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Quantum electrodynamics in 2þ 1 dimensions (QED3) has been proposed as a critical field theory
describing the low-energy effective theory of a putative algebraic Dirac spin liquid or of quantum phase
transitions in two-dimensional frustrated magnets. We provide compelling evidence that the intricate
spectrum of excitations of the elementary but strongly frustrated J1-J2 Heisenberg model on the triangular
lattice is in one-to-one correspondence to a zoo of excitations from QED3, in the quantum spin liquid
regime. This evidence includes a large manifold of explicitly constructed monopole and bilinear excitations
of QED3, which is thus shown to serve as an organizing principle of phases of matter in triangular lattice
antiferromagnets and their low-lying excitations. Moreover, we observe signatures of emergent valence-
bond solid (VBS) correlations, which can be interpreted either as evidence of critical VBS fluctuations of
an emergent Dirac spin liquid or as a transition from the 120° Néel order to a VBS whose quantum critical
point is described by QED3. Our results are obtained by comparing ansatz wave functions from a parton
construction to exact eigenstates obtained using large-scale exact diagonalization up to N ¼ 48 sites.
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I. INTRODUCTION

The emergence of collective equations of motion from
seemingly unrelated microscopic interactions is one of the
most fascinating aspects of many-body physics. Strongly
correlated electrons can realize intriguing quantum field
theories (QFT) as their low-energy effective description,
which otherwise are used to describe the fundamental laws
of elementary particles. Quantum spin liquids (QSL) in
frustrated magnetism are a particularly exciting instance of
emergent QFTs [1]. Topological QFTs describe certain
gapped QSLs that have been shown both analytically and
numerically to emerge in local spin models, which includes
the emergentZ2 lattice gauge theory in the toric code or the

Kitaev’s honeycomb model [2] as well as Chern-Simons
theories realized in chiral spin liquids [3,4], which have
been discovered in simple Heisenberg-like Hamiltonians
on the triangular and kagome lattice [5–11].
The arguably most widely known QFT is quantum

electrodynamics (QED). While on one hand, it is the
fundamental theory of fermions coupled to a U(1) gauge
field describing the physics of elementary electrons and
photons, it has also been discussed as an emergent field
theory in frustrated magnets. Remarkably, QED in three
spatial dimensions can be realized in pyrochlore spin-ice
compounds [12–14]. Condensed matter systems also allow
for the realization of QED in less than three spatial
dimensions. The physics of QED in 2þ 1 dimensions
(QED3) is considered to be more strongly coupled than its
3þ 1-dimensional counterpart while exhibiting a richer
phenomenology than the confining 1þ 1-dimensional
QED, also referred to as the Schwinger model. However,
the physics of QED3 is still a subject of intense research.
Previously, QED3 has been suggested as an effective

field theory for so-called algebraic or Dirac spin liquids
(DSL) in quantum magnets [15–17]. While model wave
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functions of these states have been studied [18–20] and
signatures of gapless spin liquids have been detected in
certain spin models [21,22], no realization of Dirac
spin liquids has been unambiguously confirmed so far.
However, several numerical studies have recently high-
lighted the relevance of QED3 for elementary frustrated
quantum magnets, such as the kagome Heisenberg anti-
ferromagnet or the J1-J2 Heisenberg model on the triangu-
lar lattice.
In this work, we demonstrate that QED3 serves as an

organizing principle of the physics of triangular lattice
Heisenberg antiferromagnets by exact numerical calcula-
tions. Specifically, we consider the spin-1=2 Heisenberg
model on the triangular lattice, with nearest-neighbor J1 and
next-nearest-neighbor J2 antiferromagnetic (AF) couplings,

H ¼ J1
X
hiji

Si · Sj þ J2
X
⟪ij⟫

Si · Sj: ð1Þ

We construct a “vacuum” of QED3 and a plethora of low-
lying excitations directly on a lattice bymeans of Gutzwiller
projection of a DSL parton ansatz. These model states of
both the vacuum and the low-lying excitations are then
directly compared to numerically exact ground-state
and low-energy eigenstates of an N ¼ 36-site simulation
cluster. Moreover, we present the complete low-energy
spectrum with space group and spin-parity resolution for
the N ¼ 48-site cluster, obtained using large-scale exact
diagonalization (ED). The N ¼ 48 ED spectrum used
approximately 25 million CPU hours, which was possible
thanks to an overall 40-million CPU hours grant from
PRACE.
The ground-state phase diagram of Eq. (1) features a

120° Néel ordered state for J2=J1 ≲ 0.09 [23–26] and a
stripy antiferromagnetic state for J2=J1 ≳ 0.14. In between,
a paramagnetic regime is stabilized whose nature has been
the subject of intense debate [20,27–31]. In particular,
several references have pointed out the possibility of a
Dirac spin liquid [20,22,27] or a gapped Z2 spin liquid
[28–30,32] being stabilized in this regime. Quite interest-
ingly, the paramagnetic regime is highly sensitive to
further perturbations: For instance, when adding a further
neighbor AF coupling J3, a gapless chiral spin liquid
(CSL), which spontaneously breaks time and lattice reflec-
tion symmetry, was reported using DMRG [33]; similarly,
adding an explicit tiny chiral term in the Hamiltonian
[JχSi · ðSj × SkÞ] leads to a gapped CSL [9,34,35].

II. QED3 AND ITS TORUS SPECTRUM

Based on a parton approach, it has been advocated
that QED3, i.e., the quantum field theory of Nf flavors of
massless Dirac fermions coupled to a compact Uð1Þ gauge
field in 2þ 1D, could be an appropriate description of
the low-energy physics of certain spin liquid phases, in
particular, for the kagome and the triangular lattice

Heisenberg models. In these examples, the number of
fermion flavors is Nf ¼ 4.
In our work, we study the low-energy spectrum of finite-

size spin systems and investigate whether the spectrum is in
agreement with the low-energy spectrum of QED3 in finite
volume. In order to execute this program, we need to review
what is known about QED3 and how the finite-size low-
energy spectrum of a quantum field theory on a torus is
structured.
It is useful to start studying QED3 in the limit of

Nf → ∞. In that limit, the gauge fluctuations are sup-
pressed, and the theory has a simpler structure. The theory
is a conformal field theory (CFT) with a variety of gapless
modes. On the one hand, the bare massless fermions remain

