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We use symmetry analysis and density-functional theory to determine and characterize surface
terminations that have a finite equilibrium magnetization density in antiferromagnetic materials. A
nonzero magnetic dipole moment per unit area or “surface magnetization” can arise on particular surfaces
of many antiferromagnets due to the bulk magnetic symmetries. Such surface magnetization underlies
intriguing physical phenomena like interfacial magnetic coupling and can be used as a readout method of
antiferromagnetic domains. However, a universal description of antiferromagnetic surface magnetization is
lacking. We first introduce a classification system based on whether the surface magnetization is either
sensitive or robust to roughness and on whether the magnetic dipoles at surface of interest are compensated
or uncompensated when the bulk magnetic order is retained at the surface. We show that roughness-
sensitive categories can be identified by a simple extension of a previously established group-theory
formalism for identifying roughness-robust surface magnetization. We then map the group-theory method
of identifying surface magnetization to a novel description in terms of bulk magnetic multipoles, which are
already established as symmetry indicators for bulk magnetoelectric responses at both linear and higher
orders. We use density-functional calculations to illustrate that nominally compensated surfaces in
magnetoelectric Cr2O3 and centrosymmetric altermagnetic FeF2 develop a finite magnetization density at
the surface, in agreement with our predictions based on both group theory and the ordering of the bulk
multipoles. Our analysis provides a comprehensive basis for understanding the surface magnetic properties
and their intimate correspondence to bulk magnetoelectric effects in antiferromagnets and has important
implications for technologically relevant phenomena such as exchange-bias coupling.
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I. INTRODUCTION

By definition, antiferromagnets (AFMs) have zero net
magnetization, since the magnetic dipole moments of
the oppositely oriented equivalent sublattices sum to zero
over the bulk magnetic unit cell. However, theoretical
arguments [1,2] and subsequent experimental measure-
ments [3–6] have definitively demonstrated that AFMs
possess a finite magnetic dipole moment per unit area on
specifically oriented surface terminations due to the subset
of bulk symmetries retained at the surface. We refer to this
as “surface magnetization” throughout this article. Such

surface magnetization enhances the utility of spintronics-
based devices that use bulk AFM domains as logical bits.
Specifically, since the direction of surface magnetization
is connected to the underlying bulk AFM domain, it is a
directly detectable indicator of the domain state [7].
Additionally, surface magnetization is believed to play a
major role in exchange bias, whereby the magnetization
direction of a ferromagnet (FM) is pinned by exchange
coupling to an adjacent AFM [8]. Exchange bias is
exploited in a wide variety of applications, from magnetic
random access memory cells to giant magnetoresistive
read heads [9].
The most intuitive case of surface magnetization occurs

when the vacuum termination, without further modification
of the bulk AFM dipole order, leads to a layer of uncom-
pensated magnetic dipoles at the surface. This is because
the oppositely pointed dipole layer above it, which would
compensate this layer in the bulk, gets cut off at a surface.
We refer to this form of surface magnetization, depicted in
Figs. 1(a) and 1(b), as “uncompensated” in the manuscript.
But surface magnetization arising from uncompensated

magnetic dipole moments is just one category. Indeed,
Andreev pointed out nearly three decades ago that, for a
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general low-symmetry surface of any AFM (not just those
with uncompensated moments), a finite surface magneti-
zation is expected to develop [1].
This leads to the counterintuitive result that surface

magnetization can also arise on crystallographic planes
which have an AFM order in the bulk. While such order
formally results in a vanishing magnetic dipole per unit area,
symmetry reduction due to the surface termination allows for
induced components of the magnetic moments, producing a
net ferromagnetic (or ferrimagnetic) order and, thus, a
nonzero surface magnetization. We refer to this as “induced”
surface magnetization, depicted in Figs. 1(c) and 1(d).
Furthermore, both uncompensated and induced surface

magnetization can be distinguished based on whether the
sign and magnitude of the surface magnetization are robust
to macroscopic surface roughness, which we refer to as
“roughness robust,” or whether the surface magnetization
switches sign between atomic steps, in which case we call it
“roughness sensitive.” As we discuss extensively later in
this manuscript, the roughness-sensitive and roughness-
robust categories can be identified and distinguished for
any surface orientation of interest based purely on the
bulk and surface symmetries [10]. Roughness-robust and
roughness-sensitive uncompensated surface magnetization
are depicted in Figs. 1(a) and 1(b), and induced surface
magnetization is shown in Figs. 1(c) and 1(d) for roughness-
robust and roughness-sensitive cases, respectively.
The different categories of surface magnetization men-

tioned above have been discussed previously in various
contexts [2,8,11–14]. Among them, a particularly relevant
argument that lays the ground for the present work is the
symmetry correspondence between roughness-robust

surface magnetization and bulk magnetoelectric (ME)
responses, that is, an induced bulk magnetization in
response to an applied electric field in AFMs with broken
time-reversal symmetry. This symmetry connection was
first discussed by Krichevtsov et al. in the context of Kerr
rotation measurements revealing nonreciprocal reflection
of light [15]. Later, Belashchenko motivated the corre-
spondence from a fundamental standpoint by showing
that the existence of a surface with normal n̂ reduces the
bulk point group symmetry in the same way as an electric
field E [2]. Thus, a vacuum-terminated surface in a ME
AFM should develop the same magnetization components
as those induced by an electric field applied to a bulk
sample in the direction parallel to the surface normal [2,3].
To date, the ME community has focused primarily on the

symmetry connection of roughness-robust surface mag-
netization to responses in linear ME AFMs. These are ME
AFMs with broken time-reversal and inversion symmetries
for which the strength of the induced bulk magnetizationM
is linearly proportional to the strength of the applied electric
field E,Mi ¼

P
j αijEj, where α is the linear ME response

tensor [16]. The prototypical linear ME AFM is Cr2O3

(chromia), which has attracted interest for decades due to
being the first linear ME AFM to be theoretically predicted
and experimentally confirmed [16,17] as well as having an
unusually high bulk AFM ordering temperature of approx-
imately 300 K [18]. The (001) surface of Cr2O3, i.e., the
plane perpendicular to the staggered magnetization or Néel
vector direction, has an experimentally confirmed out-of-
plane, roughness-robust uncompensated surface magneti-
zation. This has the same symmetry origin as the linear ME
response in bulk Cr2O3 along the [001] direction [4–6].
Crucially, the direction of surface magnetization on (001)
Cr2O3 and other linear ME AFMs can be readily switched
(along with switching of the underlying bulk AFM domain)
by simultaneous application of electric and magnetic fields
via so-called “magnetoelectric annealing” [3,9], thus ren-
dering this type of surface magnetization relevant for
controllable spintronics devices.
On the other hand, roughness-sensitive, uncompensated

surface magnetization is frequently discussed qualitatively
in the exchange-bias literature [8,11,19]. In particular, the
strength of exchange-bias-mediated magnetization pinning
decreases with increasing roughness for most AFMs, and
this is widely understood to be due to regions of the AFM
surface with oppositely oriented signs of magnetization [8].
However, this roughness-sensitive surface magnetization,
which occurs in many AFMs with no symmetry-allowed
ME response, is generally seen as completely disconnected
from roughness-robust surface magnetization in ME
AFMs, since an analogous symmetry-based description
is not widely known.
Finally, only a few specific examples of induced surface

magnetization, which we discuss in detail later in this
manuscript, have been described in the literature [2,13,20].

(a) (b)

(c) (d)
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FIG. 1. Categories of surface magnetization on a vacuum-
terminated surface with roughness, or steps, as described in the
text. Circled arrows indicate the magnetic dipoles closest to the
vacuum-terminated surface. (a) Roughness-robust, uncompen-
sated. (b) Roughness-sensitive, uncompensated. (c) Roughness-
robust, induced. (d) Roughness-sensitive, induced.
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While the previously mentioned symmetry considera-
tions [2] for roughness-robust, uncompensated surface
magnetization can also identify the existence of induced,
roughness-robust surface magnetization, this symmetry
analysis does not distinguish between the two. Instead,
whether surface magnetization is induced or uncompen-
sated previously had to be inferred on a case-by-case basis
from knowledge of the bulk Néel vector direction with
respect to the surface. Moreover, while prior authors have
shown that group theory can also explain roughness-robust
induced surface magnetization in AFMs in which the linear
ME effect is forbidden, specifically, in centrosymmetric
FeF2 [13], no explanation for the seeming lack of corre-
sponding ME response has been proposed. Related to the
prior paragraph, to our knowledge, the additional category
of roughness-sensitive induced surface magnetization
[Fig. 1(d)] has not even been discussed. Lastly, while
generic symmetry arguments and a few experiments point
to the existence of induced surface magnetization, no
ab initio calculations demonstrating its energetic stability
exist to our knowledge.
This article aims to fill these gaps in the understanding

of surface magnetization. In doing so, we hope to stimulate
a reexamination of the role of surface magnetization in
AFMmaterials, in particular, for crystallographic planes for
which it was previously neglected, as well as motivate new
applications and detection methods. We achieve this by first
demonstrating that both roughness-robust and roughness-
sensitive surface magnetization can be described on an
equal footing by a single, rigorous symmetry formalism for
both uncompensated and induced cases. Second, we map
the group-theory methodology to an alternative description
based on bulk magnetic multipoles, which are established
as ground-state symmetry indicators for bulk ME responses
[21,22]. This mapping establishes a bulk-boundary con-
nection that allows us to predict the presence of surface
magnetization based on knowledge of the bulk multipoles
and demonstrates for the first time that surface magneti-
zation always maps to ME responses and vice versa. Our
final goal is to show with ab initio calculations for a few
technologically relevant AFMs that induced surface mag-
netization which is symmetry allowed on nominally com-
pensated surfaces is indeed energetically favorable and,
thus, should occur in real materials.
In part I, we present a group-theory-based formalism to

identify surfaces that have a nonvanishing equilibrium
magnetization in bulk AFMs and to determine whether
the magnetization is roughness robust or roughness sensi-
tive. We build directly on the seminal result of Ref. [2],
which showed that, for roughness-robust cases [23],
one can identify whether the surface has an equilibrium
magnetization by finding the symmetry operations in the
bulk magnetic point group leaving the direction of the
surface normal invariant and checking if this surface
subgroup is compatible with ferromagnetism [2]. We

extend this result and develop a concrete step-by-step
procedure which considers the bulk magnetic space group,
including translations, instead of the magnetic point group,
thereby allowing us to identify and distinguish roughness-
robust and roughness-sensitive surface magnetization.
In parts II and III, we connect the categories of surface

magnetization to the previously mentioned bulk magnetic
multipoles, which capture higher-order asymmetries
beyond magnetic dipole order in a generic, spatially
inhomogenous bulk magnetization density μðrÞ [24–26].
In part II, we begin with cases for which the bulk magnetic
multipoles corresponding to the surface magnetization
are the ME multipoles, Mij ¼

R
riμjðrÞd3r, with i and j

referring to Cartesian components (the ME multipoles are
also referred to as “magnetic quadrupoles” in the literature
[27]). These form the next-order term in the multipole
expansion after the magnetic dipoles and have the same
symmetry as the linear ME effect. Then, we show that the
dominant contribution to uncompensated surface magneti-
zation can always be captured by a simplified expression,
the so-called “local-moment” contribution, that treats the
ME multipole as a sum over local dipole moments centered
at the atomic positions in the unit cell, without taking into
account the full inhomogeneity of the magnetization
density μðrÞ [28]. We find that the connection of uncom-
pensated surface magnetization to the bulk local-moment
ME multipole per unit volume (the ME multipolization) is
analogous to the link between surface charge and bulk
electrostatic polarization [29]. In particular, in the same
way that the polarization is well established to be multi-
valued within the modern theory of polarization [30], the
local-moment part of the MEmultipolization is multivalued
due to the periodicity of the lattice [24,28]. This multi-
valuedness, in turn, allows us to distinguish roughness-
robust from roughness-sensitive uncompensated surface
magnetization, with roughness-sensitive surface magneti-
zation always corresponding to a centrosymmetric array
of allowed ME multipolization values. We illustrate both
cases, choosing (001) Cr2O3 for the roughness-robust,
uncompensated example, motivated by its previously
mentioned relevance in spintronic applications, and com-
pare it with roughness-sensitive (001) Fe2O3. Fe2O3 is
isostructural to Cr2O3 but due to its inversion-preserving
magnetic order has no macroscopic linear ME response.
We also work through the example of roughness-sensitive
uncompensated surface magnetization in (111) NiO, which
has promise in a variety of energy-based applications [31].
We provide a flowchart summarizing the step-by-step
procedure to identify and categorize uncompensated sur-
face magnetization at the end of part II.
In part III, we move to induced surface magnetization

and show that, while it is missed by the local dipole
moment simplification used in part II, it is contained in
the atomic-site multipoles that capture asymmetries of the
magnetization density around the individual magnetic
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atoms [26,32,33]. We extend the discussion of multipoles
beyond the linear ME multipoles to second- and third-order
multipoles, linked to quadratic and cubic ME responses.
In doing so, we reveal the crucial point that, while
uncompensated surface magnetization can always be
described by the local-moment ME multipoles, the
atomic-site multipoles which indicate induced surface mag-
netization do not necessarily have to correspond to a linear
ME effect. Instead, some cases of surface magnetization are
described by higher-order atomic-site multipoles which
correspond to local ME responses that may be quadratic,
cubic, etc., in the strength of the electric field [22,32]. This is
because the group-theory prescriptions to identify surface
magnetization are equivalent to the formalism to identify the
ME responses in the bulk at all orders in the electric field’s
strength E. This point has to date been overlooked.
In Sec. IV B, we analyze roughness-robust, induced

surface magnetization and show that it corresponds to
atomic-site multipoles which are ferroically ordered
throughout the bulk unit cell, implying corresponding
net ME responses which are either linear, quadratic, or
cubic in the electric field strength, depending on the
symmetry of the multipole. We take the nominally com-
pensated Cr2O3 ð1̄20Þ and (100) and FeF2 (110) surfaces as
examples for which we confirm our multipole-based
predictions of induced surface magnetization with ab initio
calculations. Our choice of (110) FeF2 as an additional
example material is motivated by the experimentally
confirmed, large exchange bias on this surface despite
its nominally compensated surface magnetization [8]. In
general, the overlooked ubiquity of induced surface mag-
netization implies that exchange bias for AFM interfaces
with compensated magnetic dipoles, which has confounded
the community for decades, must be reexamined.
In Sec. IVC, we discuss how roughness-sensitive,

induced surface magnetization arises due to each surface
plane having ferroically ordered atomic-site multipoles
which change sign on adjacent planes. Finally, in Sec. V,
we examine the “null” case, i.e., compensated surfaces
which do not have any of the four forms of surface
magnetization in Fig. 1. We take as an example the ð11̄0Þ
surface of NiO and show with symmetry arguments and
density-functional theory (DFT) calculations that this surface
has zero symmetry-allowed uncompensated or induced
magnetization due to the in-plane antiferroic ordering of
both its dipoles and all of its atomic-site multipoles. We also
provide a flowchart at the end of part III depicting the
procedure to identify and classify induced magnetization on
surfaces with no uncompensated magnetization. Section VI
contains our conclusions.
In addition to providing a unifying symmetry formalism

that synthesizes multiple distinct literature reports on AFM
surface magnetization [1,2,13,34,35], our work introduces
new perspectives for understanding, as well as exploiting,
AFM surface magnetization. First, it demonstrates that all

categories of surface magnetization in AFMs can be
conveniently described in terms of bulk magnetic multi-
poles, implying that bulk multipoles may serve as order
parameters for surface magnetization, and, conversely,
surface magnetization may indicate the existence of
hidden bulkmultipoles.Moreover, the universal connection
of surface magnetization to magnetic multipoles demon-
strates that all categories of surface magnetization corre-
spond to ME responses, which in the roughness-sensitive
cases cancel at the bulk level and in the roughness-robust
cases correspond to a finite bulk ME effect. This suggests
that AFM surface magnetization may be effectively con-
trolled via ME annealing in many more materials than was
previously thought. Overall, our findings show that the
phase space of bulk AFMs and crystallographic planes
with surface magnetization that can be exploited in appli-
cations is vastly richer than the cases currently discussed in
the literature.

