement with ideal

noiseless results, suggesting that H2’s midcircuit measure-
ment, midcircuit reset, crosstalk, and memory errors are
low enough for sizable quantum dynamics simulations
using HoloQUADS. We note that the effects of errors can
be highly circuit dependent. For the particular dual-unitary
circuit studied in this benchmark, their maximal velocity
behavior [109] causes a number of Pauli errors proportional
to t along the edges of the causal cones of qubits i and j to
affect the hψ tjXiXjjψ ti correlation function. For a generic
circuit, we would expect a number of Pauli errors propor-
tional to t2 within the causal cones to affect correlation
functions, meaning dual-unitary circuits are less sensitive to
errors than typical circuits.

VI. SUMMARY OF THE RESULTS
AND OUR OUTLOOK

The H2 quantum computer is a significant upgrade from
our previous H1 system, maintaining or exceeding many
previous fidelity metrics while operating on more qubits.
The clearest manifestation of the robust scalability of our
QCCD architecture is that the system-level benchmarks are
consistent with the errors measured by the component
benchmarks. We also benchmarked H2’s performance on a
variety of applications that are widely considered to be well
suited for near-term quantum computers, with the goal of
assessing the feasibility of such algorithms given current
hardware performance metrics.
The current device has three error mechanisms that

significantly contribute to the overall error budget: 2Q
gate infidelity, memory error, and SPAM error. The relative

impact of these is circuit dependent, and we believe that all
three can be significantly improved with future-generation
hardware upgrades. The single largest source of error in the
2Q gate is spontaneous emission (it accounts for about 40%
of the total 2Q gate error), which can, in principle, be
suppressed by simultaneously increasing the laser detuning
and power. Memory errors can be reduced by decreasing
circuit execution time (currently dominated by transport
and sympathetic cooling), reducing magnetic field noise,
or reducing the qubit’s sensitivity to magnetic fields.
Transport speeds are currently limited by the filtering that
is necessary to achieve low heating rates at the ions’
motional-mode frequencies; the design and filtering of
transport waveforms could be better matched to allow for
faster transport while simultaneously reducing the required
amount of sympathetic cooling. Magnetic field fluctuations
could be mitigated at the apparatus design level with
passive magnetic field shielding such as mu-metal or active
feedback to measured magnetic fields. Magnetic field
sensitivity of the qubit could be reduced by working at a
lower bias field or by working with an ion species
possessing a finite-field clock state. Additionally, memory
errors could be mitigated at the software level via dynami-
cal decoupling. SPAM error, which is somewhat deem-
phasized in most of our system-level and application
benchmarks but important for fault-tolerant operations,
can be significantly improved through quantum logic
detection protocols [112] or by switching to a different
ion species [113]. All of these schemes are under active
investigation and are expected to lead to reduced circuit
execution times and higher fidelity operation.
Even after these errors are substantially reduced,

building ever larger systems with increased qubit number
remains a significant engineering challenge. Two-
dimensional trapping structures will likely be required
for more efficient ion-transport operations [21] to maintain

FIG. 15. (a) One-dimensional brickwork circuit of length L ¼ 12 with t ¼ 4 layers of gates applied to a quantum matrix-product state
of bond dimension χ ¼ 2nb ¼ 2. (b) HoloQUADS reusing qubits through MCMR to execute the same circuit with a minimal number of
qubits. Here, we use Nmax ¼ 9 qubits, but Nmax can be adjusted between nb þ tþ 2 ¼ 7 (maximally serial) and nb þ L ¼ 13
(maximally parallel). (c) Experimentally measured (dots) correlation function Cxxðr; tÞ for a dual-unitary circuit applied to a length
L ¼ 128þ t solvable χ ¼ 2 quantum matrix-product state compared to the exact thermodynamic limit results (solid lines), using
Nmax ¼ 32 qubits up to time t ¼ 24. Error bars are standard deviations of the mean from four 100-shot experiments.
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the long-range connectivity without increasing memory
errors, as well as more scalable optics delivery [24,114] to
increase the number of quantum gates that can be executed
in parallel. However, the H2 system demonstrates a number
of key technological milestones on the path to that scaling,
including ion transport controlled via broadcast electrode
signals, rf signals routed under the surface of the trap, and
fast MOT-based loading. These improvements are achieved
in a system initially configured to operate with 32 qubits
but designed to accommodate more, and collectively
bolster the case for the viability of the QCCD architecture
as a route to large-scale trapped-ion quantum computing.
All data presented are available in Ref. [115]. Most of the

component benchmarking data are available in Ref. [116]
and will be updated as H2 improvements are introduced.
Quantum volume data are available in Ref. [117] and will
be updated as new tests are run.
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APPENDIX A: ADDITIONAL EXPERIMENTAL
DETAILS