FIG. 1. Quantum electrodynamics in 2þ 1 dimensions imple-
mented on the triangular lattice. (a) QED3 vacuum constructed by
filling the lower band of the π-flux ansatz shown in panel (e) and
performing a Gutzwiller projection. The red dots indicate the
Dirac nodes with linear dispersion. (b) Bilinear excitations
obtained by creating particle-hole excitations on the Dirac sea.
(c) Monopole excitations created by distributing a unit of
magnetic flux across the full torus. (d) Gauge-field (photon)
excitations studied using an effective quantum dimer model.
(e) The π-flux ansatz implemented on a two-site unit cell and
featuring π flux through up-triangles and 0 flux through down-
triangles. An example gauge is shown with the dashed and solid
lines, which indicate a phase of π and 0 on the hopping,
respectively. (f) Brillouin zone (BZ) of the triangular lattice
and folded BZ of the π-flux ansatz. The high symmetry points Γ,
K, M, X are marked with orange symbols. The gray stars show
the momentum resolution of the N ¼ 36 simulation cluster. The
purple crosses indicate the shifted momenta minimizing the
kinetic energy of the filled Dirac sea.
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gapless, as does the gauge field in the form of photons.
Another set of excitations, the monopoles—which will play
an important role later—are found at a large energy scale,
which is proportional to Nf in the limit Nf → ∞. In the
correspondence to the spin model, only the gauge-invariant
and charge neutral excitations of QED3 are allowed to
appear; therefore, only neutral fermion excitations are
visible [e.g., vacuum, neutral bilinears; cf. Fig. 1(b)] in
addition to the gauge-field excitations and the monopoles
[see Fig. 1(c)]. As Nf decreases towards the value of
interest, Nf ¼ 4, the monopoles also become gapless low-
energy excitations. The role of the monopoles is also
crucial for the stability of the CFT window of QED3 itself.
In the extreme limit Nf ¼ 0, it has been known since
Polyakov [36] that a pure compact Uð1Þ gauge theory in
2þ 1D is confining in the presence of a UV cutoff.
Analytical and numerical results on the Nf extent of the
conformal window of QED3 have not yet reached a
consensus, but it is conceivable that Nf ¼ 4 still belongs
to the conformal window [37–40].
As QED3 is a CFT for large enough values of Nf,

one can characterize the low-energy excitations based on
their scaling dimensions. The current best estimates for the
scaling dimensions at Nf ¼ 4 are summarized in Ref. [40].
For 1þ 1D systems described by a CFT, the energy
spectrum on a circle is equivalent to the operator content
on the 2D (space-time) torus and thus harbors the spectrum
of scaling operators and their descendants, arranged into
Verma modules. In 2þ 1D CFTs, an analogous correspon-
dence only holds for Hamiltonians quantized on a spatial
sphere, while the lattice models studied in condensed
matter physics more naturally live on a spatial torus.
Recently, the torus energy spectrum for a series of
CFTs, such as the Wilson-Fisher and Gross-Neveu-
Yukawa theories, has been studied using a combination
of numerical and analytical results [41–45]. The spectrum
is understood to collapse as 1=L (L being the linear extent
of the system) as expected for a relativistic theory. The low-
energy spectrum Δi ¼ Ei − E0 multiplied by L then forms
a fingerprint ξi ≡ Δi × L of the conformal field theory
governing the low-energy spectrum [46]. While the torus
spectrum of these theories is known to be different from the
sphere spectrum [47], in the above works, a phenomeno-
logical reminiscence among some of the low-lying states on
the sphere and on the torus has been observed. Thus, we
expect the low-energy part of the torus spectrum of QED3

to be formed by the torus doppelgänger of the vacuum, the
neutral bilinears, the monopoles, and the gauge-field
excitations.
The torus spectrum of QED3 on a (square) torus has been

studied in the limit Nf → ∞ in Ref. [43], including the
bilinears and the photon excitations. We discuss the basic
structure of the neutral fermionic sector adapted to the hex-
agonal Brillouin zone torus in Appendix F. A hallmark of
the fermionic bilinear spectrum is the massive degeneracy

of levels already at the first fermionic bilinear excitation
above the ground state (larger than their number N2

f on the
sphere), combined with a rather soft photon excitation,
which additionally boosts the number of low-lying levels.
Thus, even in the absence of monopoles, the low-energy
torus spectrum of QED3 is much denser than, for example,
the torus spectrum of a 2þ 1D Ising CFT [41].
The monopole excitations in lattice systems carry quan-

tum numbers of the space and the spin symmetry group. In
Refs. [48,49], the quantum numbers of the first q ¼ �1
monopoles for Nf ¼ 4 have been studied for various
lattices. For the triangular lattice of interest here, spin-
singlet monopoles at each of the six X points in the
Brillouin zone have been identified together with spin-
triplet monopoles at each of the two K points. Altogether,
they form 12 monopole states. We expect precisely these
states to be present at low energy in the torus spectrum.
Note that the SUð4Þ symmetry of QED3 for Nf ¼ 4

predicts the energies of the 12 monopole states to be
degenerate, also on the torus. Since this symmetry is not
exact on the lattice but only emerges in the IR, one would
expect some finite-size splitting to lift the degeneracy.
In the absence of an analytical result for the torus

spectrum for Nf ¼ 4, we proceed now with a Gutzwiller
projection procedure to generate model state wave func-
tions for several classes of torus excited states of QED3 on
the triangular lattice. In this way, we will be able to describe
the vacuum, the bilinears, and the monopoles (see Sec. IV).
While we cannot predict the ξi values of the torus spectrum
in this way, we can still check whether the significant
overlaps of the Gutzwiller-projected states cover relevant
low-energy states of the ED spectrum on a given system
size. In the next step, we can then interpret the relative
excitation energies of the different classes of excitations
and possibly gain some insight into the relevance of QED3

for the low-energy physics of the triangular lattice J1 − J2
Heisenberg model, and perhaps even about the stability of
QED3 itself.
Note that we are not able to generate excitations of the

gauge-field sector in this way. In order to shed some light
on this sector, we take a different approach and consider the
spectrum of the Rokhsar-Kivelson quantum dimer model
[50] on the same finite-size clusters (see Sec. IV E), for
comparison.

III. SPECTRUM OF THE J1-J2 TRIANGULAR
ANTIFERROMAGNET

We now turn to the main problem of interest, to under-
stand the low-energy spectrum of the J1-J2 Heisenberg
model on the triangular lattice and the nature of the
corresponding phases. The low-energy spectrum in many
phases of matter is well understood, for example, in
magnetically ordered phases [51], or in topologically
ordered phases with their torus ground-state degeneracy.
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As discussed in the previous section, however, torus spectra
for conformal field theories in 2þ 1D are a topic of
ongoing research.
We study the energy spectra of Eq. (1) obtained from

large-scale exact diagonalization [52] where we resolve the
spectrum with respect to the irreducible representations
(irreps) of translational, point-group (PG), and spin-flip
symmetries in Fig. 2. States in the even (odd) spin-flip
representation have even (odd) total spin S. We denote the
irrep of these states by k:ρ, where k labels the momentum
and ρ labels the point-group irrep. For N ¼ 36, in Fig. 2(a)
we cover the range of J2=J1 ∈ ½−0.1; 0.2�. The ground state
for J2=J1 ≲ 0.09 is magnetically ordered with a 120° Néel
pattern and with a stripy pattern for J2=J1 ≳ 0.14 [53]. In
between, a quantum paramagnetic regime is stabilized
whose nature is the main subject of our discussion. Far
outside the paramagnetic regime, e.g., for J2=J1 ¼ −0.1 in
the 120° Néel phase or at J2=J1 ¼ 0.2 in the collinear stripy
phase, the main structure of the low-lying energy spectrum
can be well understood by a tower-of-states (TOS) analysis
[51,53]. In the 120° Néel phase, TOS analysis predicts an
S ¼ 0 ground state in the Γ:A1 sector, whereas the first two
quasidegenerate excited states are in the K:A1 and Γ:B1
sectors with S ¼ 1, precisely what is observed in the J1-J2
model in Fig. 2(a). Similarly, TOS analysis in the stripy
phase predicts three quasidegenerate S ¼ 0 states, one at
Γ:A1 and two forming a Γ:E2 irrep. For details on the TOS
analysis and further predictions, see Appendix D and
Ref. [51]. In the intermediate regime, however, the spec-
trum is rather dense, and low-lying excitations belong to
various irreps of the symmetry group. As shown in the
subsequent sections, many of these levels can be identified
with nontrivial excitations on top of the QED3 vacuum. In
particular, the prominent singlet levels with momentum
k ¼ X and k ¼ M, which are neither part of the TOS for
the 120° Néel nor stripy order, will be related to monopole