II. PART I: GROUP-THEORY DESCRIPTION
AND CLASSIFICATION OF SURFACE

MAGNETIZATION IN ANTIFERROMAGNETS

To start, we introduce the group-theoretical procedure we
use to determine first whether a certain Miller plane for a
particular AFM will allow for a finite equilibrium surface
magnetization and second whether the surface magnetiza-
tion is roughness robust or roughness sensitive. We
emphasize that the group-theory procedure to identify
roughness-robust surface magnetization has already been
developed in Refs. [2,13]. Here, we extend the procedure to
include, and distinguish, the roughness-sensitive categories
of surface magnetism [1].

A. Surface magnetization in the atomically flat limit

Let us consider a generic bulk AFM, periodic in all
spatial directions, with magnetic space group (MSG)
G ¼ fðRjtÞg. Here, fRg is the set of point group oper-
ations in G (some of which may contain time-reversal Θ),
and ftg the set of fractional and Bravais lattice translations
which, when combined with fRg, comprise the complete
magnetic space group. We note that the prescriptions
discussed below apply in the same way to collinear as
well as noncollinear AFMs; in the examples, we consider
collinear AFMs for simplicity. Now, we take a particular
Miller plane ðhklÞ and create a surface by terminating the
solid and interfacing it with vacuum. Assuming a macro-
scopically flat termination with no steps (we later relax this
requirement), the unit vector surface normal n̂⊥ðhklÞ,
which is perpendicular to the vacuum-terminated surface,
is all that is needed to characterize the subgroup of the bulk
MSG that defines the two-dimensional surface in question.
This “surface” MSG, which we denote Gn̂, is the set of
space group operations fðRn̂jt⊥n̂Þg in G that leave the
polar vector n̂ invariant [36], modulo translations parallel to
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the surface or, equivalently, perpendicular to n̂:

ðRijtiÞ∈Gn̂ ⇔ Rin̂ ¼ n̂ ∧ ti⊥n̂; ð1Þ

where ðRijtiÞ is the ith element of the bulk MSG G and
∧ is the logical and. Note that the surface MSG must have
broken inversion symmetry I, since I always reverses the
direction of n̂. Other operations in G which are preserved
or broken inGn̂ depend on the relative orientations of n̂ and
the principle axes of the bulk MSG operations.
Once we have identified the surface MSG Gn̂ for the

Miller plane of interest, we next consider the corresponding
magnetic point group (MPG) gn̂ ¼ fRn̂g which contains
the point group elements of Gn̂ without the accompanying
translations. We then check whether gn̂, which is a
subgroup of the bulk MPG, allows for ferromagnetism.
31 out of the 58 MPGs in solids are FM compatible,
meaning that at least one component of magnetization is
left invariant under all operations of the point group [37]. In
three dimensions, a FM-compatible MPG implies that a
finite magnetic dipole moment per unit volume is allowed.
In the present formalism, gn̂ describes the two-dimensional
surface perpendicular to n̂: in this case, a FM-compatible
surface MPG allows for a nonzero magnetic dipole moment
per unit area, i.e., a surface magnetization. Note that the
bulk three-dimensional AFM still has zero net magnetiza-
tion per unit volume. Conversely, if gn̂ is not FM
compatible, an equilibrium surface magnetization on
ðhklÞ⊥n̂ is symmetry forbidden. This simple procedure
to identify atomically smooth surfaces of AFMs which are
expected to have nonzero surface magnetization is illus-
trated with cartoons in Figs. 2(a)–2(c).
As an aside, we mention that the procedure to identify gn̂

starting from the bulk MSG relies on the absence of
symmetry-breaking surface reconstructions or spin reor-
ientations at the surface, which may occur for an

experimental sample. In the case of surface reconstruction,
it is still possible to identify the lower-symmetry, recon-
structed surface MPG by finding the subset of operations in
gn̂ which leave the direction of n̂ invariant and also leave
invariant the positions of the atoms at the reconstructed
surface. Since this MPG is necessarily a subgroup of gn̂, we
can infer that if gn̂ is FM compatible, then the reconstructed
MPG must be as well. However, the specific allowed
components of magnetization cannot be directly identified
from the bulk surfaceMSG via the requirements in Eqs. (1).
Similarly, surface spin reorientations or changes in the
direction of the magnetic easy axis can change the surface
MPG compared to the one obtained with the bulk magnetic
ordering. In this case, it is possible to correctly identify the
surface MPG by applying the procedure described earlier
for pristine, unreconstructed surfaces, starting from the
MSG of a bulk system with magnetic ordering reoriented
according to the surface of interest.
In what follows, we explain how to determine whether

the surface magnetization identified in Fig. 2 is robust in the
presence of atomic steps or whether it averages to zero if
roughness is introduced.

B. “Roughness-robust” versus “roughness-sensitive”
surface magnetization

In the previous section, by restricting the surface MSG to
operations which involve only translations parallel to the
surface ⊥n̂, we show how to identify AFM surfaces which
have a macroscopic magnetization in the limit of an ideally
smooth plane with no roughness or steps. Next, we relax
this restriction and consider symmetry operations which
connect flat surface regions separated by translations with a
component perpendicular to the surface. This allows us to
distinguish between FM-compatible surfaces whose macro-
scopic magnetization is robust to roughness (corresponding

YesNo

(a) (b) (c)

Vacuum

FIG. 2. Group-theory procedure to identify whether a given Miller plane ðhklÞ⊥n̂ has a symmetry-allowed surface magnetization,
assuming that the surface has no atomic steps. (a) The bulk magnetic space group (MSG) G is identified for the bulk AFM which is
periodic in all directions. (b) The surface MSG Gn̂ is identified. (c) If the magnetic point group (MPG) gn̂ corresponding to Gn̂ is
compatible with ferromagnetism, then ðhklÞ⊥n̂ has an equilibrium surface magnetization msurfðgn̂Þ.
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to the subset which Refs. [2,13] identify) and those whose
magnetization is roughness sensitive.
Assume that for some bulk AFM we have already

identified a particular Miller plane characterized by surface
normal n̂ which has equilibrium surface magnetization
according to the procedure in Fig. 2. Now, let us go back
and again consider the higher-symmetry bulk MSG G. We
want to check whether there exists in G at least one
operation ðRijtiÞ ∉ Gn̂ for which

Rin̂ ¼ n̂; ð2Þ

ti · n̂ ≠ 0; ð3Þ

and

RimFMðgn̂Þ ¼ −mFMðgn̂Þ: ð4Þ

Here, mFMðgn̂Þ is the magnetization which remains
invariant under the operations of the surface MPG gn̂. If
Eqs. (2)–(4) all hold, then there exist atomic steps on
surface ðhklÞ⊥n̂, connected by fractional translation ti,
which are energetically and symmetrically equivalent but
which have opposite signs of surface magnetization [1,2].
Thus, for a macroscopic region with surface roughness in
thermodynamic equilibrium, steps connected by ti with
opposite directions and equal magnitudes of magnetization
occur with equal probability such that the total magneti-
zation averaged over the entire surface area is zero [38].
Conversely, if all bulk MSG operations which involve t=⊥n̂

leavemgn̂

FM unchanged, then all atomic steps in the presence
of roughness have the same direction of surface magneti-
zation, and, hence, the surface magnetization is roughness
robust. This is illustrated in Fig. 3.
The group-theory formalism which we have described

thus far is general, identifying all AFM Miller planes
having a symmetry-allowed finite equilibrium surface
magnetization which either may exist despite roughness
or may require an atomically flat surface to be realized.
Figure 4 gives a table categorizing these four types of
surface magnetization and indicating which are allowed,
given the absence or presence of inversion and global time-
reversal symmetries (as well as combined time-reversal
plus translation symmetries) in the bulk MSG. The impor-
tance of the inversion symmetry requirements, which we
have not discussed yet, becomes clear when we introduce
the multipole-based description of surface magnetization in
parts II and III. We can see that the roughness-robust,
uncompensated surface magnetization has the strictest
symmetry requirements for the bulk AFM, namely, having
a bulk MSG with broken time-reversal and inversion
symmetries. Note that these are the same symmetries which
must be broken for a linear ME response. On the other
hand, the roughness-sensitive categories, both induced and

uncompensated, can occur for bulk AFMs with all possible
combinations of inversion and time-reversal symmetries.
In the following parts of the manuscript, we introduce a

complementary description of AFM surface magnetization,
combined with concrete material examples, based on the
multipoles of the bulk magnetization density, which help us
to classify and understand each of the four categories.
We see that this multipole-based formalism is intimately
connected to the group-theory description we have
reviewed and modified above. At the same time, it provides
new insights via explicitly connecting surface magnetiza-
tion to bulk properties and corresponding bulk ME
responses.

III. PART II: UNCOMPENSATED SURFACE
MAGNETIZATION IN TERMS OF

LOCAL-MOMENT MAGNETOELECTRIC
MULTIPOLIZATION

In part II of this manuscript, we develop a semiquanti-
tative description of uncompensated AFM surface mag-
netization (both roughness-robust and roughness-sensitive)
in terms of a “local-moment” ME multipole tensor which
involves summing over the product of positions and dipole
moments of magnetic atoms in the bulk unit cell tiling the

Roughness-sensitive

Roughness-robust

(a)

(b)

FIG. 3. “Roughness-robust” versus “roughness-sensitive” sur-
face magnetization. (a) Roughness-robust: any operation in
the bulk MSG preserving the direction of n̂ and containing
a translation component kn̂ leaves mFMðgn̂Þ invariant.
(b) Roughness-sensitive: at least one operation in G with t=⊥n̂
reverses the direction of mFMðgn̂Þ.
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slab containing the surface in question. This “multipoliza-
tion” formalism was already proposed in Ref. [28] to
predict the value of uncompensated, roughness-robust
surface magnetization in linear MEs. Here, we show that
this local-moment multipolization can also describe and
distinguish roughness-sensitive uncompensated surface
magnetization, even when the bulk MSG forbids a net
ME response. We first review the description of bulk
magnetization density in terms of a multipole expansion
and then investigate the implications of the form of the
local-moment ME multipolization on uncompensated sur-
face magnetization.

A. Magnetoelectric multipoles as bulk indicators
of surface magnetization

While in many cases one can approximate the magnetic
order of a solid as a series of point magnetic dipole
moments localized on the magnetic ions, the full mag-
netization density is more complex. It is convenient to
describe the asymmetry beyond the usual magnetic dipole
of a generic, inhomogenous magnetization density in
terms of a multipole expansion. Usually, one constructs
the form of the magnetic multipoles at each order via an
expansion of the interaction energy of a magnetization
density μðrÞ interacting with a spatially varying magnetic
field HðrÞ [28,39]:

Eint ¼ −
Z

μðrÞ ·HðrÞd3r

¼ −
Z

μðrÞ ·Hð0Þd3r −
Z

riμjðrÞ∂iHjð0Þd3r

−
Z

rirjμkðrÞ∂i∂jHkð0Þd3r − � � � ; ð5Þ

where ði; jÞ ¼ 1, 2, 3 refer to Cartesian components and
summation over repeated indices is implied. The first

term of the expansion in Eq. (5) is the usual Zeeman term,
containing the magnetic dipole, whereas the coefficient of
the second term,

Mij ¼
Z

riμjðrÞd3r; ð6Þ

is known as the ME multipole tensor and describes the first
order of asymmetry in magnetization density [24–27]. We
briefly mention here that the rank-3 tensor which gives the
coefficient of the third term in Eq. (5),

Oijk ¼
Z

rirjμkðrÞd3r; ð7Þ

is called the magnetic octupole [22,39]. Note that Eq. (7) is
even under inversion symmetry I, and in part III we show
that ferroically ordered octupoles explain the existence of
roughness-robust, induced surface magnetization in centro-
symmetric AFMs. For uncompensated surface magnetiza-
tion, however, the lower-order ME multipoles are sufficient
to describe both roughness-sensitive and roughness-robust
cases, so we concentrate exclusively on Mij in this section.
It is evident that the ME multipole tensor Eq. (6)

simultaneously breaks inversion symmetry and time rever-
sal due to its dependence on both position and magneti-
zation. In fact, one can show rigorously that nonzero values
of theMij tensor imply a corresponding nonzero linear ME
response αij in the presence of an applied electric field [25],
where as a reminder the linear ME response tensor α is
defined by

Mi ¼
X
j

αijEj; ð8Þ

with E the applied electric field and M the induced
magnetization in the bulk. Thus, the linear ME effect,

Induced (ind.)

Roughness-sensitive
(RS) 

Roughness-robust
(RR)

Uncompensated 
(uncomp.)

PreservedBroken 

Broken 

Preserved

RR, uncomp.
RR, ind.

RS, uncomp.
RS, ind.

RS, uncomp.
RS, ind.

RR, ind.
RS, uncomp.

RS, ind.

RS, uncomp.
RS, ind.

FIG. 4. Tables summarizing the categories of surface magnetization that can exist for certain Miller planes in a given bulk AFM. In the
left table, we again depict cartoons for the four categories of surface magnetization we discuss. In the right table, we list the possible
categories of surface magnetization based on the absence or presence of Θ and I in the bulk MSG of the AFM of interest. ðΘjtÞ
represents time-reversal Θ combined with any fractional translation t.

SURFACE MAGNETIZATION IN ANTIFERROMAGNETS: … PHYS. REV. X 14, 021033 (2024)

021033-7



which is a thermodynamic response, can be conveniently
understood in terms of the ME multipole tensor, which
characterizes the second-order asymmetry in bulk mag-
netization density in the absence of applied fields. The
symmetry connection between surface magnetization and
bulk ME effects mentioned in the introduction already
provides a hint that the ME multipole tensor may also be
relevant in describing surface magnetization.
Crucially for our discussion of surface magnetization

categories, M can be decomposed into a sum of
“local-moment” and “atomic-site” terms in the following
way [21,40]:

Mij ≈
X
α

Z
Ωα

ðri − Ri;αÞμjðrÞd3rþ
X
α

Z
Ωα

Ri;αμjðrÞd3r

¼
X
α

Z
Ωα

ðri − Ri;αÞμjðrÞd3rþ
X
α

Ri;αmj;α

¼ MAS
ij þMLM

ij : ð9Þ

Here, Ri;α is the ith Cartesian component of the position of
atom α in the magnetic unit cell, mj;α is the jth Cartesian
component of the magnetic dipole moment of atom α, the
sum is over magnetic atoms in the unit cell, and Ωα is a
spherical region around atom α. Note that Eq. (9) neglects
contributions to Mij due to magnetization density in
interstitial regions, which we assume to be negligible.
The first term in the expression, the “atomic-site” (AS)
term, originates from asymmetry in the magnetization
density around an atomic site, and the second term, called
the “local-moment” (LM) term, describes contributions to
M due to the asymmetric arrangement of local dipole
moments across all magnetic sites at the unit-cell level. The
two contributions to the ME multipole tensor are depicted
with a cartoon in Fig. 5. When considering MLM

ij in an
extended solid, we normalize the tensor by the volume V of
the magnetic unit cell:

M̃LM
ij ¼ 1

V

X
α

Ri;αmj;α: ð10Þ

We refer to the volume-normalized, local-moment
contribution to the ME multipole tensor as the “ME
multipolization.” In part III, we show in detail that the
atomic-site contribution to the ME multipolization, as well
as higher-order atomic-site terms in the multipole expan-
sion [22,39] of Eq. (5), are bulk indicators for the existence
of induced surface magnetization. In this part, however,
we discuss only the local-moment contribution given
by Eq. (10), which, as we see, is sufficient to describe
all categories of uncompensated surface magnetization
in AFMs.
It is also important to note that, in a bulk periodic solid,

there is freedom in selecting the basis for our magnetic unit
cell; specifically, we can translate any magnetic momentmα

by a Bravais lattice vector R without changing our system.
Therefore, M̃LM

ij is defined only modulo an “ME multi-
polization increment” corresponding to such a translation
[24–26,28]. In fact, since each of the l magnetic atoms in
the unit cell can be translated by any Bravais lattice vector,
there can be up to 3l linearly independent multipolization
increments [24]. Once we have made a concrete basis
choice, however, from Eq. (10), it is clear that M̃LM

ij

calculated for a unit cell with AFM-coupled layers of in-
plane FM magnetic dipole moments stacked along the ith
Cartesian direction must be nonzero. We now motivate the
implications of this crucial fact on uncompensated surface
magnetization by a brief comparison with the case of
charge on the surfaces of materials with nonzero electric
polarization.
Recall that there is a correspondence between the bound

charge on a given surface σsurf and the component of the
bulk electric polarization vector, Pbulk perpendicular to the
surface, that is, Pbulk · n̂ ¼ σsurf [30]. However, within
the modern theory of polarization, the periodicity of a
bulk crystal implies that Pbulk, analogously to the multi-
valued M̃LM

ij , is defined only modulo a “polarization
quantum” corresponding to translating one electron by a
lattice vector [41]. As a consequence, rather than a single
value of Pbulk, a given bulk crystal has a polarization
“lattice” with values separated by the polarization quantum
Pq ¼ eR=V, with R a Bravais lattice vector. Therefore, at
first glance, the correspondence to surface charge for a
given termination Pbulk · n̂ ¼ σsurf seems ambiguous. This
apparent issue is solved by the fact that selecting a specific
surface termination dictates a particular basis choice for the
bulk unit cell, that which periodically tiles the semi-infinite
solid containing the surface of interest [29]. Thus, the
component of Pbulk along the surface normal, Pbulk · n̂,
calculated for this particular unit-cell choice is single
valued, and the surface charge is determined unambigu-
ously. For a given Miller plane ðhklÞ, the atomic

ME multipole Atomic-siteLocal-moment

FIG. 5. Local-moment and atomic-site contributions to mag-
netic multipoles. Each order of magnetic multipoles beyond the
magnetic dipoles can be decomposed into a sum of atomic-site
terms, which capture asymmetries of μðrÞ around the atomic
nuclei (blue circles), and a local-moment contribution due to the
asymmetric spatial arrangement of magnetic dipoles (purple
arrows) centered on the ions in the unit cell. We depict only
the second-order ME multipoles here for convenience.
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termination which is electrostatically stable is defined by
the bulk unit cell for which Pbulk · n̂ ¼ σsurf ¼ 0 [42].
While Pbulk has units of electric charge per unit area, the

components of the volume-normalized M̃ has units of
magnetic dipole moment per unit area. Thus, just as the
first-order term (polarization) in a multipole expansion of
the interaction energy of a bulk charge density in an electric
field gives rise to a zeroth-order term (charge) associated
with its surface, in Ref. [28], we argue that the second-order
term (the MEmultipolization) in the multipole expansion in
Eq. (5) should lead to a first-order term (magnetic dipole
per unit area) associated with a surface. Specifically, the
bulk multipolization component M̃ij should correspond to
the magnetic dipole density per unit area along Cartesian
direction |̂ with surface unit normal along Cartesian
direction {̂ [43]. This surface magnetization can, in general,
have contributions from both the atomic-site and local-
moment terms in the M̃ij tensor. As we pointed out before,
the local-moment contribution to M̃ij, like Pbulk, is multi-
valued for a fully periodic solid. But, again, the choice of a
specific Miller plane and atomic termination fixes the basis
of the bulk unit cell used to compute Eq. (10) along the
direction of the surface normal. Thus, the three components
j ¼ 1, 2, 3 of surface magnetization associated with M̃ij

coming from local-moment and atomic-site contributions
on surface ðhklÞ⊥î are all single valued.
However, for a surface with uncompensated magnetic

dipoles ferromagnetically ordered in the surface plane, the
major contribution to the surface magnetization is quanti-
tatively captured by the local-moment term M̃LM

ij alone.
We can see this by noting first that M̃LM

ij is necessarily
nonzero in such a situation, as we mentioned previously.
Second, the local-moment term Eq. (10) weights the
contribution of each magnetic moment in the unit cell
by its distance from the surface, thus capturing the
quantitative uncompensated surface magnetization.
We illustrate the correspondence between uncompen-

sated surface magnetization and local-moment ME multi-
polization concretely in Fig. 6(a) for (001) Cr2O3. The top
left in the figure shows the 30-atom bulk unit cell in the
hexagonal setting, with an “up-down-up-down”AFM order
of the Cr moments along [001]. This surface defines the
electrostatically stable surface termination [top right in
Fig. 6(a)] of (001) chromia, with a single Cr ion above the
final oxygen layer. Using the Cr positions in the bulk unit
cell in a Cartesian basis where zk½001� and assuming the
idealized 0 K limit where the Cr moments have their formal
3μB value and are polarized fully along [001], Eq. (10)
yields a z=½001� oriented magnetization of 11.9μB=nm2 on
the (001) surface corresponding to M̃LM

zz [28,44]. On the
other hand, we can instead choose the bulk unit cell on the
left in Fig. 6(b), which can be obtained from the unit cell
in Fig. 6(a) by translating the topmost Cr ion downward
along ½001̄� by one lattice vector. The bulk unit cell in

Fig. 6(b) defines the polar, oxygen-terminated (001)

surface on the right in Fig. 6. Recalculating M̃LM
zz using

the Cr ion positions of this new unit cell yields a
magnetization of −2.4μB=nm2. The difference between
these two values, 11.9 − ð−2.4Þ ¼ 14.3μB=nm2, is pre-
cisely equal to the multipolization increment for the ðz; zÞ
component of M̃LM,

ΔM̃LM
zz ¼ mz

Crjcj
V

; ð11Þ

where jcj is the length of the hexagonal lattice vector
along [001].
We must caution that the rigorous quantitative corre-

spondence of M̃LM
ij to the surface magnetization values

relies first on fully ordered surface magnetic moments,
which, as we discuss in detail in Ref. [44], is often an
inaccurate assumption at elevated temperatures, even if the
bulk sublattices are fully ordered. Second, the quantitative
accuracy of M̃LM

ij assumes that surface reconstructions are
absent. And, finally, the quantitative rigor of local-moment
multipolization relies on the absence of changes in

Vacuum(a)

(b)

FIG. 6. Uncompensated surface magnetization for two different
terminations of (001) Cr2O3 calculated from the local-moment
multipolization. (a) Left: bulk unit cell defining the electro-
statically stable termination of (001) chromia (right). The
[001] oriented surface magnetization for this termination is
11.9μB=nm2 from the ðz; zÞ component of M̃LM. The polar,
oxygen-terminated unit cell shown in (b) is related to this unit cell
by translating the topmost Cr atom down by one lattice vector,
shown by the blue arrow and faded-out atom at the bottom of the
cell. (b) Left: bulk unit cell related to the cell in (a) by one
multipolization increment. This basis defines the polar (001)
surface (right) with surface magnetization −2.4μB=nm2.
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anisotropy or spin reorientation at the surface. We refer the
reader to the supplemental material in Ref. [44] for a
discussion of approximate methods to predict quantitative
surface magnetization by combining the contributions from
M̃LM

ij with nonperiodic contributions due to temperature
effects, reconstructions, or spin reorientations. However,
the discussion is beyond the scope of this work, where we
are concerned primarily with qualitative identification of
categories of surface magnetization based on bulk order
parameters.
Now, we point out a salient feature of the so-called

“multipolization increments.” Like the lattice of electrical
polarization values, the complete set of local-moment
ME multipolization values corresponding to a surface with
normal n̂ must be invariant under all symmetry trans-
formations in the MSG of the bulk AFM [24,45].
Therefore, if the bulk AFM has inversion symmetry I,
the array of allowed values for a given component M̃LM

ij

must take the following centrosymmetric form:

M̃LM
ij ¼

X3
k¼1

1

2
ξkΔM̃LM

ij;k þ nkΔM̃LM
ij;k; ð12Þ

where

ΔM̃LM
ij;k ¼ akiΔM̃LM

kj ; ð13Þ

with aki ¼ ak · î the projection of the kth Bravais lattice
basis vector ak onto Cartesian direction î and ΔM̃LM

kj ¼
mjjakj=V is the generalized form of the ME multipolization
increment Eq. (11). ξk in the first term of Eq. (12) can take
the values 0 or 1. In case ξk ¼ 0 for all k, we refer to
Eq. (12) as a “zero-containing” multipolization array, or a
“half-increment-containing” multipolization array other-
wise. In fact, because the local-moment MEmultipolization
in Eq. (10) involves a summation over only the magnetic
atoms in the unit cell, multipolization increments for a
particular material, and the corresponding allowed surface
magnetization values, must take the form of Eq. (12) as
long as the lattice occupied by the magnetic atoms is
centrosymmetric, even if the bulk AFM including all
magnetic and nonmagnetic atoms breaks I . We note that
in most cases (including all the examples considered in this
manuscript) one can choose the unit cell semi-infinitely
tiling the surface of interest such that one lattice vector ak is
parallel to the surface normal and the other two lattice
vectors lie in the surface plane. Then, if we take a Cartesian
basis with Cartesian direction îkakkn̂, it follows that
ΔM̃LM

ij;k ¼ ΔM̃LM
kj , and the sum over k in Eq. (12) dis-

appears for the multipolization array corresponding to
magnetization on the surface perpendicular to î [46].
The centrosymmetric form of Eq. (12) implies that,

for an AFM having such a multipolization array, a Miller

plane with surface normal n̂kî that has a specific atomic
termination corresponding to a ĵ-oriented surface magneti-
zation μjðn̂kîÞ ¼ M̃LM

ij also has an atomic termination
having surface magnetization with opposite direction,
−μjðn̂kîÞ ¼ −M̃LM

ij . Moreover, for AFMs with bulk I
symmetry, these two terminations must be symmetrically
equivalent and, thus, energetically degenerate. We can
conclude then that nominally uncompensated surface
magnetization in bulk AFMs that are centrosymmetric
must be roughness sensitive. We emphasize again, however,
that roughness-robust induced surface magnetization is still
possible in centrosymmetric AFMs such as FeF2; we return
to this case in Sec. IV B. This multipolization-based
argument is, in fact, just a complementary way of viewing
Eqs. (2)–(4) in Sec. II B, which characterize roughness-
sensitive surface magnetization for uncompensated surfa-
ces within our group-theory formalism.
Although uncompensated surface magnetization is

always roughness sensitive for I-symmetric AFMs, this
category can also occur in AFMs with broken I for specific
cases. One such example can occur when an I-broken
AFM has a centrosymmetric magnetic lattice, as pointed
out previously. A second possibility is that, even if the
magnetic lattice breaks I symmetry, additional bulk MSG
symmetries constrain the ME multipolization array to the
centrosymmetric forms Eq. (12) along specific directions.
This can occur, for example, if there exists a mirror plane
containing the surface normal, and the magnetization is
oriented parallel to the mirror plane. In both of these cases,
provided there exists a bulk symmetry in the bulk MSG
that connects the terminations with opposite signs of
surface magnetization, the surface magnetization will be
roughness sensitive [47].
Finally, AFMs with broken I in the bulk and a non-

centrosymmetric magnetic lattice can have I-broken multi-
polization arrays

M̃LM
ij ¼ M̃LM;0

ij þ
X3
k¼1

nkΔM̃LM
ij;k; ð14Þ

for some directions, where M̃LM;0
ij is the “spontaneous”ME

multipolization that occurs for AFMs with broken I and Θ
symmetries [24,28] (analogously to the spontaneous elec-
tric polarization in ferroelectrics) and is neither zero nor
half a multipolization increment. For the corresponding
surfaces, a termination with surface magnetization μjðn̂kîÞ
does not have a symmetry-connected, energetically degen-
erate termination with surface magnetization −μjðn̂kîÞ.
Therefore, unlike inversion-symmetric AFMs, uncompen-
sated surface magnetization in inversion-asymmetric AFMs
can be roughness robust.
To conclude Sec. III A of this paper, in Fig. 7 we

provide a flowchart with steps to categorize the primary
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form of surface magnetization for a bulk AFM and a
given surface of interest (recall that, in general, induced
surface magnetization can coexist with uncompensated
surface magnetization, though in these cases the latter
dominates). First, one finds the bulk unit cell which tiles
semi-infinitely the desired surface. Second, one computes
the local-moment ME multipolization M̃LM

ij for a specific
atomic termination, as well as the multipolization incre-
ment ΔM̃LM

ij corresponding to the surface. If the multi-
polization array is noncentrosymmetric, the surface
magnetization must be uncompensated and roughness
robust. If the multipolization array is centrosymmetric
and the bulk MSG contains I , the surface magnetization

must be roughness sensitive. If the multipolization array is
centrosymmetric, but the bulk MSG breaks I , one has to
resort to the group-theory procedure in part I to distin-
guish between roughness-sensitive and roughness-robust
uncompensated cases.
Finally, if M̃LM

ij and ΔM̃LM
ij are identically zero, the

only possible categories of surface magnetization are
induced. In order to categorize and understand these
induced varieties of surface magnetization (as well as
the “null” case where no surface magnetization is allowed),
we need to analyze the atomic-site multipoles as opposed to
the local-moment contribution. We describe this in detail in
part III.

FIG. 7. Flowchart describing the steps to identify, given a bulk AFM and the surface plane ðhklÞ⊥n̂ of interest, whether the surface has
nonzero surface magnetization and, if so, the category (uncompensated, roughness-robust; uncompensated, roughness-sensitive, or
induced).
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B. Examples of uncompensated surface magnetization

1. Uncompensated, roughness-robust: (001) Cr2O3

Let us first recall the minimal symmetry requirements
which we give in Fig. 4 for the bulk AFM MSG in order to
have at least one Miller plane with this type of surface
magnetization. First, as we already discussed extensively in
Sec. III A, uncompensated, roughness-robust surface mag-
netization can occur only in AFMs with broken inversion in
the bulk MSG. Next, we consider the effect of time reversal
Θ. For any surface normal n̂ and any magnetization
pseudovector m, ðn̂;mÞ → ðn̂;−mÞ under the action of
Θ. Therefore, either any possible Miller plane will be
incompatible with surface magnetization, or the surface
magnetization has to be roughness sensitive based on
Eqs. (2)–(4). It is, thus, impossible to have a surface with
roughness-robust surface magnetization if Θ or ðΘjtÞ is a
bulk symmetry.
The combined requirement of broken I and Θ implies

that this type of surface magnetization can occur only
in AFMs with a bulk MSG that allows for the linear
ME effect [48].
We now work through the full MSG symmetry analysis

for the prototypical case of (001) Cr2O3 which we already
briefly discussed in connection to our discussion of local-
moment ME multipolization in Sec. III A. In Fig. 8,
we show the structure of Cr2O3, both the primitive
rhombohedral cell and the top view of the conventional
hexagonal cell. The bulk MSG of linear ME Cr2O3 is
R3̄0c0 [167.106] [49]. Although the crystal lattice of
Cr2O3 is centrosymmetric, the AFM ordering breaks
inversion symmetry in the MSG. Therefore, R3̄0c0 has
neither space inversion nor time reversal as a symmetry,
so we know immediately that it can host uncompensated,
roughness-insensitive surface magnetization for at least
some Miller planes. It contains clockwise and counter-
clockwise threefold rotations and rotoinversions about
the [001] axis and twofold rotations with corresponding
mirror planes perpendicular to the rotation axes along
[100], [110], and [010]. Because R3̄0c0 is a “type-III”
MSG [49,50], half of the 36 space group operations

contain time reversal. Indeed, although I and Θ are
individually broken, the product IΘ is a symmetry of the
bulk MSG.
Now consider the unit vector n̂k½001� perpendicular

to the (001) surface. The operations in R3̄0c0 that either
leave n̂ invariant modulo translations ⊥½001� are ðEj0Þ,
ð3þ½001�j0Þ, and ð3−½001�j0Þ, with E the identity operation.
Here, left-hand terms in the parentheses are point group
operations and right-hand terms are translations. “þ” and
“−” refer to clockwise and counterclockwise rotations,
respectively. Now considering only the point group oper-
ations, the MPG for the (001) surface is 3, which is indeed
FM compatible. Specifically, a generically oriented mag-
netization pseudovector m ¼ ðmx;my;mzÞ transforms in
the following way under the point group operations in 3:

E∶ ðmx;my;mzÞ → ðmx;my;mzÞ; ð15Þ

3þ½001�∶ ðmx;my;mzÞ

→

�
−
1

2
mx −

ffiffiffi
3

p

2
my;

ffiffiffi
3

p

2
mx −

1

2
my;mz

�
; ð16Þ

3−½001�∶ ðmx;my;mzÞ

→

�
−
1

2
mx þ

ffiffiffi
3

p

2
my;−

ffiffiffi
3

p

2
mx −

1

2
my;mz

�
: ð17Þ

Note that we have chosen our Cartesian coordinate system
such that xk½110� and zk½001�. From Eqs. (15)–(17), it is
clear that the only invariant magnetization component is
mz, which is parallel to the surface normal [001]. Therefore,
the magnetic dipole per unit area on the (001) surface must
be oriented along [001]. [001] is known to be the ground-
state polarization direction of the Néel vector [51–53], and
from inspection of the electrostatically stable and polar
surfaces in Figs. 6(a) and 6(b) we see that the (001) surface
always has an uncompensated ferromagnetic layer of Cr
moments simply by terminating the ground-state magnetic
order with vacuum.
We can also check that this surface magnetization is

roughness robust by going back to the R3̄0c0 bulk MSG
and looking for operations that leave the direction
of n̂ unchanged but have a component of translation
perpendicular to the surface. This is indeed the case for
the three combined mirror plane-time-reversal operations
for which n̂ lies in the mirror plane: ðσ0½100�j0; 0; 12Þ,
ðσ0½110�j0; 0; 12Þ, and ðσ0½010�j0; 0; 12Þ, where the prime denotes

the additional action of Θ. Note that we use a convention
where σ½abc� is the mirror plane perpendicular to the ½abc�
direction. Now we have to see how the magnetization
behaves under these operations:

(a) (b)

FIG. 8. (a) Primitive rhombohedral cell and magnetic order-
ing of Cr2O3. Cr and O atoms are identified by blue and red
spheres, respectively. (b) Top view of the conventional hex-
agonal cell of Cr2O3.
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σ0½100�∶ ðmx;my;mzÞ

→

�
1

2
mx þ

ffiffiffi
3

p

2
my;

ffiffiffi
3

p

2
mx −

1

2
my;mz

�
; ð18Þ

σ0½110�∶ ðmx;my;mzÞ → ð−mx;my;mzÞ; ð19Þ

σ0½010�∶ ðmx;my;mzÞ

→

�
1

2
mx −

ffiffiffi
3

p

2
my;−

ffiffiffi
3

p

2
mx −

1

2
my;mz

�
: ð20Þ

Therefore, although operations (18)–(20) take one (001)
surface through a half-lattice-vector step to a symmetrically
equivalent surface, all three operations leave mz, the FM-
compatible direction of magnetization in the surface MPG,
unchanged. Then, we also know that this magnetization is
roughness robust.
Note that this group-theory formalism makes no assump-

tions about the specific atomic termination and the corre-
sponding value of (001) surface magnetization. The
identification of this surface as uncompensated and rough-
ness robust is termination independent, implying that surface
magnetization cannot vanish for any (001) termination.
Quantitative information about the value of surface mag-
netization for an experimentally realistic surface requires
calculation of the multipolization array for chromia.
It turns out that, due to the alternating up-down-up-down

order of the Cr moments, the only possible values of ME
multipolization along this direction are those for the atomic
terminations discussed in Sec. III A and shown in Figs. 6(a)
and 6(b) (11.9μB=nm2 and −2.4μB=nm2, respectively; for
the opposite bulk AFM domain, the signs of both values are
reversed). Thus, (001) Cr2O3 has two symmetrically
distinct terminations with unequal but finite magnitudes
of surface magnetization, as required by the roughness-
robust identification from group theory. In practice, the
termination corresponding to an electrostatically stable
surface is energetically favorable, so experimentally all
atomic steps are symmetrically equivalent to Fig. 6(a) with
the corresponding surface magnetization.
Before closing this section, we mention one caveat

regarding uncompensated, roughness-robust surface mag-
netization in ME AFMs. In spite of its vast technological
potential and the fact that this category should exist for
at least some surfaces of any linear ME AFM, to our
knowledge the only roughness-robust, uncompensated sur-
face magnetization which has been directly measured to
date is our example case, (001) Cr2O3. The reason for the
paucity of experimentally confirmed cases of uncompen-
sated surface magnetization in ME AFMs remains unclear.
A pragmatic possibility is that (001) Cr2O3 has dominated
interest and attention due to its relatively high Néel
temperature compared to other MEs, making it and its
doped variants promising candidates in applications

[18,54,55]. Nevertheless, given the myriad uses of such
surface magnetization and the fact that the surface Cr ions
on the (001) surface are quite weakly coupled to bulk near
the Néel temperature [44], pursuing other ME AFMs as
well as different surfaces in chromia could reveal new
candidates with more robust uncompensated surface mag-
netization at room temperature.

2. Uncompensated, roughness-sensitive:
(111) NiO and (001) Fe2O3

We turn next to surface magnetization that is magnetically
uncompensated but which averages to zero in the presence
of surface roughness (roughness sensitive). Let us again
consider the minimal symmetry requirements of the bulk
MSG in order for such surface magnetization to exist on any
Miller plane. In contrast to uncompensated, roughness-
robust surface magnetization described in Sec. III B 1,
uncompensated, roughness-sensitive surface magnetization
corresponds to a centrosymmetric local-moment ME multi-
polization array. Without such a centrosymmetric multi-
polization array, there cannot be symmetry-equivalent
surface steps with opposite directions and equal magnitudes
of magnetization.
As we mention in Sec. III A, however, the multipoliza-

tion array can take the centrosymmetric form of Eq. (12) for
specific directions even if the magnetic lattice breaks I
symmetry, provided there is another operation in the MSG
that constrains the array to be centrosymmetric in the
direction of interest. Thus, in principle, uncompensated
roughness-sensitive surface magnetization can occur in
AFMs with magnetic lattices having both broken and
preserved I . We point out that, for all examples we
investigate, the magnetic lattice has I symmetry. Indeed,
the examples we work through explicitly (NiO and Fe2O3)
both have inversion symmetry in the bulk MSG. PbNiO3, a
rhombohedral AFM insulator which has attracted interest
due to possible ferroelectric properties [56,57], is an
example of an AFM with broken inversion symmetry in
the bulk MSG but a centrosymmetric lattice of Ni ions,
which allows for roughness-sensitive, uncompensated
surface magnetization along certain directions. The fact
that we have not been able to identify any examples of
roughness-sensitive surface magnetization in AFMs with
I-broken magnetic lattices implies that the situation is
likely somewhat contrived.
We now move on to the requirements for Θ in order to

have uncompensated, roughness-sensitive surface magneti-
zation. As discussed previously, Θ reverses the direction of
any magnetization pseudovector m while leaving the polar
vector corresponding to a surface normal n̂ unchanged [that
is, Eqs. (2) and (4) are fulfilled]. Obviously then, if pure
time reversal, or Θ combined with any translation parallel
to the surface, is a symmetry of the bulk MSG, it will be
preserved in the surface MSG obtained in Fig. 2(b). This
means the surface MPG will not be FM compatible, and,
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hence, the Miller plane in question cannot host surface
magnetization.
Recall, however, that, in identifying the surfaceMSG and

correspondingMPG in Fig. 2, we exclude symmetries in the
bulk MSG which include a component of translation
perpendicular to the surface, parallel to n̂. Therefore, if a
symmetry ðΘjtÞ in the bulk MSG has t · n̂ ≠ 0 [the equiv-
alent statement to Eq. (3)], it is possible for the surface of
interest ðhklÞ⊥n̂ to have a FM-compatible MPG in the
atomically smooth limit. Thus, AFMswhich have ðΘjtÞ as a
symmetry of theMSG can have uncompensated, roughness-
sensitive surface magnetization on surfaces for which t · n̂≠
0 for all t which Θ is coupled to. This implies that type-IV
AFMs, which by definition contain ðΘjtÞ as a symmetry
[49], can still have roughness-sensitive surface magnetiza-
tion. It is important to note that, because time reversal is
preserved macroscopically in such AFMs, any net ME
response is forbidden. Finally, we mention that type-IV
AFMs are implicitly excluded in the formalism of Ref. [2].
We now give examples of particular surfaces in two bulk

AFMs which have uncompensated, roughness-sensitive sur-
face magnetization. We first focus on NiO. NiO is an
insulating AFM with rocksalt structure. The nonmagnetic,
face-centered cubic unit cell is shown in Fig. 9(a). The
ground-state AFM order consists of FM planes stacked
antiferromagnetically along the [111] direction, with the Ni
magnetic moments polarized in the planes along the ½112̄� and
½1̄ 1̄ 2� directions [49]. NiO has the bulk type-IV MSG Cc2=c
[15.90]. When discussing the symmetries of NiO, it is useful
to adopt the basis of a magnetic supercell in which the Ni
moments are perpendicular to two of the lattice vectors and
parallel to the third. To this end, we use a magnetic cell with
lattice vectors a ¼ ½112̄�, b ¼ ½11̄0�, and c ¼ ½222� in terms
of the lattice vectors of the conventional nonmagnetic cell in
Fig. 9(a). The resulting, reoriented supercell is shown in
Fig. 9(b) for two opposite AFM domains.
Now let us consider the (111) surface of NiO, which is

perpendicular to the direction of AFM stacking. The rotated
unit cells shown in Fig. 9(b) show an atomically smooth
termination of the (111) surface, with the two AFM
domains having opposite orientations of the Ni moments
in the topmost layer. Note that, due to the alternating,
equally spaced layers of Ni2þ and O2− ions along [111],
it is not possible to create an atomically smooth electro-
statically stable (111) surface. Both Ni and O terminations
are intrinsically polar, and, thus, the true (111) surface of
NiO almost certainly undergoes a reconstruction [58,59].
We nevertheless consider the unreconstructed, polar (111)
surface here as a straightforward example of aΘ-symmetric
AFM surface with uncompensated roughness-sensitive
magnetization. Inspection of either structure in Fig. 9(b)
shows that such a surface has an uncompensated FM layer
of Ni moments along either ½112̄� or ½1̄ 1̄ 2�.
We go through the same procedure as for (001) Cr2O3,

where we first identify the space group symmetries in the

bulk MSG which leave n̂k½111� unchanged except for
possible translations parallel to the surface. Cc2=c has a
monoclinic axis along ½11̄0� and, thus, contains twofold
rotations about ½11̄0� and perpendicular mirror planes σð11̄0Þ
combined with several linearly independent translations.
I and Θ combined with translations are also symmetries.
The operations which leave n̂ invariant modulo t⊥n̂ are
ðEj0Þ, ðEj 1̄

2
; 0; 1

2
Þ, ðσ0½11̄0�j0Þ, and ðσ0½11̄0�j 1̄2 ; 0; 12Þ [60]. Now

considering just the point group operation σ0½11̄0�, we can

look at how magnetization transforms under this symmetry,
taking xk½1̄ 1̄ 2�, yk½11̄0�, and zk½111�:

σ0½11̄0�∶ ðmx;my;mzÞ → ðmx;−my;mzÞ: ð21Þ

Because xk½1̄ 1̄ 2�, magnetization on the (111) surface is
allowed along the direction of the bulk Néel vector,
consistent with Fig. 9(b). Note that from Eq. (21) we

(a) (b)

(c)

FIG. 9. Uncompensated, roughness-sensitive surface magneti-
zation in (111) NiO and (001) Fe2O3. (a) Nonmagnetic unit cell
of rocksalt NiO. (b) Unreconstructed (111) surface of NiO. Left
and right surfaces, with equal magnitudes and opposite signs of
surface magnetization based on the local-moment multipoliza-
tion, are connected by time reversal plus a translation along
the [111] surface normal (dashed black arrow). (111) NiO has a
“half-increment-containing” multipolization array. (c) Two in-
equivalent atomic terminations for (001) Fe2O3. The left two
figures correspond to a polar O termination, and symmetrically
equivalent surfaces with equal magnitudes and opposite signs
of surface magnetization are related by a mirror plane containing
[001], plus a fractional translation along [001]. Right: Two
symmetrically equivalent surfaces with the electrostatically stable
termination, which has zero surface magnetization. (001) Fe2O3

has a “zero-containing” multipolization array.
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see that an additional out-of-plane component of surface
magnetization can develop along zk½111� via canting.
Indeed, the surface MPG which corresponds to the identity
plus a single σ0 operation is m0, which is a FM-compatible
MPG as expected.
We now go back to the bulk MSG and check for

symmetries which reverse the surface magnetization while
translating the polar vector n̂ perpendicular to the (111)
surface. This is the case for the symmetry ðΘj1; 1; 1Þ [61].
The action of this symmetry is shown by the dashed black
arrow in the structure on the left in Fig. 9(b), and it connects
the left-hand surface with surface magnetization along
½112̄� to the symmetrically equivalent (111) surface on
the right-hand side with surface magnetization along ½1̄ 1̄ 2�.
Evaluating M̃LM

xz using Eq. (10) in a coordinate system
with xk½1̄ 1̄ 2� and zk½111� and assuming a magnetic
moment of 2μB for Ni2þ yields an uncompensated (111)
surface magnetization of −13ðμB=nm2Þ (þ13ðμB=nm2Þ)
along ½1̄ 1̄ 2� for the left (right) surface in Fig. 9(b). These
two terminations are, in fact, related by a multipoliza-
tion increment along the [111] direction, and it is not
possible to create an atomically smooth (111) termination
with a different magnitude of surface magnetization. This is
the result of (111) NiO having a centrosymmetric half-
increment-containing multipolization array; see Eq. (II A).
In the presence of surface roughness (again, assuming the
idealized nonreconstructed surface), the two energetically
degenerate surfaces in Fig. 9(b) occur with equal
probability and the surface magnetization averaged to
zero.
Roughness-sensitive, uncompensated surface magneti-

zation is also possible for AFM planes corresponding to
zero-containing multipolization arrays. We illustrate this
for the case of (001) Fe2O3. Below the Néel temperature of
approximately 955 K, the Fe moments lie in the x-y plane
with a weak FM canting, but we focus on the low-
temperature phase of Fe2O3 below 260 K where the
moments are oriented along [001] [28]. Fe2O3 is isostruc-
tural with Cr2O3, but its “up-down-down-up” magnetic
order along the [001] direction, shown in Fig. 9(c), does
not break inversion symmetry, and so the linear ME
effect is not allowed (although the symmetry of Fe2O3

does allow for an antiferroically ordered local linear ME
response [32]). Moreover, the full bulk MSG of low-
temperature Fe2O3, R3̄c [167.103], has I symmetry.
Therefore, any uncompensated surface magnetization must
correspond to a centrosymmetric multipolization array.
Searching for the operations in R3̄c which leave n̂k½001�
invariant modulo translations parallel to the surface, we
get the same set of clockwise and counterclockwise
threefold rotations [Eqs. (16) and (17)] about [001] as
for the R3̄0c0 MSG of Cr2O3, so the surface MPG of
(001) Fe2O3, 3, is FM compatible and can host surface
magnetization along [001].