The trap fabrication process is very similar to that
described in Ref. [5], with the exception of the addition
of the rf tunnels. The trap is cooled to 15.8 K by a cryostat
setup very similar to that in Ref. [5]. The typical heating
rate is tens of q/s at 1 MHz.
On average, background gas collisions will cause one

of the zones in the trap to be lost, either partially or fully,
roughly every 30 minutes. In addition to ion loss, a process
that is also detrimental to a circuit but occurs on a much
faster timescale than loss is crystal reorders since we
require the crystal order to always be Yb-Ba-Ba-Yb when
performing 2Q gates. The mean time for any zone to
reorder is several minutes.

For a desired number of total repetitions of a given
circuit, we run a smaller number of repetitions in a “chunk.”
After each chunk, we check the crystal order, number of
ions, and magnetic field drift over the course of running the
chunk. If these checks are not satisfactory, we disregard the
data, reorder or reload as necessary, and repeat the chunk.
The number of repetitions in a chunk is determined such
that the probability of failing these checks is low (⪅ 25%).
Empirically, we find that a chunk time of 30–60 seconds is
optimal. When the system is operational, about 1=3 of the
time is spent running circuits, with the remainder of the
time spent on compiling circuits to the set of primitive
operations to run the circuit, calibrations, pre- and
postchunk checks, and reloading lost ions. We have a
calibration tree that keeps the system calibrated and has
recoveries for various calibrations failing. With this frame-
work, we have greatly reduced the number of instances a
human needs to intervene to resolve an issue.

APPENDIX B: DETAILS OF COMPONENT
BENCHMARKS

1. Randomized benchmarking parameters and data

All component benchmarks (except transport 1Q RB)
were repeated for each gate zone (DG01–DG04). Transport
1Q RB used all available 32 qubits with random rearrange-
ments, so it is not zone specific. For each RB experiment,
sequences were randomly and independently generated
for each qubit (or pair of qubits for all tests with 2Q gates).
The sequence lengths, repetitions, and shots used for the
component benchmarks are shown in Table V.
For each RB experiment, the decay is fit to the standard

first-order RB function [49] with a fixed asymptote,

pðlÞ ¼ Arl þ 1=2N; ðB1Þ

where pðlÞ is the observed survival probability at length l,
A is the SPAM fit parameter, r is the depolarizing rate and
N is the number of qubits. The reported error is the average
infidelity, which is given by

TABLE V. Parameters used for component benchmarking testing.

Test Lengths Repetitions Shots/Circuit

1Q RB [2, 32, 128, 512] 30 100
2Q RB [2, 16, 64, 128] 30 100
2Q SU(4) RB [2, 8, 32, 64] 15 100
2Q parametrized RB [4, 50, 100] 10 100
Transport 1Q RB [2, 16, 32, 64] 64a 200
Measurement crosstalk [0, 100, 200, 300, 400, 500] 1 1000
Reset crosstalk [0, 100, 200, 300, 400, 500] 1 1000
SPAM � � � 2 5000

aThe transport 1Q RB test is done with 32 qubits in parallel and repeated twice.
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ϵ ¼ 2N − 1

2N
ð1 − rÞ: ðB2Þ

This infidelity captures only the errors in the computational
subspace and not leakage errors, which are measured with
the leakage detection gadget.
The reset and measurement crosstalk decay functions are

fit to functions derived from error models of their respective
operations in Ref. [31] with the following equations:

pMðlÞ ¼
1

3
ð2 − AM þ ð4AM − 2Þe−3rMlÞ; ðB3Þ

pRðlÞ ¼ 1 − AR þ 1

3
e−5rRlð2þ e3rRlÞð2AR − 1Þ; ðB4Þ

where AM=R are the SPAM fit parameters for each method
and rM=R is the rate of measurement or reset crosstalk
scattering. Each scattering rate is then converted to the
average infidelity,