and bilinear excitations of QED3. Figure 2(b) shows the
low-energy spectrum of the N ¼ 48 cluster at J2=J1 ¼
0.125 in the paramagnetic regime. Again, we observe
several low-lying singlet excitations (filled symbols) at
nontrivial momenta and PG irreps. In particular, two singlet
Γ:E2, one Γ:A2, and two levels at X1:A and X2:A, which
are sixfold degenerate, can be found below the spin gap and
are lower than their N ¼ 36 occurrence. The lowest-lying
triplets can be found in the K:A1, Z:A, and M:A1 sectors,
i.e., along the Brillouin zone boundary at roughly the same
energy. We refer to Appendix B for a detailed comparison
of the two system sizes studied here.
We attempt to provide an understanding of the presence

of these low-energy states from the QED3 perspective in the
following.

IV. FROM QED3 TO THE SPECTRUM
OF THE J1-J2 MODEL

To elucidate the structure of the energy spectra in the
intermediate paramagnetic regime, we now relate them to
systematically constructed wave functions of excitations of
the π-flux ansatz [cf. Figs. 1(a) and 1(e)] for the Dirac
spin liquid. Our figure of merit to compare ansatz wave
functions jψGWiwith the exact eigenstates jψni of Eq. (1) is
the overlap

on ≡ jhψGWjψnij: ð2Þ

Note that on is expected to approach zero exponentially fast
as N → ∞ due to the orthogonality catastrophe. But on a
given system size, the behavior of on as a function of J2=J1
is insightful. The overlap calculations have been performed
in the full Hilbert space without employing any symmetry.

FIG. 2. Energy spectrum of the J1-J2 model on the triangular lattice for N ¼ 36 as a function J2=J1 in panel (a) and for N ¼ 48 at
J2=J1 ¼ 0.125 in panel (b). Symbol colors and shapes indicate the momentum and point-group representation of the eigenstate. Filled
(open) symbols indicate even (odd) total spin S. The 120° Néel state persists for J2=J1 ≲ 0.09, the paramagnetic regime is realized for
0.09≲ J2=J1 ≲ 0.14, and the stripy magnet is stabilized for J2=J1 ≳ 0.14. The vertical dashed line at J2=J1 ¼ 0.125 in panel
(a) highlights the spectrum in order to compare with the N ¼ 48 data shown in panel (b).
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A. Parton construction

Ansatz wave functions of QSLs can be systematically
constructed using the parton construction [54,55]. The
original spin operator Si is decomposed into fermionic
parton operators fiα, (α ¼ ↑;↓) acting on an enlarged
fermionic Hilbert space,

Si ¼
1

2
f†iασαβfiβ; ð3Þ

where σ ¼ ðσx; σy; σzÞ denote the Pauli matrices. To
impose the single occupancy constraint niα ¼ f†iαfiα ¼ 1,
the partons can be coupled to a dynamical gauge field [55].
Rewriting a spin model such as Eq. (1) into fermionic
operators yields a Hamiltonian with quartic interactions in
the parton operators, which are coupled to a dynamical
gauge field. Applying a Hubbard-Stratonovich transforma-
tion and assuming a static gauge field, the resulting parton
Hamiltonian is simplified into a mean-field model of the
form

Hmf ¼
X
i;j;α

χi;jf
†
i;αfj;α þ H:c:; ð4Þ

where χi;j denote the hopping amplitudes of the particular
mean-field ansatz. The π-flux ansatz of the DSL on the
triangular lattice we employ is shown in Fig. 1(e) [20,56]. A
magnetic flux of π is implemented through the “up”
triangles while zero flux is chosen through the “down”
triangles. The band structure is shown in Fig. 1(a) and
features two gapless Dirac cones with linear dispersion
(cf. Appendix C). To explicitly construct numerical ansatz
wave functions jψi, we perform a Gutzwiller projection of
parton Slater determinants jψ freei,

jψGWi ¼ PGWjψ freei ¼
Y
i

ð1 − ni↑ni↓Þjψ freei: ð5Þ

The Gutzwiller projection operator PGW ¼ Q
ið1 − ni↑ni↓Þ

imposes exactly the single occupancy constraint.
Past work focused mostly on variational studies based on

the Gutzwiller vacuum, but a systematic and exhaustive
study of Gutzwiller-projected excited states has not been
attempted before. In Ref. [57], a similar basis of Gutzwiller-
projected excited states was used to model dynamical
response functions by projecting the Hamiltonian into
the Gutzwiller excitation subspace, while we investigate
the overlap of the Gutzwiller subspace with the exact
eigenstates.

B. Vacuum as the filled Dirac sea

To construct a canonical ground-state ansatz, we fill all
single-particle energy levels of the lower band and perform
a Gutzwiller projection. In our ansatz, the boundary
conditions can be twisted, leading to a shift of the

momentum grid in reciprocal space. The twist corresponds
to changing the ansatz for the gauge field (i.e., the hopping
phases) in the mean-field Hamiltonian, Eq. (4) [58]. We
find that the energy of the mean-field ansatz is minimized
whenever the two Dirac nodes, indicated as red dots in
Fig. 1(f), are shifted to the center of three resolved
momenta of the finite-size cluster. We refer to this choice
as the centered boundary conditions (cf. Appendix E). The
resolved single-particle momenta on theN ¼ 36 site cluster
with centered boundary conditions are shown as purple
crosses in Fig. 1(f). We find that, also after Gutzwiller
projection, the state with centered boundary conditions has
lower variational energies than the standard periodic
boundary conditions. Since our original model is real,
we only consider the real part of the wave function after
Gutzwiller projection (the centered Gutzwiller wave func-
tion is genuinely complex, while for the more common
periodic or antiperiodic choices, it would be real),

jψvaci ¼ Re½PGWjψ center
DS i�; ð6Þ

where jψ center
DS i denotes the filled Dirac sea in the centered

gauge [59].
We computed overlaps of jψvaci with low-lying energy

states [60] using a Krylov technique that avoids calculat-
ing all low-lying eigenfunctions explicitly [61] (see
Appendix A for details). Figures 3(a) and 3(d) show
substantial overlaps with the ED ground state of up to o0 ¼
0.923 at J2=J1 ¼ 0.12. This maximum is attained in the
paramagnetic regime, and it decays in the 120° Néel-
ordered and stripy phases. In the stripy phase, the state
with maximal overlap is at low energy but distinct from the
ground state.