However, if we now search for symmetries in R3̄c which
leave the direction of n̂k½001� invariant but translate n̂
perpendicular to the (001) surface, we get mirror planes
ðσ½100�j0; 0; 12Þ, ðσ½110�j0; 0; 12Þ, and ðσ½010�j0; 0; 12Þ. Note that
these symmetries are analogous to those for (001) Cr2O3 in
Eqs. (18)–(20), except that in this case they do not contain
time reversal. Therefore, for (001) Fe2O3 these operations
do switch the sign of the surface magnetization along
zk½001�, meaning that (001) Fe2O3 surface magnetization is
roughness sensitive, in contrast to roughness-robust surface
magnetization in (001) ME Cr2O3. The mirror plane
operations connecting surfaces with equal magnitude and
opposite signs of magnetization are shown by the dashed
black arrows for the two pairs of inequivalent terminations
in Fig. 9(c).
If we consider the (001) Fe2O3 surface magnetization

from the perspective of its multipolization array, evaluation
of M̃LM

zz assuming a local moment of 5μB for Fe3þ yields
three distinct values each differing by a multipolization
increment: þ24μB=nm2, 0μB=nm2, and −24μB=nm2.
Further [001] translations of the topmost Fe moment on
the (001) surface simply yield a repeat of these three values.
Therefore, the multipolization array for (001) Fe2O3 is
zero-containing. From the left-hand pair of structures in
Fig. 9(c), it is apparent that the finite �24μB=nm2 surface
magnetization corresponds to the polar, oxygen-terminated
(001) surface. The surfaces with positive and negative
magnetization are symmetrically equivalent due to the
mirror plane combined with a [001] translation. On the
right-hand side in Fig. 9(c), we see that the multipolization
value of zero, in fact, corresponds to the electrostatically
stable (001) termination. There are again two such surfaces
which are symmetrically equivalent and connected by a
mirror plane, but in this case the surface magnetization for
both is zero. Therefore, in the case of a zero-containing
centrosymmetric multipolization array, every inequivalent
termination contains a pair of degenerate surfaces with equal
magnitude but opposite sign of surface magnetization. Since
degenerate surfaces occur with equal probability, any finite
contributions would cancel. Experimentally, of course, only
the electrostatically stable surface on the right-hand side
is likely to occur, corresponding to the zero value of the
multipolization array in this case.
In part II, we have built on our work in Ref. [28], which

proposed the local-moment ME multipolization as a bulk
descriptor of uncompensated surface magnetization. We
have further shown that the symmetry of the multipoliza-
tion array (centrosymmetric or noncentrosymmetric)
immediately identifies whether the surface magnetization
is roughness robust or roughness sensitive and additionally
yields a prediction of the quantitative values of surface
magnetization, in the absence of reconstruction, in contrast
to the purely qualitative group-theory procedure in part I.
Next, we move on in part III to characterize the induced
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forms of surface magnetization using symmetry arguments
combined with ab initio calculations.

IV. PART III: INDUCED SURFACE
MAGNETIZATION IN TERMS OF ATOMIC-SITE

MULTIPOLIZATION

In this part, we explore the connection between surface
magnetization and the bulk ME response in detail for
nominally compensated surfaces. In these cases, the
induced surface magnetization is the dominant effect,
since there are no uncompensated magnetic dipoles in
the surface plane. We start by reviewing the bulk ME
responses at first, second, and third order in the electric
field, and outlining how these can be conveniently
described using the multipoles of the magnetization density
introduced in Sec. III A. Next, we discuss as concrete
examples ð1̄20Þ and (100) Cr2O3 and (110) FeF2, showing
how to link the allowed bulk ME and magnetic multipoles
to the induced surface magnetism.

A. Prelude: Local ME responses
and atomic-site multipoles

As introduced in the introduction and Sec. III A, by
definition ME materials show a net change in magnetiza-
tion, δM, when an external electric field E is applied or,
vice versa, exhibit a net change in polarization, δP, in the
presence of an external magnetic fieldH. The lowest-order,
most well-known ME response is the linear ME effect [17],
whereby the net change in magnetization is linear in the
electric field’s strength; see Eq. (8).
The linear ME effect can be conveniently recast in terms

of microscopic indicators, called ME multipoles [25],
corresponding to the entries of the ME multipole tensor
Mij [26] introduced in Sec. III A, Eq. (6). ME multipoles
have a one-to-one link to the linear ME tensor, with a
nonvanishing ij entry of the ME multipole tensor M
implying an ij ME response.
As discussed in Sec. III A, Mij can be decomposed into

a sum of two terms. One is an origin-dependent, multi-
valued contribution, referred to as the “local-moment term”
MLM

ij , and captures the inversion-breaking asymmetries
arising from the arrangement of the atomic magnetic
dipoles. We used this first term in part II as a bulk indicator
of surface magnetism for magnetically uncompensated
surfaces. The other part of Mij is the atomic-site
contributions, which describe the inversion-breaking asym-
metries in the local magnetization density around the
individual ions. In the following, we consider this
atomic-site component, which we recently showed to be
useful in predicting the local linear ME effect [32]. Here,
by local linear ME effect, we denote the change δm in the
local atomic magnetic moment, induced by an external
electric field:

δmi ¼
X
j

αlocij Ej: ð22Þ

A nonzero local ME multipole implies a nonvanishing
corresponding local linear ME response αlocij . Whether this
results in a net linear ME response αij depends on the
arrangement of the local ME multipoles in the unit cell:
Specifically, ferroically ordered ME multipoles entail a net
linear ME response, whereas antiferroically ordered ME
multipoles imply a linear anti-ME response and, in turn, a
vanishing net αij. As a consequence of the previously
mentioned symmetry correspondence between surface mag-
netization and ME responses, we soon see that a ferroic
arrangement of these atomic-site multipoles in the surface
plane indicates the presence of induced surface magnetiza-
tion. On the other hand, whether the sign of in-plane
ferroic order of the atomic-site multipoles switches (does
not switch) between adjacent planes along the direction
perpendicular to the surface distinguishes roughness-sensitive
(roughness-robust) induced surface magnetization.
We also find that atomic-site multipoles of higher order

than those associated with the linear ME effect can be
important in explaining surface magnetism. In particular,
we make the connection to the second-order and third-order
ME responses, where the induced magnetization is bilinear
and trilinear, respectively, in the applied electric field:

δMi ¼
X
jk

βijkEjEk; ð23Þ

δMi ¼
X
jkl

γijklEjEkEl: ð24Þ

Similarly to the linear ME response, the second-order
response, described by the βijk tensor, has been recently
recast in terms of higher-order ME multipoles of the
magnetization density, specifically magnetic octupoles [22];
see Eq. (7). In Appendix E, we report the irreducible
spherical components of the magnetic octupole tensor
Oijk, which is used later in the discussion. Likewise, the
third-order ME response is associated with inversion-
breaking magnetic hexadecapoles, although a detailed
analysis of the connection, to our knowledge, is still missing
in the literature.

B. Induced, roughness-robust surface magnetization

We move now to cases of magnetically compensated
planes in the bulk AFM ground state for which roughness-
robust magnetization is induced at the surface. Again, let
us consider the minimal symmetry requirements for this
scenario in terms of I and Θ symmetries. As discussed in
Secs. III B 1 and III B 2, roughness-robust surface mag-
netization cannot exist for any Miller plane when ðΘj0Þ or
ðΘjtÞ, where t is any translation, is a symmetry of the bulk
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MSG. Therefore, we know right away that we must have
broken Θ in the bulk.
We next consider inversion symmetry I. In Secs. III A

and III B 1, we show that broken I in the bulk MSG is
necessary to obtain the noncentrosymmetric form of the
local-moment multipolization array in Eq. (14) necessary
for uncompensated, roughness-robust surface magnetiza-
tion. However, for surfaces which are magnetically com-
pensated, the local-moment contribution [Eq. (10)] for the
corresponding multipolization component is always zero.
Therefore, for compensated surfaces, there is no contribu-
tion to the surface magnetization from the local-moment
ME multipolization array. The lack of a local-moment
multipolization array contribution for compensated surfa-
ces with induced magnetization implies that I may be
either present or absent in the bulk MSG [62]. We show this
explicitly by leveraging the group-theory analysis, com-
bined with first-principles DFT calculations, for three
example AFM surfaces, two with broken inversion in
the bulk and one with a centrosymmetric bulk MSG. In
addition, we show that, in the roughness-robust case,
induced surface magnetization is associated with atomic-
site multipoles of the magnetization. Specifically, these are
the inversion-broken atomic-site ME multipoles and hex-
adecapoles for ð1̄20Þ and (100) Cr2O3 and inversion-
symmetric atomic-site magnetic octupoles for the (110)
surface of centrosymmetric FeF2.

1. Induced surface magnetization
in ð1̄20Þ and (100) Cr2O3

We first look again at ME AFM Cr2O3, with broken I
andΘ in the bulk MSG R3̄0c0. Bulk Cr2O3 can be described
by a primitive rhombohedral cell [see Fig. 8(a), where we
show also the magnetic dipolar order of Cr atoms] or
likewise by a conventional hexagonal cell, whose top view
is shown in Fig. 8(b). In contrast to the uncompensated
(001) surface we analyze in Sec. III B 1, this time we
examine a surface perpendicular to the (001) plane. In
Fig. 10(a), we indicate the high-symmetry directions in
the hexagonal basal plane. Note that, for surfaces
perpendicular to (001) in hexagonal Cr2O3, the real-space
surface normals and their corresponding Miller planes do
not have the same indices.

ð1̄20Þ surface, symmetry analysis. We focus first on the
ð1̄20Þ surface. The bulk, orthorhombic unit cell which
defines the electrostatically stable ð1̄20Þ surface when tiled
semi-infinitely along the perpendicular [010] direction is
shown in Fig. 11(a). The magnetic lattice consists of two
layers with 12 Cr each stacked along [010]. Note that,
within each layer, half of the Cr magnetic moments are
oriented along [001] in the ground state, and half are
pointed along ½001̄�. Therefore, any flat ð1̄20Þ surface will
be magnetically compensated.
The surface normal n̂ is parallel to [010], which is a

twofold rotational axis in the bulk MSG. If we go through
all space group operations in R3̄0c0 [see Fig. 10(b)] and
select those which leave n̂k½010� invariant modulo trans-
lations ⊥n̂, we find (besides the identity) only the twofold
rotation about the surface normal, ð2½010�j0; 0; 12Þ. Adopting
a rotated basis where xk½010� and zk½001�, the magnetiza-
tion transforms in the following way:

2½010�∶ ðmx;my;mzÞ → ðmx;−my;−mzÞ; ð25Þ

implying that a finite surface magnetization is allowed
along x. Moreover, there are no symmetries in R3̄0c0 which
flip the sign of mx and translate n̂ perpendicular to the
surface, so the surface magnetization is roughness robust.
Note that the only direction which is FM compatible for the
ð1̄20Þ surface, xk½010�, is not parallel to the bulk [001] Néel
vector polarization but, rather, along the surface normal.
Therefore, surface magnetization is allowed by symmetry
to develop only via canting along [010].

(b)(a)

FIG. 10. (a) High-symmetry directions in the basal plane of a
hexagonal cell. (b) Symmetry operations of the 3̄m point group.

(a)

(b)

FIG. 11. Bulk unit cells which can be tiled semi-infinitely to
define the electrostatically stable atomic terminations of the
(a) ð1̄20Þ and (b) (100) surfaces of Cr2O3. The magnetic dipoles
moments of the Cr ions, shown in turquoise, are ordered
according to the bulk AFM ground state with the Néel vector
parallel to [001].
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Interpretation in terms of linear ME effect. Next, we
rederive from a different standpoint the results obtained in
part I using the group-theory-based prescription to identify
surface magnetism. In particular, motivated by the equiv-
alence between surface magnetism and the bulk ME
response, we address the magnetization induced in the bulk
by an electric field parallel to the surface normal. Before
doing so, we remind the reader that bulk Cr2O3 allows for a
net linear ME response identified by the ME tensor

α ¼

0
B@

αxx 0 0

0 αxx 0

0 0 αzz

1
CA; ð26Þ

which is proportional to the ME multipole tensor. Since we
are interested in the local atomic response to an electric field,
here we consider the local linear ME response for the
Cr atoms, which reads

αloc ¼

0
B@

αlocxx ᾱlocxy 0

−ᾱlocxy αlocxx 0

0 0 αloczz

1
CA: ð27Þ

Compared to the bulk response [Eq. (26)], the local ME
tensor shows additional off-diagonal xy entries, since the site
symmetry of the Cr Wyckoff position (3̄0) is lower than the
point group symmetry (3̄0m0). We use overlined symbols in
Eq. (27) to indicate antiferroically ordered local ME multi-
poles (and the components of the ME response associated
with them). Now we consider the local response to an
electric field Ek½010�. The [010] direction makes a 120°
angle with the x axis in the hexagonal setting [Fig. 10(a)];
thus, we conveniently rotate the reference framework to
align the [010] axis along the x axis. In this way, the ME
response along [010] to an electric field parallel to [010]
corresponds to the xx entry of the rotated tensor. The rotation
transformation for αloc reads

α0loci0j0 ¼
X
ij

Ri0iRj0jα
loc
ij ; ð28Þ

where the prime superscript refers to the rotated framework
and

R ¼

0
B@

1
2

ffiffi
3

p
2

0

−
ffiffi
3

p
2

1
2

0

0 0 1

1
CA ð29Þ

is the matrix representing a clockwise rotation of angle
θ ¼ 120°. Equation (28) implies α0locxx ¼ αlocxx ; thus, the
magnetic moment induced along x0k½010� is δmx0 ¼ αlocxx E.
This result is formally equivalent to the surface magnetization
predicted by group-theory arguments earlier in this section.

(100) surface, symmetry analysis. The (100) surface
of chromia, similarly to the (1̄20) surface, is obtained by
cutting bulk Cr2O3 along a plane perpendicular to the basal
hexagonal plane. Its normal n̂k½210� is related to the normal
of (1̄20), that is, [010], by a clockwise 90° rotation about
the z axis; see Fig. 10(a). Following the group-theory-based
guidelines to identify whether this surface allows for
roughness-robust surface magnetism, we first identify
which symmetry operations among those of the magnetic
space group R3̄0c0 of chromia [Fig. 10(b)] leave n̂ invariant
up to a fractional translation perpendicular to n̂ itself.
By inspection, one finds that the operations fulfilling
this requirement are the identity E and the mirror plane
perpendicular to [010] combined with time reversal, σ0½010�.
After defining a rotated reference framework (x, y, z), with
xkn̂, yk½010�, and zkz, the action of σ0½010� on a generic

magnetic moment m ¼ ðmx;my;mzÞ is

σ0½010�∶ ðmx;my;mzÞ → ðmx;−my;mzÞ; ð30Þ

which leaves mx and mz invariant. Thus, (100) Cr2O3 is
compatible with ferromagnetism both along the surface
normal and along the [001] direction, within the surface
plane. This is distinct from the (1̄20) surface analyzed
earlier, which was compatible with ferromagnetism only
along the surface normal.

Interpretation in terms of linear ME response. Now, we
interpret the surface magnetism in terms of the bulk linear
ME response to an electric field along the (100) surface
normal [210]. Following the argument discussed above for
the (1̄20) surface, we take the local linear ME tensor αloc

and we apply a clockwise rotation of angle θ ¼ 30° in order
to align the [210] direction to x. We find α0loc ¼ αloc, which
implies

δmx ¼ αlocxx E;

δmy ¼ −ᾱlocxy E;

δmz ¼ 0: ð31Þ

After summing over the Cr atoms on the topmost surface
atomic layer, δmy vanishes, since ᾱlocxy is antiferroically
ordered, leaving only a nonvanishing net δmx. Thus, using
the bulk linear ME response we are able to explain only the
component of the surface magnetization perpendicular to
the surface, and we are not able to predict the component
parallel to the surface, along [001]. This feature comes
from the local ME response being isotropic in plane,
which yields a contribution of surface magnetization
perpendicular to the surface for any ðhk0Þ surface,
perpendicular to the basal plane. In order to explain
components of the magnetization parallel to the surface,
we need to go beyond the linear ME response and account
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for higher-order, anisotropic responses, which we dis-
cuss next.