ϵM ¼ 5rM=6; ðB5Þ

ϵR ¼ 5rR=3: ðB6Þ

For all component measurements, a final combined
estimate is obtained by performing the RB (or crosstalk)
analysis on a combined data set between all measured
qubits, which is reported in Table II. For example, in 1Q
RB, the combined data set is obtained by treating each
qubit measurement as a single sequence randomization
and performing the RB fitting averaged over every qubit’s
random sequences. This process leads to an RB experiment
with 8 × 40 random sequences for each length. For the
crosstalk and SPAM measurements, the combined data set
is obtained by adding all circuit output counts together.
Zone-specific data for each component testing experiment
are shown in Table VI. Decay plots for each component
benchmark are shown in Figs. 4, 16–20. We observe that
most zones have similar error measurements. In cases with

notable variance between zones, the difference is likely
due to fit irregularities with small observed signals (such as
1Q leakage) or variations in beam alignments and trap
conditions. However, these cases all occur with very small
errors, and measurements are still below prespecified
thresholds for operations.

2. Leakage detection gadget

The leakage rate rL is defined as the rate that population
leaves the computational subspace due to a processΛ based
on Ref. [118],

rL ¼ 1

dC
Trð1LΛ½1C�Þ; ðB7Þ

where 1L=C is the identity operator on the leakage/
computational subspace. The number of leakage detection
events is fit to the model

pðlÞ ¼ Að1 − rLÞl; ðB8Þ

as shown in Figs. 4(b) and 16(b). Gate errors in the
leakage detection gadget can cause false-positive or
false-negative detection events, but these only contribute
to the parameter A, as they are independent of l, similar to
the SPAM parameter in RB.

3. The 2Q parametrized randomized benchmarking

To measure the average infidelity ofUZZðθÞ as a function
of θ, we use direct RB. In standard RB, the unitaries
comprising the RB sequence are sampled from a unitary
2-design, such as the Clifford group or SU(2N). In contrast,
direct RB samples unitaries from a set of native gates that
generate the group [51,119]. Under such circumstances, the
survival probability will still approximate an exponential
decay, with the decay parameter linearly related to the
average fidelity [120].
Our direct RB circuits are constructed by repeatedly

applying UZZðθÞ (for a fixed value of θ) interleaved with

TABLE VI. Component benchmarking results for the tests outlined above. All values are in terms of average infidelity and ×10−4.
For 1Q RB, 1Q leakage rate, measurement and reset crosstalk, and SPAM, the brackets show the average infidelity for each side of the
gate zone.

Test DG01 DG02 DG03 DG04 Combined

1Q RB [0.30(9), 0.21(7)] [0.12(5), 0.21(7)] [0.27(8), 0.32(9)] [0.27(9), 0.30(9)] 0.25(3)
1Q leakage rate [0.08(5), 0.04(4)] [0.00(4), 0.002(4)] [0.04(5), 0.03(4)] [0.05(5), 0.02(4)] 0.04(2)
2Q RB 19(1) 17.5(9) 18(1) 17.9(9) 18.3(5)
2Q leakage rate 3.6(4) 3.9(4) 4.2(5) 4.0(5) 3.9(2)
2Q SU(4) RB 39(3) 45(3) 42(3) 38(2) 41(1)
Transport 1Q RB � � � � � � � � � � � � 2.2(3)
Measurement crosstalk [0.02(1), 0.02(2)] [0.24(3), 0.05(2)] [0.01(1), 0.01(1)] [0.001(5), 0.005(9)] 0.045(6)
Reset crosstalk [0.002(7), 0.02(1)] [0.12(3), 0.007(2)] [0.04(1), 0.00(2)] [0.02(1), 0.02(1)] 0.038(6)
SPAM [15(4), 16(4)] [19(4), 20(4)] [19(4), 16(3)] [8(3), 12(3)] 16(1)
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Haar random SU(2) gates on each qubit. For θ > 0, this
gate set generates SU(4). The inversion unitary is applied
by decomposing the resulting SU(4) element into three
UZZðπ=2Þ 2Q gates using a standard decomposition [121].
A final random Pauli is applied to randomize the survival
state. The decay curves are shown in Fig. 21, and the
average fidelity is obtained by fitting to Eq. (B1).
In addition to positive values of θ∈ fðπ=8Þ; ðπ=4Þ;