C. Monopoles

In the version of QED3 we consider, the Uð1Þ gauge field
is compact, and as a consequence, there exist charge
neutral, topological excitations known as monopoles. If
these defects proliferate, the DSL will become unstable
and will enter a confined phase, in our context, e.g., the
familiar 120° magnetic Néel order (for triplet monopoles)
or a 12-site unit-cell valence-bond solid (VBS) that
breaks lattice symmetries (for singlet monopoles) [48].
Conversely, in the limit of a large number of flavors, Nf,
monopoles will be present, but they are irrelevant for the
low-energy physics. Hence, their precise role for a givenNf

is quite topical and still unclear.
Using approximately known scaling dimensions, on

the triangular lattice, the only symmetry-allowed three-
monopole operator should be irrelevant [40,48]. The
quantum numbers of the single-monopole operators on
the torus are nontrivial and have been obtained in
Refs. [48,49]: the singlet monopoles are in the X:A irrep
while the triplet monopoles have momentum K and are
even under reflection and rotation (A1).
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Hence, a possible signature of the triplet monopole
would be a low-energy mode at momentum K as advocated
in some numerics [22,57,62–64]. Note, however, that this
“exotic” monopole is evolving into a TOS level in the 120°
phase, and therefore, its presence at low energy is not as
surprising as for the singlet. In this work, we want to be
more precise, and we specifically construct a microscopic
monopole wave function by fixing a flux pattern such that a
�2π flux is distributed over the whole lattice [i.e., each
triangular plaquette has an additional flux �2π=ð2NÞ with
respect to the π-flux ansatz]; see Appendix G. By comput-
ing the tight-binding dispersion, we find an exact twofold
degenerate zero-energy state. Thus, we can generate several
monopole wave functions by filling up all negative energy
states and putting two electrons (up or down) in these levels
and then Gutzwiller projecting them. In the end, we can
build six singlet and two triplet-monopole wave functions
from which we can compute exact overlaps with the many-
body eigenstates.
Results are presented in Figs. 3(b) and 3(d) for the triplet-

and singlet-monopole states.Quite remarkably,wemeasure a
significant overlap with the lowest singlet state found in
the irrep X:A and the lowest triplet in the irrep K:A1, in
perfect agreementwith the expected quantumnumbers. Both
monopole excitations maximize on in the paramagnetic
regime, with overlaps of up to on ≈ 0.65 for the singlet
and on ≈ 0.67 for the triplet monopole [Fig. 3(d)].Moreover,
we have also computed corresponding overlaps for two-
monopole states, which are discussed in Appendix H.

D. Bilinear fermionic excitations

The next excitations of QED3 we investigate are particle-
hole excitations of the Dirac sea represented as bilinears
in the fermionic operators. Here, we construct them as

particle-hole excitations of the parton ansatz, as shown in
Fig. 1(b) with centered boundary conditions. First, we
consider excitations of partons in the Dirac sea at single-
particle momenta closest to the Dirac node. For simplicity,
we focus on Sz ¼ 0 wave functions at momenta Γ and M;
i.e., we can construct 24 states, which are all found to be
linearly independent after Gutzwiller projection. These
excitations are constructed by exciting a parton of either
spin σ ¼ ↑;↓ on one of the six momenta closest to the two
Dirac nodes, either to the exact same momentum (resulting
in a k ¼ Γ or one of the k ¼ M point excitations) or the
corresponding momentum at the other Dirac node (result-
ing in the other two k ¼ M excitations). Appendix F
explains the counting of the degeneracies of the bilinear
excitations in further detail.
These 24 states span a large subspace, which we compare

to low-lying excitations of the spin Hamiltonian. To do so,
we orthogonalize the states after Gutzwiller projection such
that we can compute the overlap of states from ED with this
24 dimensional subspace, which we name B0. To compare
ED eigenstates to a subspace B, we define the overlaps oBn ,

ðoBn Þ2 ≡ kPBjψnik2 ¼
XdimðBÞ

α¼1

jhϕαjψnij2; ð7Þ

where jϕαi denotes an orthonormal basis of B and PB ¼PdimB
α¼1 jϕαihϕαj denotes the projector onto the space B.
Our definition is equivalent to measuring the norm of the

projected state onto the space B since

ðoBn Þ2 ¼
�����

Xdim ðBÞ

α¼1

jϕαihϕαjψni
�����
2

¼
Xdim ðBÞ

α¼1

jhϕαjψnij2; ð8Þ

FIG. 3. Overlaps of low-energy levels of the J1-J2 model with various ansatz wave functions constructed out of various excitations

above the QED3 vacuum. For the vacuum and monopole states, we show on, whereas for the bilinear excitations o
B0;1
n is shown. The

diameter of the colored circles is proportional to the overlap with the state at the center of the circle. (a) Vacuum state with significant
overlap (up to approximately 0.92) with the ground state. (b) Singlet monopole with significant overlap with the low-lying X:A level
(approximately 0.65) and triplet monopole with sizable overlap with the low-lying triplet K:A1 (approximately 0.69) level.
(c) Significant overlap with the low-lying Γ:B1 and M:B2 levels among the bilinear excitations B0. The Y0:B energy level has
significant overlap (approximately 0.67) with the bilinear excitations B1. (d) Numerical values of the maximal overlap of the
aforementioned states with eigenstates from ED. For every excitation, the maximum is attained in the paramagnetic regime.
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which yields oBn ¼ 1 if jψni is an element of the space B
and oBn ¼ 0 if the state is orthogonal.
By construction, nonzero overlaps are only found with

states at momenta Γ or M due to the momentum con-
servation of the Gutzwiller projection. An overview of all
states with significant overlap is shown by yellow and
green symbols in Fig. 4. Prominently, the bilinear excita-
tions have a sizable overlap of up to oB0

n ≈ 0.74, with the
low-lying S ¼ 1 Γ:B1 level belonging to the tower of states
of the 120° Néel state along with the S ¼ 1 K:A1 level,
which we previously found to have large overlaps with the
triplet-monopole excitation. Interestingly, the lowest-lying
S ¼ 0 level at M.B2 also has sizable overlaps of up to
oB0
n ≈ 0.54. Regarding the point-group quantum numbers,

some quantitative predictions have been made in Ref. [48]:
The bilinear excitations are expected at Γ orM, and they are
all odd under reflection. We confirm large overlaps with
odd states (Γ:E2 or M:B2), but we also find states that are
even under reflection. As Ref. [48] considered the N2

f ¼ 16

neutral bilinear field operators, the torus geometry with its
more complex excitation spectrum explains this discrep-
ancy in the number of bilinear states, as emphasized
in Ref. [43].
Furthermore, we have considered bilinear excitations

with a minimal momentum transfer distinct from Γ and
M, which are degenerate in energy before projectionwith the
already-considered set. This case yields another set of 48
Sz ¼ 0 ansatz wave functions. Again, we find these states to
be linearly independent, spanning a space we call B1. Many
low-lying exact eigenstates are found to have significant
overlaps oB1