Higher-order ME-induced contributions. As discussed in
previous sections, based on symmetry arguments we
predict that the (1̄20) and (100) surfaces of Cr2O3 are
not equivalent concerning the allowed components of net
surface magnetization: Specifically, the (1̄20) surface is
compatible with ferromagnetism only along [010],
perpendicular to the surface, whereas the (100) surface
allows for ferromagnetism both along the [210] direction,
perpendicular to the surface, and along the [001] direction,
parallel to the Néel vector. As examined earlier in
Secs. IV B 1 a and IV B 1 c, the isotropic linear ME
response explains the component of surface magnetization
perpendicular to the surface but does not explain the
component parallel to zk½001�, since a zx linear ME
response is forbidden by symmetry in the bulk. In order
to understand, in terms of ME responses, why such a
component of the surface magnetization parallel to [001]
exists and why it is allowed only in the family of (100) and
equivalent surfaces, we need to analyze higher-order ME
responses, beyond the linear one. For clarity, in the
following, we adopt the right-handed coordinate system
with xk½100�, yk½120�, and zk½001�, shown in Fig. 10(a). As
such, x lies on the twofold rotation axis 2½100� of the 3̄m
point group, whereas y is on the mirror plane σ½100�, and z is
the 3̄ roto-inversion axis [see Fig. 10(b)].
We start by analyzing the second-order ME response

which, as mentioned earlier in Sec. IVA, is conveniently
recast in terms of magnetic octupoles. In Cr2O3, the

octupoles allowed by symmetry are O3,Q
ðτÞ
z2
, which follow

a (þþ −−) order [here, the signs refer to the octupole
component on Cr1, Cr2, Cr3, and Cr4 atoms as labeled in

Fig. 8(a)], and O−3, O0, and tðτÞz , which follow a (þ −þ−)
order. Note that here we follow the same naming con-
vention for magnetic octupoles as in Ref. [22]. Both
families of octupoles order antiferroically; hence, despite
contributing to the local second-order ME response, they
do not provide any net response. The implication for
surface magnetism is that an induced local atomic magnetic
moment, bilinear in the effective electric field generated
by the surface termination, is expected for the Cr atoms at
the surface. However, for (100) and ð1̄20Þ surfaces these
induced atomic magnetic moments arrange antiferroically,
since the magnetic octupoles of the four Cr atoms appear-
ing at the surface plane are antiferroically ordered and, thus,
do not yield any net surface magnetization.
Next, we consider the third-order ME response. To

simplify the discussion, we do not describe in detail the
induced local atomic response but limit ourselves to the net
third-order ME response, for which the induced net mag-
netization δM is trilinear in the external electric field E:

δMi ¼
X
jkl

γijklEjEkEl; ð32Þ

with γijkl the rank-4 third-order ME response tensor. Note
that, as mentioned earlier, γijkl is associated with magnetic
hexadecapoles, defined as Hijkl ¼

R
Ω rirjrkμlðrÞd3r, but,

since a detailed analysis of such connection is so far missing
in the literature, here we refer simply to the third-order ME
response instead.
Since γijkl breaks inversion symmetry, such a response is

symmetry allowed in noncentrosymmetric Cr2O3. As we
want to explain the surface magnetization along the z
(k½001�) direction in the (100) and symmetry-equivalent
surfaces, we focus on the net magnetization induced along z
by a general electric field in the basal plane; thus, we
consider γzjkl, with j ¼ fx; yg, k ¼ fx; yg, and l ¼ fx; yg.
We use theMTENSOR utility of the Bilbao Crystallographic
Server [63–65], to write γzjkl in terms of its independent
parameters as

γzxkl ¼

0
B@

0 czxxy czxxz
czxxy 0 0

czxxz 0 0

1
CA;

γzykl ¼

0
B@

czxxy 0 0

0 −czxxy czxxz
0 czxxz 0

1
CA: ð33Þ

First, we analyze the ð1̄20Þ surface. We note that x (k½100�)
is symmetry equivalent to the [010] direction normal to
ð1̄20Þ [see Fig. 10(a)], since the two directions are connected
by a 120° rotation; thus, the net magnetization along z
induced by an electric field along x is equivalent to the
surface magnetization along z for the ð1̄20Þ surface. Since
γzxxx ¼ 0, our tensor analysis predicts no surfaceMz for this
surface, in agreement with what we obtained earlier in
Sec. IVB 1 a from group-theory arguments.
Next, we consider any (hk0) surface, with normal vector

n̂ lying in the hexagonal basal plane [see Fig. 10(a)]. For
convenience, we apply a rotation to the tensor γ, such that it
aligns the electric field Ekn̂, perpendicular to the surface,
with the x axis, similarly to our earlier procedure for the
linear ME contribution. To keep the discussion general, we
apply a clockwise rotation R about the [001] axis, for a
generic angle θ:

R ¼

0
B@

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

1
CA: ð34Þ

The tensor in the rotated framework is computed as
follows:
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γ0i0j0k0l0 ¼
X
ijkl

Ri0iRj0jRk0kRl0lγijkl: ð35Þ

As we are interested in the zxxx response in the rotated
framework, we set i0 ¼ z and j0 ¼ k0 ¼ l0 ¼ x. From
Eqs. (33)–(35), we obtain

γ0zxxx ¼ ð3 sin θcos2 θ − sin3 θÞczxxy
¼ − sin θð4sin2 θ − 3Þczxxy: ð36Þ

We note that, in contrast to the linear ME response, the
third-order response is anisotropic in plane. We show γ0zxxx
in Fig. 12, where we arbitrarily set czxxy to 1. We note that
γ0zxxx as a function of θ is periodic with period 120°, arising
from the bulk threefold rotational symmetry. In addition,
importantly, γ0zxxx ≠ 0 for the (100), (010), and (1̄10)
surfaces, which correspond to θ ¼ 30°; 90°; 150°, respec-
tively, whereas γ0zxxx ¼ 0 for the (21̄0), (110), and (1̄20)
surfaces, corresponding to θ ¼ 0°; 60°; 120°, respectively.
Thus, based on the analogy between bulk ME responses
and surface magnetism, the anisotropic third-order ME
response explains the behavior of the surface magnetization
along z that we predicted earlier using group theory for the
(100) and (1̄20) surfaces.

Ab initio calculations. So far, we have used symmetry
arguments to show that surface magnetization can be
induced even when the magnetic dipoles in the plane are
magnetically compensated. Now, we corroborate our pre-
dictions using ab initio calculations. This subsection has
two purposes: first, to demonstrate with quantitative DFT
calculations that a finite magnetization, obtained via cant-
ing of the magnetic moments, on the ð1̄20Þ and (100)
surfaces of Cr2O3 lowers the total energy compared to the

surface with zero magnetization and, second, to strengthen
the link between surface magnetization and bulk ME
effects by testing with first-principles calculations whether
the sign change of the ME response upon bulk ME domain
reversal, a core ingredient of ME domain selection using
ME annealing [2,55], has its counterpart in surface magnet-
ism. If the magnetization induced on a surface can be
indeed interpreted as a consequence of a ME effect from an
effective electric field due to the surface termination, we
expect the surface magnetization to reverse in the opposite
bulk magnetic domain. To test this assumption, we consider
both (1̄20) and (100) surfaces obtained from both bulk
magnetic domains, as shown in Fig. 13. We refer to these
domains as the in-pointing and the out-pointing domains,
depending on whether the magnetic moments of each
pair of nearest-neighbor Cr atoms point toward each other
(“in”) or away from each other (“out”).
In our DFT calculations, whose technical details are

described in Appendix A, we fix the Cr moments in
the center two (four) layers of our four-layer (six-layer)
ð1̄20Þ-oriented [(100)-oriented] slab along the bulk [001]
direction while inducing a surface magnetization for the
outermost layers on the top and bottom of the slab by
canting the moments along the [010] ([210]) surface
normal, with moments on the top and bottom surfaces

FIG. 12. Third-order ME response γzxxx to an electric field
pointing along any direction in the basal plane of the conventional
hexagonal cell. θ identifies the angle between the direction of the
electric field and the x axis.

(a) (b)

Vacuum

Vacuum

FIG. 13. (a) Top view of the ð1̄20Þ Cr2O3 surface for the out-
pointing (top) and in-pointing (bottom) domain. (b) Side view of
the (100) Cr2O3 surface for the out-pointing (top) and in-pointing
(bottom) domain.
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canting either both toward vacuum or both toward bulk,
as shown in the top in Figs. 14(a) and 14(b). The canting
angle is defined with respect to the [001] axis. We define
negative angles as a canting toward the bulk and positive
angles as a canting toward vacuum.
The change in total energy per formula unit with respect

to the energy with 0° canting (no out-of-plane surface
magnetization) and the net out-of-plane surface magneti-
zation, as a function of canting angle, for both domains,
are shown in the bottom in Figs. 14(a) and 14(b), for the
ð1̄20Þ and (100) surfaces, respectively. Beginning with the
ð1̄20Þ case [Fig. 14(a)], first we notice that, rather than an
energy minimum for zero canting, the slab energy instead
reaches a minimum when the surface moments are canted
around 0.25° with respect to [001]. While the energy
difference is tiny (< 1 μeV), the penalty energy for
constraining the moments (defined in Appendix A),
plotted with red stars and green circles for the in-pointing
and out-pointing domains, respectively, is orders of
magnitude smaller. This, combined with our stringent
convergence criterion (we stop the electronic minimiza-
tion when energy differences between successive itera-
tions differ by 10−8 eV or less), makes us confident in the
physical significance of the energy lowering. For 0.25°
canting, we obtain a ð1̄20Þ surface magnetization with
magnitude ∼0.12μB=nm2, calculated by taking the pro-
jections of all 12 Cr surface moments onto the [010]

normal direction and dividing by the ð1̄20Þ surface area.
Second, we remark that the energy curves corresponding
to the in-pointing and the out-pointing domains (red
and green stars) are the mirror images of one another with
respect to zero canting angle; hence, their minima
correspond to oppositely oriented surface magnetiza-
tions. This implies that the surface magnetization reverses
if we switch from one domain to the other, as we expect
from the interpretation in terms of ME responses.
The results for the (100) surface, shown in Fig. 14(b),

are qualitatively similar to those for ð1̄20Þ but quantita-
tively slightly different, as the canting perpendicular to the
surface is predicted to be approximately 0.5°. Although
the induced moment per Cr correspondingly doubles for the
(100) surface compared to that for (1̄20), the density of
surface Cr per unit area decreases, such that the out-of-
plane surface magnetizations in units of μB=nm2 for the
ð1̄20Þ and (100) surfaces are almost identical, as can be
seen in Fig. 14. Again, the surface magnetizations for the
two opposite domains on the (100) surfaces are oppositely
aligned with respect to each other, as expected based on the
connection to the ME response.
We now comment on the additional surface magnetiza-

tion along [001] which we expect for the (100) surface
based on our symmetry analysis in Secs. IV B 1 c and
IV B 1 e. In our DFT calculations, we impose a spin canting
perpendicular to the surface, and we constrain only the

(a) (b)

FIG. 14. Energy ΔE per formula unit as a function of the canting angle for the in-pointing (green) and out-pointing (red) domain, and
net out-of-plane surface magnetization as a function of the canting angle for (a) ð1̄20Þ and (b) (100) Cr2O3 surfaces. Penalty energies for
in and out domains are plotted with green circles and red stars, respectively. Dashed lines in the bottom of both (a) and (b) identify the
surface magnetization corresponding to the canting angle that minimizes the energy. Note that, for the (100) surface, an in-plane
component of surface magnetization along [001] is also allowed to develop; we depict the difference in magnitudes of the [001]
components of sublattice magnetization by the different colored arrows for the surface moments in the cartoon of the slab.
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direction of the atomic magnetic dipoles to be in the plane
spanned by the surface normal and the [001] directions,
but we do not constrain their magnitude. In this way, we,
in principle, allow the magnetic moments to arrange in a
way that develops a net component along [001] when
summed over the Cr atoms. As discussed in Sec. IV B 1 a,
for the case of the ð1̄20Þ surface, finite magnetization along
[001] is forbidden by the symmetry of the MPG. Thus, the
sublattice projections along [001] remain equivalent, as
indicated by the same-color moments for the slab cartoon in
Fig. 14(a). The only surface magnetization induced is that
along the ½1̄20� surface normal, as plotted in the bottom in
Fig. 14(a). On the other hand, based on the (100) surface
MPG, we expect an additional component of surface
magnetization parallel to the Néel vector along [001].
Indeed, this is confirmed by our DFT calculations, in
which the Cr magnetic moments oppositely aligned
along [001] on the top and bottom layers of the surface
become inequivalent and show a difference in magnitude of
approximately 0.03μB (depicted pictorially by the different-
colored surface sublattices) in Fig. 14(b). The sign of the
surface magnetization along [001] also switches with
opposite domains, as expected from analogy to the third-
order ME response. The subsequent in-plane induced
surface magnetization is about half the size of the out-
of-plane surface magnetization corresponding to the ener-
getic minima in Fig. 14(b).

Summary. Before ending this section, we comment briefly
on the practical relevance of our findings for ð1̄20Þ and
(100) Cr2O3. Admittedly, the value of induced surface
magnetization, 0.12μB=nm2, is small. We stress, however,
that our calculations are not a rigorous indicator of the
quantitative, experimental induced magnetization that
one would expect. Our goal was a proof-of-principle
demonstration of energy lowering for a finite surface
magnetization rather than determination of the ground-
state magnetization for a ð1̄20Þ or (100) surface. For thicker
slabs with a larger number of central bulklike layers, it is
likely that a surface could be stabilized further by canting
the moments for several of the outermost layers rather than
just a single layer, thus modifying the total magnetization
compared to the values we obtain here. Additionally, for
exchange bias applications where the total surface mag-
netization summed over all unit cells at the FM-AFM
interface is more relevant than the surface magnetization
per unit cell, the small induced magnetization on ð1̄20Þ
and (100) Cr2O3 could still have substantial effects.
Encouragingly, recent independent experiments using mag-
netic circular dichroism and magnetotransport have
actually detected a nonzero surface magnetization on the
nominally compensated surfaces of Cr2O3 perpendicular to
(001) [14,66], suggesting that our theoretical prediction of
induced surface magnetization in this case can be be
experimentally detected.

Moreover, while the magnitude is small compared to
the uncompensated case in Sec. III B 1, we still expect this
surface magnetization to be much larger than the bulk
magnetization induced by the transverse ME effect
(E⊥½001�) for realistic electric field strengths. Previous
first-principles calculations of the lattice-mediated contri-
bution to the transverse ME response indicate that, for a
typical electric field strength of 1 V=nm, the induced
magnetization in Cr2O3 is about 0.002μB per Cr along
E [32,67], corresponding to an approximately 0.04° canting
angle. In contrast, the surface magnetization toward the
surface normal which we find for the ð1̄20Þ and (100)
surfaces of chromia for canting angles of 0.25° and 0.5°
translates to an induced 0.011μB and 0.022μB, respec-
tively, per Cr ion. Thus, the surface magnetization per Cr
induced by a vacuum-terminated surface is substantially
larger than that induced due to the bulk ME effect in
Cr2O3 for a reasonably sized electric field. This is not
surprising when considering that the effective electric
field of a vacuum-terminated boundary should correspond
roughly to the scale of the material crystal field, which can
be orders of magnitude larger than an experimentally
achievable electric field [2].