ð3π=8Þ; ðπ=2Þg, we also run a direct RB experiment with

θ very close to 0 (specifically 2 × 10−4 in order to force the
2Q gate to be performed), to measure the baseline error due
to the MS wrapper pulses and memory error accumulated
during the cooling pulses. However, for θ ¼ 0, the direct
gate set reduces to SUð2Þ ⊗ SUð2Þ, which no longer
generates a unitary 2-design, and the RB theory leading
to a single exponential decay no longer applies. To estimate
the fidelity in this case, we use the fact that the action
of SUð2Þ ⊗ SUð2Þ decomposes as a direct sum of four
irreducible representations (irreps). (A good introduction to

FIG. 16. The 1Q RB data with parameters given in Table V.
(a) Decay of survival probability. (b) Decay of unleaked fraction
of shots.

FIG. 17. The 2Q SU(4) RB data with parameters given in
Table V.

FIG. 18. Transport 1Q RB with parameters given in Table V.

FIG. 19. Measurement crosstalk data with parameters given in
Table V.

FIG. 20. Reset crosstalk data with parameters given in Table V.
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representation theory as it applies to RB is in Ref. [122].)
The irreps are the span of the identity II, the spans of
weight-1 Pauli operators on each qubit fIX; IY; IZg and
fXI; YI; ZIg, and the span of the weight-2 Pauli operators.
We let λ∈ fII; IZ; ZI; ZZg label these irreps. If E is the
error channel for UZZðθ ≈ 0Þ, then the twirl of E over
SUð2Þ ⊗ SUð2Þ is a linear combination of projectors onto
these four irreps:

ET ≔
Z
g∈SUð2Þ⊗SUð2Þ

dμðgÞϕðgÞEϕðgÞ−1¼
X
λ

rλΠλ; ðB9Þ

where ϕ is the superoperator representation of SUð2Þ ⊗
SUð2Þ, andΠλ is the projector onto the irrep λ. The survival
probability at sequence length l is then given by

pðlÞ ¼
X
λ

Aλrlλ : ðB10Þ

We use the fact that rII ¼ 1 for trace-preserving maps, and
the randomization in the survival state to fix AII ¼ 1=4. To
reduce the number of exponential decay curves needed for
the best fit, we assume qubit symmetry in the error channel,
that is, rIZ ¼ rZI ¼ r1. Relabeling the SPAM parameters
and defining r2 ¼ rZZ, the decay model is then given by

pðlÞ ¼ A1rl1 þ A2rl2 þ
1

4
: ðB11Þ

The entanglement (or process) fidelity is given by

F ¼ 1

16

X
λ

dimðλÞrλ

¼ 1

16
ð1þ 6r1 þ 9r2Þ: ðB12Þ

The average infidelity is related to the entanglement
fidelity,

ϵ ¼ d
dþ 1

ð1 − FÞ; ðB13Þ

for any d-dimensional trace-preserving error [123].

APPENDIX C: DETAILS OF SYSTEM-LEVEL
BENCHMARKS

1. Mirror benchmarking

Table VII lists the survival probabilities, decay param-
eter, and effective 2Q average infidelity ϵ2Qeff for the MB
experiment. The average survival probability as a function
of sequence length l is fit to the model,

pðlÞ ¼ Aul−1: ðC1Þ
Let E be an N-qubit error channel. Let fPigi be the N-qubit
Pauli operators with P0 ¼ I. The ith Pauli fidelity of E is
defined as

fi ¼
1

2N
TrðPiEðPiÞÞ: ðC2Þ

By applying Pauli randomization to the TQ gates in the MB
circuits, the error channel for each circuit layer is assumed
to be a stochastic Pauli channel [62]. Assuming a constant
stochastic Pauli error channel E per circuit layer, it was
shown in Ref. [57] that the decay parameter u is equal to the
mean square of the nonidentity Pauli fidelities:

u ¼ 1

2N − 1

X
i>0

f2i : ðC3Þ

For a constant depolarizing error channel on each 2Q gate,
u is given by an analytic formula [Eq. (C4) in Ref. [57]].