n with this space (cf. Fig. 4). Most notably,
the low-lying Y0:B state has overlaps of up to oB1

n ≈ 0.67.
We emphasize the large number of low-lying bilinear

excitations, 24ðk ¼ Γ;MÞ þ 48ðk ≠ Γ;MÞ ¼ 72 states with
Sz ¼ 0 and another 72 stateswith totalSz ¼ �1 expected for
the DSL on the torus. Thus, there are a total of 144 low-lying
bilinear excitations of the parton ansatz (cf. Appendix F).
The counting described is valid whenever each Dirac point
has three symmetric neighboring momenta whose quasi-
particle energy bands have exactly the same energy. This
case holds for both the N ¼ 36- and N ¼ 48-site clusters in
this paper, as well as, more generically, 6N × 6N clusters
for N ≥ 1.
As a remarkable result of this construction, we find that

almost the entire complex and dense low-energy spectrum
in the paramagnetic regime have significant overlaps, with
either the vacuum state, monopoles, or bilinear excitations,
as is perfectly visible in Fig. 4. Again, the overlaps of the
bilinear excitations are maximized in the paramagnetic
regime while sharply dropping off in the stripy phase. Quite
interestingly, even in the 120° Néel phase, some overlaps
are still significant. We interpret this as a sign that the 120°
Néel is a natural descendant of the DSL, while the collinear
stripy phase has not been identified as an instability of
the DSL.

E. Quantum dimer model

While we have a way to construct “model states” for the
vacuum, the monopoles, and the fermion bilinear excita-
tions, we are not aware of a correspondingly simple way to
construct the gauge-field states of QED3 on the torus. At
Nf → ∞, the photon modes have been calculated for the
square torus [43], and the softest gauge-field excitation lies
even below the first bilinear level on the square torus. At
Nf ¼ 4, there are no corresponding results available.
Therefore, we pursue a rather different avenue here by

investigating the energy spectrum of the hardcore quantum
dimer model (QDM) on the triangular lattice and compar-
ing it to the J1-J2 Heisenberg model on the same finite-size
clusters. There are two different points of view on this
procedure. The first one is that there is a long history in
frustrated quantum magnetism to investigate QDMs as
effective models for the singlet subspace of S ¼ 1=2
Heisenberg Hamiltonians in magnetically disordered
phases, such as VBS or spin liquid phases [50,65–68].
Most of these applications were for square and kagome
lattices, but none for the triangular lattice so far [69]. The
other point of view is to consider the QDM as a quantum
link model for a pure gauge theory, possibly with static
background charges [70]. In this context, however, the
triangular lattice QDM would be expected to describe a Z2

gauge theory and not a Uð1Þ theory. The tension between
these two points of view needs to be clarified in future work
in view of our findings below.
The triangular lattice QDM was shown [71] to host an

intriguing Z2 spin liquid for values of V=t∈ ½0.8; 1�, i.e., in
the vicinity of the Rokhsar-Kivelson point V=t ¼ 1. For
smaller V=t values, a valence-bond solid with a 12-site unit

FIG. 4. Overlaps of low-energy levels at J2=J1 ¼ 0.125 with
the QED3 ansatz wave functions from Gutzwiller projection. For
the vacuum and monopole states, we show on, whereas for the

bilinear excitations, oB0;1
n is shown. The diameter of the colored

circles is proportional to the overlap with the state at the center of
the circle. We observe that almost every eigenstate in the dense
low-energy ED spectrum has significant overlap with only one of
the various excitation ansatz types.
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cell is realized with an estimated parameter extent in
V=t∈ ½−0.75� 0.25; 0.8� [71,72]. Our own exact diago-
nalization spectra shown in Fig. 11 suggest that V=t ¼
−1.0 is still within the VBS phase for the considered
clusters. For even more negative values of V=t, a columnar
VBS phase is found.
Interestingly, we find that many singlet levels of the low-

energy spectrum of the Heisenberg model at J2=J1 ¼ 0.125
are surprisingly well reproduced by the low-energy spec-
trum of the QDM at V=t ¼ −1.0; see Fig. 5(a). We observe
that the first excited state in both cases is a singlet at Γ:E2.
The next low-lying excitations are two excitations at X1:A
and X2:B for both the QDM and the spin model. These
excitations are then followed by two singlet excitations at
M:B1 andM:B2. Moreover, we observe a low-lying singlet
state at K:E, which cannot be described as a monopole or
bilinear excitation; see Fig. 4. These momenta are exactly
what is expected for a lozenge VBS (cf. Table I). However,
we could not match all of the respective point group irreps,
which can differ in a spin model, where nontrivial phases of
the resonating dimers can occur. This unexpected (but not
perfect) similarity of the low-energy spectrum of the two
models raises the possibility that the QED3 region of the
triangular lattice is actually unstable and flows to a
confining phase in the IR. The known QDM phase diagram
suggests that this confining phase could be a 12-site unit-
cell VBS. In order to probe for this possibility, we have

calculated the dimer-dimer correlations of both models in
Figs. 5(b) and 5(c). While the qualitative agreement
between the correlations of the two models is remarkable,
in the spin model the correlations decay faster with distance
[73]. It will be interesting for future research to explore
whether there is a small but finite VBS order parameter in
the spin liquid region or whether these correlations are
ultimately just the critical VBS fluctuations expected in the
QED3 Dirac spin liquid.

V. DISCUSSION AND CONCLUSION

In this work, we have revealed a rather compelling one-to-
one correspondence between the elementary excitations of
QED3 and the excitations of the triangular J1-J2 Heisenberg
model (see Fig. 4). Even though the structure of low-energy
excitations in the paramagnetic regime is rather complex, we
have demonstrated that monopole and bilinear excitations of
the π-flux ansatz have comprehensive overlaps with almost
all low-lying eigenstates. Thus, we can compellingly con-
clude QED3 to be the organizing principle of the phases of
matter in and close to the paramagnetic regime. Moreover,
we have pointed out a close resemblance between the dimer
correlations and low-lying energy spectrum of the J1-J2
model in the paramagnetic regime and the quantum
dimer model in the valence-bond solid phase on both the
N ¼ 36- and N ¼ 48-site clusters. This finding could
constitute evidence for a valence-bond solid being realized,
as also found in recent large-scale DMRG simulations
pointing out quasi-long-range dimer order [32]. In light
of our findings, we discuss possible scenarios for the phase
diagram of the J1-J2 model.
A transition from the 120° Néel phase to the 12-site

valence-bond solid appears to be a possible scenario. From
a field theoretical perspective, such a transition can be
described by a deconfined quantum critical point [74–76].
As pointed out in Ref. [77], this precise critical point on the
triangular lattice would be described by an Nf ¼ 4 QED3

with an emergent PSUð4Þ ¼ SUð4Þ=Z4 symmetry. As a
consequence of this enhanced symmetry, an exact degen-
eracy between the singlet and triplet monopoles in the
spectrum should be observed. Indeed, we find that the energy
levels of the two types of monopoles are close to being
degenerate at the critical point J2=J1 ¼ 0.09, while a larger
splitting between these levels is observed throughout the
remaining paramagnetic regime. In the case of an extended
DSL region, the same degeneracy between singlet and triplet
monopoles would be expected, while our results show
growing energy splitting between them as J2=J1 ≳ 0.1.
A second scenario is that the paramagnetic regime

indeed realizes a stable Dirac spin liquid phase. Even
though we do not observe the expected degeneracy
between the two monopole excitations to be realized, we
cannot rule out that the remaining energy splitting is
still a finite-size effect. Recent work is concerned with
the stability of a DSL as a function of Nf [37,38,40], and