2. Induced surface magnetization
in (110) surface of FeF2

We next consider induced, roughness-robust surface
magnetization in a centrosymmetric AFM. We choose
FeF2, a rutile-structure insulating AFMwith a Néel temper-
ature of approximately 80 K [68], for a few reasons. First,
induced magnetization on the (110) FeF2 surface was
recently detected experimentally by analyzing the giant
magnetoresistance at the interface of an FeF2-Cu-Co spin
valve [13]. Second, as mentioned in the introduction, the
(110) surface of FeF2 as well as isostructural (110) MnF2
exhibit large exchange bias experimentally, despite the fact
that these surfaces are magnetically compensated when
considering the bulk AFM ground order [8,11,19,69].
Many possible explanations have been proposed, including
structural matching between the AFM and FM surfaces,
noncollinear coupling at the interface, alignment of inter-
face moments during field cooling, or piezomagnetism-
generated uncompensated interface moments [8,11,19].
However, given the recent theoretical and experimental
evidence that these surfaces have a symmetry-based equi-
librium magnetization, a connection between induced sur-
face magnetization and the exchange bias for (110) FeF2
seems likely.
FeF2 crystallizes in the centrosymmetric tetragonal rutile

structure described by the P42=mnm space group (4=mmm
point group). Its unit cell, shown in Fig. 15(a), contains two
formula units. The two Fe atoms sit at (0, 0, 0) and (1=2,
1=2, 1=2) and are octahedrally coordinated by the sur-
rounding F atoms. The FeF6 octahedra are elongated along
one axis [see Fig. 15(b)], and, importantly, for the two Fe
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atoms in the unit cell they are rotated by 90° about the [001]
direction with respect to each other. Hence, despite belong-
ing to the same Wyckoff orbit (2a) and being thus
symmetry equivalent, the two Fe atoms are not connected
by any pure translation. This has an important consequence
when the magnetic ordering is taken into account, since the
inequivalent fluorine environment of the Fe atoms makes
the AFM order of FeF2, described by the magnetic space
group P402=mnm0, break time-reversal symmetry.

(110) surface, symmetry analysis. The bulk unit cell
defining the electrostatically stable (110) surface consists
of two Fe layers; see Fig. 16(a). Figure 16(b) shows the

eight-layer slab used in our DFT calculations. Each layer
stacked along the [110] direction contains one Fe ion per
unit cell from the corner of the bulk unit cell and one from
the center sublattice, such that the (110) surface is mag-
netically compensated with oppositely pointed in-plane
moments. We now find the symmetries of the bulk MSG
which leave n̂k½110� invariant modulo translations parallel
to the surface. Such symmetry analysis for the existence of
(110) surface magnetization was already discussed in
Ref. [13], but we repeat it here briefly. In addition to the
trivial identity operation, these are time reversal combined
with a twofold rotation ð20½110�j0Þ about the ½110� surface
normal, as well as two mirror planes ðσ½001�j0Þ and
ðσ0½11̄0�j0Þ. This corresponds to the FM-compatible surface

MPG 20mm0. We now check how magnetization transforms
under these operations, taking a rotated Cartesian basis
with xk½110�, yk½11̄0�, and zk½001�:

20½110�∶ ðmx;my;mzÞ → ð−mx;my;mzÞ; ð37Þ

σ0½11̄0�∶ ðmx;my;mzÞ → ðmx;−my;mzÞ; ð38Þ

σ½001�∶ ðmx;my;mzÞ → ð−mx;−my;mzÞ: ð39Þ

Equations (37)–(39) indicate that the only direction along
which a magnetization can develop is zk½001�. Thus, in
contrast to ð1̄20Þ and (100) Cr2O3, for which out-of-plane
surface magnetization developed via a relativistic canting
of the surface moments perpendicular to the bulk Néel
vector direction, for (110) FeF2 the surface magnetization
develops only parallel to the bulk Néel vector.
In order for a finite magnetization to develop parallel

to the Néel vector, the moment magnitudes of the two
sublattices in the surface layer must necessarily become
inequivalent. This is allowed by symmetry, since none of
the operations (37)–(39) in the surface MPG connect the
corner sublattice moment to the center sublattice moment
for any (110) layer. Moreover, as pointed out in Ref. [13],
we can understand intuitively why the symmetry-allowed
imbalance in sublattice magnitude might be particularly
enhanced for the vacuum-terminated surface layers [layers
1 and 8 in Fig. 16(b)] by considering the F coordination of
the surface Fe ions. This is more easily seen by rotating the
(110) slab such that the [001] Néel vector polarization
points into the page, as done in Fig. 16(a). From this, it is
apparent that, for the electrostatically stable (110) surface,
the upper F atom for the “corner” Fe sublattice is cut off
(indicated by its greater transparency in the figure),
whereas the “center” Fe sublattice retains its full bulk
coordination of F ions. Thus, the chemical environments
around the Fe ions on the surface layers are strongly
dissimilar, implying that the inequivalence in the magni-
tude of their moments will be large for the surface layers.

(a) (b)

FIG. 15. (a) Unit cell and magnetic ordering of FeF2. Fe and F
atoms are identified by gold and gray spheres, respectively.
(b) Top view of the unit cell of FeF2, with FeF6 octahedra
highlighted.
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FIG. 16. Induced magnetization for (110) FeF2. (a) Unit cell
defining electrostatically stable (110) surface. The faded-out F
ion above the dotted line for the “corner,” or Fe1 sublattice, is cut
off in the electrostatically stable termination. (b) [110]-oriented
slab with eight Fe layers (16 Fe ions) used in our DFT
calculations. (c) Top: site-projected magnetization as a function
of layer number for the corner Fe sublattice. Middle: the same for
the “center” Fe sublattice. Bottom: surface magnetization in
μB=nm2 for each layer.

SURFACE MAGNETIZATION IN ANTIFERROMAGNETS: … PHYS. REV. X 14, 021033 (2024)

021033-23



We note that, in contrast to the ð1̄20Þ and (100) surfaces
of Cr2O3, a surface magnetization in (110) FeF2 does not
arise because of spin canting; thus, the mechanism is
nonrelativistic in nature. From a symmetry point of view,
the surface magnetization in (110) FeF2 arises because the
equivalence of the Fe sublattices is lifted by the symmetry
lowering due to the surface effective electric field. We
remark that the cases of surface magnetism arising from
spin canting and from sublattice-equivalence lifting can be
distinguished also with group-theory-based arguments, as
explained in Ref. [2].

Interpretation in terms of ME effects. Next, we show how
the surface magnetism for the (110) surface of FeF2 is
interpreted in terms of ME effects. Since FeF2 is centro-
symmetric, with the Fe atoms at inversion centers, a linear
ME response, both local and net, is forbidden by symmetry.
Instead, the lowest-order ME response is the second-order
ME effect, in which the induced magnetization is bilinear in
the applied electric field, M ∝ βE ⊗ E; see Eq. (23). In
FeF2, this manifests both as a local, atomic response and as
a bulk net effect due to the breaking of the time-reversal
symmetry. Following Ref. [22], the local second-order
ME response can be conveniently interpreted in terms of
magnetic octupoles. FeF2, similarly to MnF2, allows for
ferroically ordered O−2 octupoles and antiferroically
ordered O0 octupoles. Additionally, FeF2 hosts ferrotype

x2 − y2 quadrupoles of the toroidization density, QðτÞ
x2−y2 ,

and antiferrotype z components of the moment of the

toroidization density, tðτÞz (note that here we follow the
naming convention of Ref. [22]). Overall, the full magnetic
octupole tensor (see Appendix E) at individual Fe sites
in FeF2 reads

Oxjk¼

0
BBB@

0 0 − 1
10
O0þ 1

3
tðτÞz

0 0 O−2− 1
6
QðτÞ

x2−y2

− 1
10
O0þ 1

3
tðτÞz O−2− 1

6
QðτÞ

x2−y2 0

1
CCCA;

Oyjk¼

0
BBB@

0 0 O−2− 1
6
QðτÞ

x2−y2

0 0 − 1
10
O0þ 1

3
tðτÞz

O−2− 1
6
QðτÞ

x2−y2 − 1
10
O0þ 1

3
tðτÞz 0

1
CCCA;

Ozjk¼

0
BBB@

− 1
10
O0− 2

3
tðτÞz O−2þ 1

3
QðτÞ

x2−y2 0

O−2þ 1
3
QðτÞ

x2−y2 − 1
10
O0− 2

3
tðτÞz 0

0 0 1
5
O0

1
CCCA: ð40Þ

We note that, besides being symmetric upon exchange of
j and k by construction, Oxjk and Oyjk are equivalent on
exchange of x and y, due to the tetragonal symmetry (with
fourfold rotation axis parallel to z) of both the crystal and

the magnetic structure. For the same reason, Ozjk is not
equivalent to Oxjk and Oyjk.
As a next step, we consider the local second-order ME

response. The Fe magnetic moments δm induced by an
external electric field E are given by

δmi ¼
X
jk

βlocijkEjEk: ð41Þ

The tensor βlocijk describes the local second-order ME
response and has the same symmetry properties as the
magnetic octupole tensor [22]; thus, it can be written in
terms of independent parameters in the following way:

βlocxjk ¼

0
BB@

0 0 bxxz
0 0 bxyz

bxxz bxyz 0

1
CCA;

βlocyjk ¼

0
BB@

0 0 bxyz

0 0 bxxz

bxyz bxxz 0

1
CCA;

βloczjk ¼

0
BB@

bzxx bzxy 0

bzxy bzxx 0

0 0 bzzz;

1
CCA; ð42Þ

where the overlined (nonoverlined) symbols identify the
antiferroic (ferroic) responses, i.e., those that have opposite
(same) sign on the two Fe atoms. Following again the
analogy between surface magnetism and ME effects, in
order to study the magnetism of the (110) surface, we
analyze the bulk ME response to an electric field along
the [110] direction. Previously, we showed that this can be
done by applying a rotation to the tensor, such that it brings
the electric field from the [110] direction to the x direction.
Thus, we apply a clockwise rotation R of angle θ ¼ 45°
about the z axis:

R ¼

0
BB@

1ffiffi
2

p 1ffiffi
2

p 0

− 1ffiffi
2

p 1ffiffi
2

p 0

0 0 1

1
CCA; ð43Þ

to the rank-3 tensor βloc, which accordingly transforms as
follows:

β0loci0j0k0 ¼
X
ijk

Ri0iRj0jRk0kβ
loc
ijk: ð44Þ

In the rotated framework, we are interested in the atomic
magnetic moments induced by an electric field along x.
From Eqs. (41)–(44), we obtain
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δmx ¼ β0locxxxE2 ¼ 0;

δmy ¼ β0locyxxE2 ¼ 0;

δmz ¼ β0loczxxE2 ¼ ðbzxx þ bzxyÞE2; ð45Þ

which implies that the only second-order ME response
allowed in this case is off diagonal and that it does not
induce any spin canting but rather a change in size of the
zero-field magnetic moment along the Néel direction
zk½001�. Interestingly, δmz contains both a contribution

from the antiferroically ordered O0 and tðτÞz and the

ferroically ordered O−2 and QðτÞ
x2−y2 . As a consequence,

the local magnetic moments induced on the two Fe atoms,

δmzðFe1Þ ¼ ðjbzxxj þ bzxyÞE2;

δmzðFe2Þ ¼ ð−jbzxxj þ bzxyÞE2; ð46Þ

are different in size. Thus, the second-order zxx ME
response in this case is a ferri-ME response. We remark
that the different response of the two Fe atoms stems from
their geometrically inequivalent fluorine environment, which
is also crucial for the time-reversal symmetry breaking and,
consequently, of the nonrelativistic spin splitting of the
electronic energy bands, similarly to MnF2 [39]. Since
the (110) surface magnetization can be interpreted in terms
of a second-order bulk ME response to an electric field
perpendicular to the surface, our results suggest a net
magnetic moment parallel to the (110) surface, which is
due to inequivalent antiparallel magnetic moments, with
different magnitude on the two Fe atoms, in agreement with
the group-theory-based analysis discussed earlier.

Ab initio calculations. Next, we confirm our group-theory
and second-order ME tensor analyses with first-principles
DFT calculations, the details of which are described in
Appendix C. First, we confirm that a finite surface
magnetization does indeed develop along the [001] in-
plane direction for the (110) surface. We plot our calcu-
lated, site-projected Fe magnetization (in μB) as a function
of layer number for corner and center Fe sublattices on the
top and center subplots, respectively, in Fig. 16(c). The
corresponding “layer magnetization” in μB=nm2, calculated
by summing the two sublattice moments in each layer and
dividing by the cross-sectional (110) surface area, is plotted
in the bottom in Fig. 16(c). For central layers 3–6, the
magnitudes of the oppositely pointed moments are nearly
constant and identical in size (3.12–3.13μB), and, corre-
spondingly, the bulk layers are almost perfectly compen-
sated as seen in the bottom plot. For surface layers 1 and 8,
however, we see an appreciable 0.008μB difference in
sublattice magnitudes, corresponding to a negative surface
magnetization of −0.035μB=nm2 along [001]. For our
choice of AFM domain [Fig. 15(a)], this corresponds to a
larger moment magnitude on the center Fe sublattice.

Clearly, the precise numerical values for all three subplots
in Fig. 16(c) are dependent on the specifics of the DFT
parameters, such as the Hubbard U and Hund J as well as
the radius of the integration sphere used to calculate the
site-projected magnetization (all of which we report in
Appendix C). Nevertheless, our results provide an unam-
biguous, quantitative confirmation of the symmetry analysis.
Second, we confirm our predictions for the local and net

bulk ME response with additional ab initio calculations on
bulk FeF2. These are carried out by freezing in infrared-
active phonon modes polarized along the [110] direction,
corresponding to the atomic displacements induced by an
electric field pointing along [110]. For more details on
computational methods and parameters, see Appendix C.
According to our calculations, FeF2 shows seven infrared-
active phonon modes. Six of these transform as the Eu
irreducible representation of the 4=mmm point group: They
are polarized in the ðx; yÞ plane, identified by the [100] and
[010] directions (see Fig. 15) and are grouped into three
families of degenerate modes. The remaining infrared-
active mode transforms as the A2u irreducible representa-
tion of 4=mmm; thus, it is polarized along the z direction.
Since we are interested in the response to an electric field
along the [110] direction, here we consider the contribution
of the Eu modes to the ME response. As a proof of concept,
we focus on the contribution of the highest-frequency Eu
mode. We construct an appropriate linear combination of
the two degenerate modes such that the resulting mode is
polarized along [110]. Subsequently, we freeze this mode
into the structure and study the induced magnetic moments
on the Fe atoms as a function of the mode’s amplitude.
Figure 17 summarizes our results. Black and red data points
show the induced magnetic moment along z for the two Fe
atoms. The response is quadratic in the mode amplitude and
has a different magnitude for the two Fe atoms, thus
rendering them inequivalent, as predicted by Eq. (46).

FIG. 17. Change in the magnetic moment along z on the two
Fe atoms in FeF2 (red squares and black circles) and sum of the
Fe magnetic moments along z (black triangles), induced by an
infrared-active phonon mode polarized along [110].
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The difference in responses on the Fe sites results in a net
induced magnetic moment when summing over the two
ions, as shown by the blue data points in Fig. 17, in
agreement with our tensor and symmetry analyses above.

Summary. Before concluding our discussion of roughness-
robust, induced surface magnetization, we point out one
additional exciting implication of surface magnetization for
AFMs such as FeF2, in addition to its likely connection to
exchange bias. A recently identified class of AFMs,
namely, altermagnets, exhibiting nonrelativistic spin-split
band structures along particular directions in reciprocal
space [39,49,50,70] has generated great excitement due to
their potential use in applications such as spin-charge
conversion. Altermagnets require broken ΘI symmetry
in the bulk MSG, and, thus, linear ME AFMs with
preserved ΘI , such as Cr2O3, are not altermagnets [71],
whereas centrosymmetric FeF2 and its isostructural
counterpart MnF2 [49,50] are.
Crucially for us, the directions in the Brillouin zone

along which nonrelativistic spin splitting is allowed cor-
respond to k points with a little group of k (the subgroup of
the MPG leaving k invariant modulo a reciprocal vector)
that does not reverse the spin direction [50]. Note that this is
similar to the definition of a FM-compatible surface MPG,
with the surface normal n̂ corresponding to the wave
vector k. Of course, there is not a one-to-one correspon-
dence, first because, unlike n̂, k switches sign with time
reversal, and, second, because real and reciprocal space
directions are not parallel for nonorthogonal lattices.
For cubic and tetragonal AFMs such as FeF2, however,
the paths in reciprocal space with nonrelativistic spin
splitting coincide exactly with surfaces allowing induced
surface magnetization. Specifically, in FeF2 and MnF2,
the high-symmetry paths with nonrelativistic spin splitting
are Γ-M and Z-A, corresponding to k ¼ ðu; u; 0Þ and
k ¼ ðu; u; 1=2Þ, as well as parallel paths at other constant
kz values. These directions are parallel to the real space
(110) surface normal for which we and previous authors
have demonstrated the existence of roughness-robust
induced surface magnetization. Therefore, experimental
detection of surface magnetization could be an alternative
indicator of nonrelativistic spin splitting, and vice versa.