FIG. 21. Decay curves for direct RB of parametrized 2Q gates.
The different sets of curves show data for θ ranging from 0 to π=2
in increments of π=8. Each experiment used sequence lengths
l ¼ 4, 50, and 100, with ten random circuits per sequence length.
The circuits were run in parallel across the four gate zones, and all
circuits were run in a random order. The dashed curves are for
individual zones, while the solid curve is the average over all
zones. The decay curves for θ∈ fðπ=8Þ; ðπ=4Þ; ð3π=8Þ; ðπ=2Þg
are fit to the model pðlÞ ¼ Arl þ 1=4, and the average infidelity
is computed using Eq. (B2). For θ ¼ 0, the average infidelity is
computed using the procedure described in Appendix B 1. The
average infidelity versus θ is shown in Fig. 3.

TABLE VII. MB survival probabilities, fit parameter (u), and
effective 2Q gate average infidelity (ϵ2Qeff ).

Sequence length N ¼ 20 N ¼ 26 N ¼ 32

l ¼ 2 0.88(1) 0.84(2) 0.82(2)
l ¼ 4 0.77(3) 0.70(2) 0.64(2)
l ¼ 6 0.66(2) 0.57(2)
l ¼ 7 0.51(3)
l ¼ 10 0.51(3) 0.39(2) 0.35(3)

u 0.934(6) 0.908(7) 0.902(7)
ϵ2Qeff 0.0027(3) 0.0030(2) 0.0026(2)
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After best fitting the experimental decay curves to obtain u,
this formula is used to extract ϵ2Qeff .

2. Quantum volume

In addition to the QV ¼ 216 data set presented in the
main text, we also ran several smaller QV tests. In Fig. 22,
we show the next largest QV ¼ 215 test. This test was run
with 100 random circuits, each with 50 shots and contain-
ing an average of 243 parametrized 2Q gates. The measured
heavy output probability was 70.9%, with a two-sigma
lower bound of 69.1% calculated by the semiparametric
bootstrap resampling method.
To infer an effective 2Q error from QV data, first we

convert the measured heavy-output probability to a circuit
fidelity based on Eq. (13) in Ref. [59]. We then scale this
based on the SPAM error and average number of 2Q gates
as shown in Eq. (C6).

3. Random circuit sampling

The definition of the linear cross-entropy benchmarking
fidelity is

FXEB ¼ 2NhPðxiÞi − 1; ðC4Þ

where PðxiÞ is the probability of measuring the output
bitstring xi in the ideal output distribution, and the expect-
ation value is taken over the empirically measured bit-
strings. The linear cross-entropy fidelity is a measure of the
correlation between the empirical output distribution and
the ideal output distribution. Consequently, this requires
exact classical simulation of the random circuits, which
is a major obstacle to scalability of the benchmark. The
uncertainty on the linear cross-entropy fidelity for each
circuit can be obtained from Eq. (C4) by combining the
variance estimator for PðxiÞ with the standard uncertainty-
on-the-mean formula, namely,

varðFXEBÞ ¼
22NvarðPiÞ

Nshots
: ðC5Þ

In Fig. 8, we report a fit for the linear cross-entropy
benchmarking fidelity on H2 as a function of N. This fit
was obtained by the following procedure. At each fixed N,
a representative random circuit was generated and com-
piled with pytket to obtain an expected number
of 2Q operations. We note that the final number of 2Q
UZZ operations in each circuit is equal to the number
of fSim½ðπ=2Þ; ðπ=6Þ� gates in the original uncompiled
circuit. The overall model for the linear cross-entropy
fidelity is then

FXEB ¼ ðF2QÞ#2Q × ð1 − ϵSPAMÞN: ðC6Þ

Here, F2Q represents the effective entanglement (or
process) fidelity of two-qubit operations, while ϵSPAM is
the SPAM error as measured by component benchmarking.
The conversion between entanglement fidelities and aver-
age infidelities as obtained via component benchmarking
in Table VI is given in Eq. (B13).
Holding fixed the average SPAM error of 1.6ð1Þ × 10−3

from Table VI, the model (C6) was fit to the H2 data,
obtaining a best-fit value of 1 − F2Q ¼ 2.4ð2Þ × 10−3.
In terms of average infidelity, this corresponds to
ϵ2Q ¼ 1.9ð2Þ × 10−3.