FIG. 5. (a) Comparison of the low-lying energy spectrum of the
J1-J2 model at J2=J1 ¼ 0.125 and the QDM model at V=t ¼
−1.0 on the N ¼ 48 cluster. The filled (open) circles denote even
(odd) spin levels. The QDM is only expected to reproduce filled
levels because it cannot describe states with total spin S > 0.
(b) Connected dimer correlations hðSz0Sz1ÞðSzi SzjÞic of the ground
state from ED of the J1-J2 model at J2=J1 ¼ 0.125 on the N ¼
48 cluster. (c) Connected dimer correlations of the QDM in the
VBS phase at V=t ¼ −1.0. We observe a close resemblance
between these patterns.
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indications exist for the DSL to be a stable phase on the
triangular lattice [78]. Empirical signatures of bilinear and
monopole excitations have also been reported in a previous
DMRG study [22].
The data obtained from our exact diagonalization on

small clusters does not allow us to unambiguously dis-
tinguish between these two scenarios. From our data, both
of the above scenarios are equally plausible. However, we
think that evidence of either critical or long-range lozenge
VBS correlations constitutes a new insight into the physics
of the intermediate paramagnetic regime. We would like to
point out that a recent study has found evidence for a
similar VBS state to be stabilized upon coupling the
triangular lattice to phonons [79].
Finally, from previous work, we also notice that a chiral

spin liquid (CSL) is in close vicinity to the paramagnetic
regime when adding small scalar chirality interactions on
the triangles of the form Si · ðSj × SkÞ [9]. A DSL can be
unstable towards a magnetically ordered phase or a CSL
phase through a QED3-Gross-Neveu quantum critical point
[80]. While we do not observe direct evidence of a gapped
CSL being realized, such a transition could be in close
vicinity to the paramagnetic regime. Another point to
clarify is whether the fact that the lowest parton ground
state is reached for the centered boundary conditions with
its complex (i.e., time-reversal symmetry breaking) nature
indicates an instability towards a spontaneous chiral spin
liquid formation. This effect would not appear in other
geometries, such as the square torus studied in Ref. [43],
where the time-reversal invariant antiperiodic boundary
conditions minimize the energy.
While in our study we directly compared ansatz wave

functions with eigenstates from ED on a finite cluster, we
would like to point out that this technique could also be
applied in complementary numerical techniques, for exam-
ple, to construct excited states in tensor network simula-
tions [81–83] or other variational Monte Carlo techniques.
Thus, these techniques could be used to study the nontrivial
monopole and bilinear excitations revealed in the above on
cylinder geometries or larger periodic tori. An application
of the technology developed in this work to the kagome
lattice S ¼ 1=2 Heisenberg model is the natural next step in
the quest for quantum spin liquids.
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APPENDIX A: COMPUTATION OF OVERLAPS
USING THE LANCZOS ALGORITHM

Overlaps of ansatz wave functions with eigenstates of the
Hamiltonian are key findings in the main text. Here, we
summarize the technique proposed in Ref. [61] adapted to
precisely the computation of overlaps. Let

Tn ¼

0
BBBBBBBBBBBBB@

α1 β1 0 � � � 0

β1 α2 β2 0 ..
.

0 β . .
.

. .
.

0

..

. . .
.

αn−1 βn−1

0 � � � 0 βn−1 αn

1
CCCCCCCCCCCCCA

ðA1Þ

be the tridiagonal matrix of the Lanczos algorithm and

Vn ¼ ðv1j � � � jvnÞ ðA2Þ

the set of orthogonal Lanczos vectors jvii. Let εk;n and λk;n
denote the kth eigenvalue and eigenvector of Tn, i.e.,

Tnλk;n ¼ εk;nλk;n: ðA3Þ

The eigenvalues εk;n are conventionally referred to as Ritz
values, whereas the Ritz vectors are given by

jλk;ni ¼
Xn
i¼1

λðiÞk;njvii; ðA4Þ

where λðiÞk;n denotes the ith entry of the vector λk;n. For
extremal eigenvalues enumerated by k, we have

jλk;ni → jλki for n → ∞; ðA5Þ

provided the usual prerequisite of convergence in the
Lanczos algorithm with precise orthogonality of the
Lanczos vectors is fulfilled.
We are interested in computing the overlap of an

eigenstate jλki with a model wave function jϕi, i.e.,

jhϕjλkij2 ¼ lim
n→∞

jhϕjλk;nij2 ¼ lim
n→∞

����
Xn
i¼1

λðiÞk;nhϕjvii
����
2

: ðA6Þ

Now, if we choose the initial state of the Lanczos algorithm
to be jv1i≡ jϕi, we have hϕjvii ¼ δi;1 due to the ortho-
gonality of the Lanczos vectors, and Eq. (A6) simplifies to
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jhϕjλkij2 ¼ jλð1Þk;nj2: ðA7Þ

Equation (A7) is used in all our overlap calculations in the
main text. We check for convergence by analyzing the
overlaps as a function of the Krylov space dimension n.
The algorithm allows for computing overlaps with all Ritz
vectors jλk;ni in a single Lanczos iteration without having to
compute individual eigenstates.

APPENDIX B: COMPARISON OF LOW-ENERGY
SPECTRUM FOR THE N = 36

AND N = 48 CLUSTERS

To compare the energy spectra of the J1-J2 Heisenberg
model obtained on the finite-size clusters for N ¼ 36 and
N ¼ 48, we show the momentum and point-group sym-
metry resolved spectra in Fig. 6 for J2=J1 ¼ 1=8. We
observe that many low-lying energy levels have corre-
sponding quantum numbers in both cases. The lowest
excitation above the Γ:A1 ground state has a quantum
number Γ:E2. Moreover, we observe low-lying singlet
energy levels at the momentum in the exact middle between
Γ and K (X:A for N ¼ 36 and X1.A for N ¼ 48) and theM
point. Both these levels belong to the tower of states of the
12-site VBS (cf. Table I). Alternatively, these should
become gapless in a DSL phase, scaling as 1=L, where
L denotes the linear system size. Lastly, a triplet level at

K:A1 is also observed at low energy in both cases, which,
in the language of QED3, has been identified as the triplet
monopole and is continuously connected to the first tower-
of-states level of the 120° Néel order. While the overall
structure of the spectra appears to be in good agreement, it
is unclear whether the levels scale according to either the
VBS or the DSL scenario. For the VBS, the splitting of the
ground-state degeneracy is expected to be exponentially
small in the system size, while a scaling of 1=L would be
expected for the gapless points in the DSL phase. Wewould
like to remark that there can be nontrivial cluster-shape
effects since the simulation cell spanning vectors of the
N ¼ 36 and N ¼ 48 sites are not just multiples of one
another.

APPENDIX C: DISPERSION OF THE SINGLE-
PARTICLE STATES π-FLUX ANSATZ

In the following, we express the explicit formulas to
construct the single-particle wave functions of the Dirac
spin liquid used to construct the Gutzwiller-projected wave
functions in the main text. The elementary distance
between neighboring lattice sites of the triangular lattice
is set to a ¼ 1. As the π-flux ansatz is described by a two-
site unit cell, the free fermion Hamiltonian features two
bands. Its momentum-dependent Hamiltonian is given by

HðkÞ ¼ 2t

0
B@ cos

�
kx
2
þ

ffiffi
3

p
ky
2

�
− cosðkxÞ − i sin

�
kx
2
−

ffiffi
3

p
ky
2

�

− cosðkxÞ þ i sin
�
kx
2
−

ffiffi
3

p
ky
2

�
− cos

�
kx
2
þ

ffiffi
3

p
ky
2

�
1
CA: ðC1Þ

The dispersion of the two bands of the π-flux ansatz (i.e.,
the eigenvalues of) Eq. (C1) is given by

εðkx; kyÞ ¼ �tβðkx; kyÞ; ðC2Þ

where

βðkx;kyÞ

¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þcosð2kxÞ−cosðkx−

ffiffiffi
3

p
kyÞþcosðkxþ

ffiffiffi
3

p
kyÞ

q
:

TABLE I. Multiplicities of irreps in the Anderson tower of
states for the 120° Néel and stripy magnetic orders as well as the
valence-bond solid and chiral spin liquid states on the triangular
lattice. The irreps are labeled with total spin S, momentum, and
point-group irrep.

120° Néel Stripy order

S Γ:A1 Γ:B1 K:A1 Γ:A1 Γ:E2 M:A

0 1 0 0 1 1 0
1 0 1 1 0 0 1
2 1 0 2 1 1 0
3 1 2 2 0 0 1

Chiral spin liquid Lozenge valence-bond solid
0 Γ:A1 (×2), Γ:E2 Γ:A1, Γ:B2, K:E, M:A1, M:B1, X:A, X:B

FIG. 6. Comparison of the low-lying energy spectrum of the
J1-J2 model at J2=J1 ¼ 0.125 on the (a) N ¼ 36-site cluster and
the (b) N ¼ 48-site cluster.
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The two Dirac nodes [i.e., zero modes in Eq. (C2)] are
located at momenta

D� ¼ � π

2
ð1; 1=

ffiffiffi
3

p
Þ: ðC3Þ

Taylor expanding around the Dirac nodes gives a linear
(relativistic) and rotationally invariant dispersion,

Eðk − D�Þ ≈
ffiffiffi
6

p
tjjk − D�jj: ðC4Þ

Thus, the Fermi velocity is given by vF ¼ ffiffiffi
6

p
t. Using

centered boundary conditions [see the Brillouin zone in
Fig. 1(f)], the minimal absolute momentum on a finite-size
lattice L × L is located at a distance

kk −D�k ¼ 4π

3L
: ðC5Þ

Such boundary conditions are optimal for the energy of the
filled Dirac sea before projection.
The complex eigenvectors v1 and v2 of Eq. (C1) are

given by

v1k ¼
1

N
ð−αðkx; kyÞ − βðkx; kyÞ; γðkx; kyÞÞT;

v2k ¼
1

N
ð−αðkx; kyÞ þ βðkx; kyÞ; γðkx; kyÞÞT; ðC6Þ

where k ¼ ðkx; kyÞ,

αðkx; kyÞ ¼ 2 cos

�
kx
2
þ

ffiffiffi
3

p
ky
2

�
; ðC7Þ

γðkx; kyÞ ¼ 2 cosðkxÞ − 2i sin

�
kx
2
−

ffiffiffi
3

p
ky
2

�
; ðC8Þ

andN denotes the real normalization constant normalizing
the eigenvectors to unit norm. While in complex Hermitian
matrices the phase of the eigenvectors can be chosen
arbitrarily, we adhere to the convention as in Eq. (C6),
where the first component is chosen to be real. The precise
form of the single-particle Bloch wave functions we are
using is given by

ψb
kðxÞ ¼ eik·xvbkðxÞ; ðC9Þ

where b ¼ 0, 1 denotes the band index, and vbkðxÞ is either
the first or second component of vbk in Eq. (C6) depending
on which one of the two sublattices the coordinate x is
located on. Using this phase convention for the single-
particle levels of the parton ansatz, the phases of the
Gutzwiller-projected many-body states are uniquely
determined.

APPENDIX D: TOWER-OF-STATES ANALYSIS

Particular orders manifest themselves by a TOS structure
of the energy spectrum on a finite-size lattice. A detailed
description of how to derive the irreps in the TOS is given
in Ref. [51]. Table I summarizes the predictions for orders
discussed in the main text.

APPENDIX E: CENTERED
BOUNDARY CONDITIONS

Finite Bravais lattices with periodic boundary conditions
define resolved momenta in reciprocal space. By twisting
the boundary conditions, a physical flux through the
incontractible loops of the torus can be introduced, which
shifts the resolved momenta in reciprocal space. We find
that the kinetic energy of the Dirac spin liquid parton
Hamiltonian is minimized whenever the resolved momenta
are at a maximal distance from the Dirac nodes. This result
is achieved by shifting the resolved momenta by the
particular momentum that “centers” the Dirac nodes. We
refer to these boundary conditions as centered boundary
conditions. In particular, for the N ¼ 36 simulation cluster
used in the main text, this is achieved by a shift
k → kþ ðπ=18Þð−1; ffiffiffi

3
p Þ. We show both the resolved

momenta with periodic boundary conditions and centered
boundary conditions in Fig. 7. We note that the Dirac nodes
on theN ¼ 36-site cluster can be centered either on the left-
pointing triangles or the right-pointing triangles, which, in
principle, yields two different ansatz wave functions. In the
main text, the centered boundary conditions with a shift
vector,

ks ¼
π

18
ð−1;

ffiffiffi
3

p
Þ; ðE1Þ

have been used, centering the Dirac nodes on the left-
pointing triangles. When using a square torus, the grid in
momentum space is also a square lattice; then, the analo-
gous shift vector procedure would result in antiperiodic
boundary conditions, centering the Dirac nodes in a square
plaquette in momentum space.

Periodic b.c. Centered b.c.