APPENDIX D: DETAILS OF APPLICATION
BENCHMARKS

1. Trotter steps of Hamiltonian simulation experiment

Here, we provide details on the Trotter steps used in the
experiment. The Trotter steps r are determined by relative
convergence with tolerance 0.0025; i.e., we choose a
cutoff r such that for r0 ≥ r, neighboring steps are within
the threshold jhXir0þ1 − hXir0 j ≤ 0.0025, where hXir is the
X expectation value after r steps of propagation in a
noiseless circuit. For this purpose, we compute each hXir
exactly via a discrete-time Jordan-Wigner transformation
in the Heisenberg picture [88]. We check that this 0.0025
relative error tolerance provides an absolute Trotter error
tolerance of around 1% in jhXir − hXij for the times we
simulate, which is at the scale of the expected statistical
fluctuation of about 1% in the experiment. We choose
these values because further improvements from lowering
the Trotter error would not be reliably observable even
if the circuit were completely noiseless, though we did not
choose them in a noise-aware fashion (further lowering
of the number of Trotter steps used may well give further
improvements given the presence of gate errors). The
steps and the corresponding Trotter errors are shown in
Figs. 23(a) and 23(b). The difference between the exper-
imental data and the exact value is shown in Fig. 23(c).

FIG. 22. Quantum volume QV ¼ 215 measurement on H2. The
average and two-sigma confidence interval of the heavy-output
frequency are plotted as a function of the circuit index. The green-
shaded region shows the two-sigma confidence interval from the
semiparametric bootstrap method.
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2. QAOA optimization landscape

In Figs. 12 and 13 in the main text, uncertainties were
computed on the expectation value of the energy hHCi as
evaluated on H2 (blue points). These uncertainties were
computed by bootstrap resampling via the reverse-percentile
method [124], and they quantify the uncertainty due to shot
noise but not physical noise sources on the machine. We
emphasize that the different data points in Figs. 12 and 13 are
evaluated at different values of the parameters β and γ.
In Fig. 24, we display the full optimization trace on the

energy landscape for the N ¼ 130, p ¼ 1 MaxCut QAOA
instance described in the main text, further justifying that
the classical optimizer successfully converges to the mini-
mum value of the energy.

3. Details of HoloQUADS experiment

Here, we provide additional details on the holographic
quantum dynamics experiments performed on H2. We
consider an initial matrix-product state of the form

jψ0i ¼
X

σ1;σ2;…∈ f↑;↓g
lTN ðσ1;σ2ÞN ðσ3;σ4Þ � � � jσ1σ2σ3σ4 � � �i;

ðD1Þ

with the tensor N ðσ;σ0Þ
i;j ¼ hjj ⊗ hσ0jWjii ⊗ jσi specified

by the unitaryW ¼ exp½−iðKxXX þ KyYY þ KzZZÞ� with
ðKx; Ky; KzÞ ¼ ð0.3; 0.5; 1.25Þ; this bond-dimension χ ¼ 2

matrix-product state, previously studied in Refs. [107,108],
is prepared by applying gates between the physical qubits
and nb ¼ log2 χ ¼ 1 ancilla “bond” qubits. We time-evolve
this state using the SDKI model [106,111], which can be
formulated as a dual-unitary circuit using 2Q gates,

U ¼ ðuþ ⊗ u−Þe−iπ4ðXXþYYÞðv− ⊗ vþÞ: ðD2Þ

Here, the 1Q gates are given by uþ ¼ e−ihZei
π
4
Xe−i

π
4
Y,

u− ¼ ei
π
4
Xe−i

π
4
Y; v− ¼ ei

π
4
Ye−ihZ, and vþ ¼ ei

π
4
Y . We use

h ¼ 0.05, which is close to but not exactly at the integrable
h ¼ 0 point where the SDKI model displays no decay of
correlation functions.
Qubit-reuse techniques involving MCMR [38,108] are

used to construct the circuit in a way that maximizes the
number of parallel 2Q gates. The leakage detection gadget
(Fig. 5) is used to discard results where the bond qubit is
measured to have leaked (measuring 2%, 2%, 5%, 7% bond
qubit leakage for t ¼ 0, 8, 16, 24). We also use a circuit
identity to construct each gate U with a single parametrized
UZZðθÞ gate and one physical SWAP [108].
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