FIG. 7. Comparison between momentum resolution with peri-
odic and centered boundary conditions for the N ¼ 36-site
simulation cluster. In the centered boundary conditions, the
position of the Dirac nodes shown as red dots is at a maximal
distance from all resolved momenta.
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APPENDIX F: CONSTRUCTION
OF BILINEAR EXCITATIONS

Bilinear excitations are constructed by performing
particle-hole excitations out of the filled Dirac sea with
centered boundary conditions. Gutzwiller projection con-
serves momentum; hence, the momentum of these bilinear
excitations can be derived from the momentum of the
parton wave function. We only focus on excitations created
from removing one parton from the lower band and
inserting it into the upper band in one of the six degenerate
energy levels with minimal energy. When exciting a parton
from one momentum in the lower band to the same
momentum in the upper band, a net k ¼ Γ ¼ ð0; 0Þ state
is obtained. If a parton is excited from a momentum in one
valley to the corresponding momentum in the other valley,
a net k ¼ M state is obtained. Further excitations with
momenta close to the k ¼ Γ and k ¼ M can be obtained by
exciting a parton to the other four momenta. We summarize
these possibilities in Fig. 8.
We notice that the total number of excitations with Sz¼0

and momentum k ¼ Γ is 12 ¼ 6ðmomentumÞ × 2ðspinÞ
[cf. Fig. 8(a)]. Similarly, there are 12 excitations with Sz¼0
and momentum k ¼ M [cf. Fig. 8(b)]. Moreover, there are
48¼6ðmomentumkÞ×2ðspinÞ×4ðmomentumk0≠k;kþMÞ
[cf. Figs. 8(c) and 8(d)]. Besides these states, excitations
with total Sz ¼ �1 are also possible by exciting an ↑ parton
(respectively, ↓ parton) to a ↓ parton (respectively, ↑
parton). Thus, another 72 ansatz wave functions with
Sz ¼ �1 are constructed, which leads to a total of 144
possible bilinear excitations.

APPENDIX G: CONSTRUCTION
OF MONOPOLE EXCITATIONS

As sketched in Fig. 1(c), putting a monopole inside the
torus amounts to having a single-flux quantum threading
the whole system. By inspection, we have found one
possible solution on the N ¼ 36 cluster that we consider
[see Fig. 9(a), where we specify the phase factors appearing
in the tight-binding model]. Such a phase pattern provides a
uniform flux of Φ ¼ 2π=ð2NÞ per plaquette (on top of the
π-flux ansatz required for the DSL, which amounts to
having π flux on all up-triangles and zero flux on the down
ones). The corresponding eigenspectrum of the tight-
binding model is also given in Fig. 9(b), showing the
existence of two zero-energy modes. Indeed, if the Dirac
points are available for Φ ¼ 0, then it is known that the
monopole spectrum will exhibit Nf degenerate states at
zero energy (as found, for instance, in the quantum Hall
effect of graphene). Now, in order to construct spin wave
functions, we need to fill up all negative energy states and
also put two fermions in the zero-energy modes, thus
leading to three singlet and one triplet states [49]. Similarly,

deg: 6 (momentum) x 2 (spin)

deg: 12 (momentum) x 2 (spin)

deg: 6 (momentum) x 2 (spin)

deg: 12 (momentum) x 2 (spin)

Lower band Upper band Lower band Upper band

FIG. 8. Bilinear excitations as particle-hole excitations of the
parton ansatz with degeneracies. (a) Excitation with k ¼ 0 by
exciting one parton to the upper band with exactly the same
momentum. (b) Excitation with k ¼ M by exciting one parton to
the corresponding momentum at the other Dirac valley. (c),(d)
Excitation by moving one parton to another momentum either at
the same valley (c) or the other valley (d).

FIG. 9. Top panel: flux pattern chosen to distribute one flux
quantum over the N ¼ 36 triangular lattice so that all triangles
contain the same additional flux Φ with respect to the π-flux
ansatz. By convention, all fluxes point upwards or to the right.
Bottom panel: corresponding tight-binding dispersion energies.
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we can consider “antimonopoles,” i.e., a negative flux
Φ ¼ −2π=ð2NÞ, in order to get six additional states. In
total, after Gutzwiller projection, we can generate six
singlet- and two triplet-monopole wave functions. We have
checked that they are linearly independent after projection.

APPENDIX H: CONSTRUCTION AND OVERLAPS
OF TWO-MONOPOLES

In addition to the overlaps obtained from the single-
monopole excitations presented in the main text, we have

also performed overlap calculations with ansatz wave
functions for a two-monopole excitation at J2=J1 ¼
0.125. The results are shown in Fig. 10. These states
are, on average, higher in energy than the single-monopole
and bilinear excitations. However, several low-lying states
with energies E < J1 still have significant overlap with
these two-monopole excitations. The ansatz for these
excitations is created analogously to the single-monopole
excitations in Fig. 9, where instead of having 2π flux
through the system, we choose 4π flux.
Note that in such a situation, the tight-binding model

exhibits four modes at approximately zero energy, so we
can construct 2 × 62 ¼ 72 wave functions with a total
Sz ¼ 0 for a positive or negative flux.

APPENDIX I: QDM SPECTRUM

Let us consider the simplest quantum dimer model
(QDM) on the triangular lattice [50,71]:

ðI1Þ

As we argue, level spectroscopy is a useful tool to
investigate low-lying excitations of quantum many-body
systems. In Fig. 11, we provide ED spectra obtained for the
QDM on N ¼ 36 and N ¼ 48 clusters, the same clusters as
used in Fig. 2 for the spin-1=2 Heisenberg model. Note

FIG. 10. Overlaps jhψ jψEDij of low-energy levels at J2=J1 ¼
0.125 with the vacuum state, and singlet- and triplet-monopole
states, as well as all bilinear excitations with Sz ¼ 0 and two-
monopoles. The diameter of the colored circles is proportional to
the overlap with the state at the center of the circle.We observe that
almost every state in the dense low-energy spectrum has significant
overlap with states constructed as elementary excitations of QED3.

FIG. 11. Excitation energies of the quantum dimer model at different momenta k ¼ Γ;M;K; X. The top row shows the spectra for the
topologically trivial sector while the lower row shows the spectra for the other three topological sectors. Filled and empty symbols
indicate the data from the N ¼ 36- and N ¼ 48-site clusters, respectively.
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that, for readability, we plot the excitation energies as a
function of decreasing V=t starting from the Rokhsar-
Kivelson point V=t ¼ 1, and we do not discuss the
staggered phase found at V=t > 1 [71]. The phase diagram
is known to include a Z2 topological phase (1>V=t⪆ 0.8),
a 12-site unit-cell VBS (0.8 ⪆ V=t ⪆ −0.75), and a col-
umnar phase for −0.75 ⪆ V=t [71,72]. The presence of
several low-lying Γ:E2 levels in the J1-J2 Heisenberg
model motivates us to compare the spectrum with the
QDM model at V=t ¼ −1, where the QDM is close to the
transition toward the columnar physics, a suggestive
similarity with the Heisenberg model, which enters
the directional, stripy magnetic phase for larger values
of J2=J1.

APPENDIX J: DIMER CORRELATIONS
FOR THE N = 36 CLUSTER

For the QDM, a 12-site valence-bond crystal was clearly
established [71,72]. For comparison, in Fig. 12, we plot the
dimer correlations obtained on the same cluster of N ¼ 36
sites, both for the QDM in the VBS phase and for the
Heisenberg model in the spin liquid one. We observe
qualitative agreement in the patterns of these dimer
correlations, compatible with the 12-site VBS, at least
on short length scales.
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