C. Induced, roughness-sensitive surface magnetization

We note that it is also possible to have AFM surfaces that
have an induced magnetization which averages to zero in
the presence of roughness. Given the combination of small
surface magnetization in the induced case and roughness
sensitivity, this fourth category of surface magnetization is
likely not very useful. Moreover, thus far, we have not
found an explicit material example of this category.
We nevertheless discuss the symmetry and multipole
requirements for roughness-sensitive, induced surface

magnetization and leave the analysis of a concrete example
for future work.
First, let us note the minimal bulk symmetry require-

ments in terms of I and Θ which allow for induced,
roughness-sensitive surface magnetization. Based on analo-
gous arguments to those given in Sec. IV B, this surface
magnetization can occur in AFMs with either broken or
preserved inversion symmetry I in the bulk. Moreover,
analogously to the case of roughness-sensitive, uncompen-
sated surface magnetization, roughness-sensitive induced
surface magnetization can exist in AFMs with ðΘjtÞ
preserved in the bulk, as long as there is a symmetry
ðΘjt0Þ that combines Θ with a fractional translation t0
perpendicular to the surface in question.
Let us now consider the form of the bulk magnetic

multipoles which should correspond to this category of
surface magnetization. Because we are dealing with
magnetically compensated surfaces, the local-moment
ME multipolization tensor must be zero; therefore, as
explained in Sec. IVA, an induced surface magnetization
should instead correspond to ferroically ordered atomic-
site multipoles in the surface plane. The rank of the
relevant multipoles, that is, whether they are atomic-site
ME multipoles, magnetic octupoles, hexadecapoles, or
higher rank, depends on the bulk MSG and the symmetries
of the Wyckoff sites.
In contrast to the roughness-robust induced surface

magnetization discussed for Cr2O3 and FeF2 in part III,
however, roughness-sensitive induced surface magnetiza-
tion should exist for an atomically flat surface only. This
occurs if the atomic-site multipoles order ferroically within
each surface plane but with opposite sign between adjacent
planes. This is completely analogous to roughness-
sensitive, uncompensated surface magnetization discussed
in Sec. III A for which the local-moment ME multipoliza-
tion, and correspondingly the surface magnetization,
changes sign for multipolization corresponding to surfaces
separated by atomic steps.

V. THE “NULL” CASE: ð11̄0Þ NiO
For (100) and ð1̄20Þ Cr2O3 and (110) FeF2, we have

demonstrated that, for surfaces which are magnetically
compensated in the bulk AFM ground state, a symmetry-
allowed induced magnetization energetically stabilizes the
vacuum-terminated slab. In our final example, we show with
DFT calculations that inducing a finite surface magnetization
is not energy lowering for a nominally compensated surface
that is not FM compatible by symmetry.
We again take rocksalt AFM NiO as an example [the

primitive bulk unit cell is shown in Fig. 9(a)]. As a
reminder, the bulk MSG is type IV Cc2=c [15.90] with
preserved I as well as Θ combined with several linearly
independent translations. We already showed in Sec. III B 2
that the ideal, nonreconstructed (111) surface of NiO
has uncompensated but roughness-sensitive in-plane
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magnetization along ½112̄�. We now consider the ð11̄0Þ
surface, with surface normal n̂k½11̄0� that is perpendicular
to both the (111) surface normal and the bulk Néel vector
polarization ½112̄�. Looking at an electrostatically stable
slab terminated with vacuum along ½11̄0� as shown in
Fig. 18(a), it is clear that the ð11̄0Þ surface is magnetically
compensated when the surface moments retain the bulk
½112̄� Néel vector direction. A search for the operations of
Cc2=c that leave the unit normal of the ð11̄0Þ surface
invariant modulo translations ⊥n̂ yields the following four
operations: 1, ð2½11̄0�j1; 1; 1Þ, ð20½11̄0�j0Þ, and ðΘj1; 1; 1Þ. The
corresponding surface MPG is 210, which is not FM
compatible because it contains Θ. Indeed, the time-reversal
operation Θ reverses every component of magnetization, so
there is no direction along which magnetization is sym-
metry allowed on the ð11̄0Þ surface.
We check this by performing DFT calculations for a slab

of NiO with ð11̄0Þ surfaces (details are in Appendix D). We
keep the Ni moments in the center two layers of the ð11̄0Þ
slab fixed along the bulk ½112̄� Néel vector direction, and
we cant the Ni moments in the two surface layers about two
orthogonal rotation axes. We first rotate about the in-plane
[111] lattice vector, corresponding to an out-of-plane

canting angle θ toward vacuum (θ > 0) or toward bulk
(θ < 0) for both surfaces, as shown pictorially in Fig. 18(a).
Separately, we cant around the out-of-plane ½11̄0� surface
normal, corresponding to an in-plane rotation ϕ with
respect to the bulk ½112̄� direction. This is shown for
the top surface with a bird’s-eye view of the surface in
Fig. 18(b). Both rotations induce a finite magnetization
per unit area on the surface Ni layers, along ½11̄0� and [111]
(for θ and ϕ, respectively).
The changes in total DFT energy, given in μeV per

formula unit, are shown in Figs. 18(c) and 18(d) for the out-
of-plane canting θ and in-plane canting ϕ, respectively.
In contrast to Figs. 14(a) and 14(b), where a finite surface
magnetization definitively lowers the slab energy compared
to the completely magnetically compensated surface,
inducing a finite surface magnetization for ð11̄0Þ NiO does
not lower the total energy within the resolution of our DFT
calculations, as expected. Note that there is an energy
lowering of approximately 0.04 μeV=f:u: at θ ¼ −0.12° in
Fig. 18(c), but, because it is the same order of magnitude as
the penalty energy approximately 0.02 μeV=f:u:, we do not
believe that it is physical.
Qualitatively, Figs. 18(c) and 18(d) differ: For the in-plane

canting in Fig. 18(d), the energy change is symmetric about
ϕ ¼ 0, whereas the energy change for out-of-plane canting
is asymmetric about θ ¼ 0 in Fig. 18(c). Specifically, the
energy increase is more rapid when the canting on both
surfaces is toward vacuum (θ > 0) than when the canting is
toward the bulk. Different rates of energy increase for
canting toward bulk versus vacuum are to be expected,
since the vacuum termination on one side of the ð11̄0Þ layer
introduces a unidirectional anisotropy to the local environ-
ment [72]. Nevertheless, it is clear that in both cases any
definitive canting away from the bulk order increases the
energy of the ð11̄0Þ slab of NiO.We, therefore, show that the
group-theory formalism to identify AFM planes with sur-
face magnetization also correctly predicts the cases where
surface magnetization is not symmetry allowed.
Finally, we note that the surfaces with no expected

equilibrium surface magnetization are characterized by
atomic-site ME and higher-order multipoles which are
antiferroically ordered in the surface plane. Our analysis
of the Ni octupoles for the ð11̄0Þ surface Ni ions shown in
Fig.18 reveals that theoctupolarordering in theð11̄0Þ surface
is antiferroic, consistent with the group-theory analysis.
To conclude part III of this manuscript, in Fig. 19 we

give a flowchart showing the steps to categorize induced
surface magnetization, given a bulk AFM and surface of
interest, based on our atomic-site multipole analysis. First,
one identifies the symmetry-allowed atomic-site multipoles
(at all orders of the multipole expansion) in the bulk unit
cell. Then, we identify the multipoles corresponding to a
ME response to an electric field parallel to the surface
normal. This gives us the possible directions of the induced
surface magnetization. Finally, we check the ordering of

(a) (b)

(c) (d)

FIG. 18. Induced magnetization on the non-FM-compatible
ð11̄0Þ surface of NiO. (a) Electrostatically stable slab used in our
DFTþU calculations for the ð11̄0Þ surface, demonstrating the
out-of-plane rotation θ for the surface Ni moments (in orange)
which we enforce in our constrained magnetic calculations.
Atoms deeper into the page are removed for ease of visualization.
(b) View of the slab looking down at the ð11̄0Þ surface, showing
the in-plane rotation ϕ for the surface moments. Faded-out blue
moments are in the layer below the surface. (c) and (d) show the
changes compared to the energy with the bulk ½112̄� polarization
as a function of the rotation angles in (a) and (b), respectively.
Blue lines in (c) and (d) show the penalty energy Ep in the
constrained magnetic calculations.
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the relevant multipoles on planes of atoms parallel to the
surface. If all planes have ferroically ordered multipoles,
the induced magnetization is roughness robust. If the
multipoles are ferroically ordered in plane, but their sign
switches between planes, the induced surface magnetiza-
tion is roughness sensitive. Lastly, if the relevant multipoles
are antiferroically ordered within a single surface plane,
no surface magnetization can exist even for a perfectly
smooth surface.

VI. DISCUSSION AND OUTLOOK

In this work, we have provided a comprehensive
classification of surface magnetization in AFMs. We have

first combined and extended the previous seminal but
disjoint theoretical analyses [1,2,12,15,34] to demonstrate
in part I that all categories of surface magnetization,
including the frequently overlooked roughness-sensitive
varieties, can be described by a unifying symmetry for-
malism. In parts II and III, we connected this group-theory
description to a universal alternative classification in terms
of bulk magnetic multipoles. In particular, we showed in
part II that uncompensated surface magnetization maps to
local-moment ME multipoles describing bulk magnetiza-
tion asymmetry at the unit-cell level, and in part III we
demonstrated that more subtle, induced surface magneti-
zation on crystallographic planes which are compensated
in the bulk originate from in-plane ferroic ordering of

FIG. 19. Flowchart to determine, given a bulk AFM and surface of interest ðhklÞ⊥n̂ with no uncompensated magnetization, whether
there exists roughness-sensitive or roughness-robust induced surface magnetization based on the ordering in the unit cell of the atomic-
site multipoles.
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atomic-site multipoles describing magnetization asymme-
try around individual magnetic sites. The multipole analy-
sis for both uncompensated and induced cases also enables
immediate distinction of roughness-robust and roughness-
sensitive surface magnetization. The step-by-step pro-
cedure to identify the existence and category of surface
magnetization for any AFM surface of interest is conven-
iently summarized by the two flowcharts in Figs. 7 and 19.
Overall, we remark that in this work we exclusively focused
on spin surface magnetization. At the same time, recently
some progress has been made on the definition and
calculation of the surface orbital magnetization [73].
This is inherently more involved due to the more delicate
definition of orbital magnetization within periodic boun-
dary conditions in bulk systems [74,75]. Future investiga-
tions on a possible application of the analysis presented in
this work for spin surface magnetization to this new area
would, thus, be of relevance.
We conclude this manuscript with some outlook. First,

we emphasize that our multipole description enables the
prediction of surface magnetization based on ground-state
bulk properties. Bulk magnetic multipoles can be readily
calculated with standard DFT codes, and several possibil-
ities for experimentally detecting magnetic multipoles, for
example, Compton and neutron scattering [21,39,76], have
been recently proposed. Thus, our analysis enables the
prediction of surface magnetization based on calculations
or measurements of bulk properties.
A second key result is that, based on the analogy

between magnetic multipoles and ME effects, all cases
of surface magnetization have a symmetry correspondence
to ME responses. For roughness-sensitive varieties of
surface magnetization, the ME responses occurring at
the isolated unit-cell level in the uncompensated case
and at the atomic-site level in the induced case are
antiferroic and, thus, do not result in a net ME response
when considering the periodic bulk crystal. On the other
hand, roughness-robust surface magnetization necessarily
corresponds to a net bulk ME response for Ekn̂, which
must be linear in E for uncompensated magnetization, and
may be higher order in E for induced roughness-robust
surface magnetization. In Table I, we summarize the

classification of the four discussed categories of AFM
surface magnetization in terms of their bulk net ME
response and the corresponding type, and ordering, of
bulk magnetic multipoles.
In addition to its fundamental scientific significance,

our findings that roughness-robust, induced surface mag-
netization always corresponds to a net ME response with
Ekn̂ significantly expands the cases of surface magneti-
zation which should be controllable by ME annealing, that
is, the control of AFM domains via applied electric and
magnetic fields, as mentioned briefly in the introduction.
The efficacy of ME annealing for linear ME AFMs
originates from a symmetry-allowed free-energy term
F ∝ αijHiEj, with H the applied magnetic field.
Analogously, a net quadratic ME response Mi ∝
βijkEjEk implies a free-energy term F ∝ βijkHiEjEk and
a similar term F ∝ γijklHiEjEkEl for the cubic ME
response. Because every order of bulk magnetic multipole
breaks time-reversal symmetry, the corresponding ME
response tensor must as well, such that β, γ, and even
higher-order ME response tensors all change sign for
opposite signs of the bulk Néel vector. Because surface
magnetization is tied to the Néel vector, this means all
examples of roughness-robust surface magnetization, not
just the uncompensated case corresponding to linear ME
effects, should be switchable with ME annealing.
On the other hand, because roughness-sensitive surface

magnetization does not correspond to a net ME effect
(Table I), it cannot generally be controlled by ME
annealing. However, for very thin AFM films in which
the ratio of uncompensated surface magnetic dipoles to
compensated dipoles in the bulk is fairly large, it should
be possible to control the surface magnetization with a
reasonably sized magnetic field alone. Moreover, the
requirement of an atomically smooth surface to achieve
macroscopic surface magnetization in the roughness-
sensitive case is becoming a less formidable challenge
due to improving synthesis methods, particularly in the
field of thin-film deposition [77,78]. Overall, we believe
that further investigation of roughness-sensitive surface
magnetization is highly worthwhile given the huge number
of previously overlooked possibilities it opens up, in

TABLE I. Classification of the four categories of AFM surface magnetization in terms of the structure of their corresponding local-
moment (LM) or atomic-site (AS) multipoles and the order of the allowed net bulk ME response. RR and RS refer to roughness-robust
and roughness-sensitive, respectively. For the atomic-site multipoles characterizing the induced surface magnetization, r refers to the
rank of the tensor (r ¼ 2 for ME multipoles, r ¼ 3 for magnetic octupoles, etc.) which depends on the bulk AFM MSG.

Uncompensated Induced No surface magnetization

RR RS RR RS � � �
Multipole description I -broken

MLM
ij array

I-preserved
MLM

ij array
Ferroic MAS

r
in unit cell

Ferroic MAS
r in-plane,

antiferroic along n̂
Antiferroic
MAS

r in-plane
Bulk ME responses
for Ekn̂

Linear M ∝ E None M ∝ Er−1 None None
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addition to the fact that many AFM surfaces with such
magnetization are already known to exhibit exchange bias
[67,79]. We hope that our analysis of roughness-sensitive
surface magnetization motivates its future, detailed exper-
imental characterization with state-of-the-art methods such
as nitrogen vacancy (NV) magnetometry and spin-Hall-
based magnetotransport [5,6,80].
Finally, we make a few additional remarks regarding

roughness-robust, induced surface magnetization separate
from its connections to higher-order ME effects. Surface
magnetization has recently been detected experimentally
on the nominally compensated surfaces of at least three
AFMs: (110) FeF2 [13], (110) Fe2TeO6 [20], and very
recently in surfaces perpendicular to (001) Cr2O3 [14,66].
These are all consistent with our analysis that these
surfaces should have roughness-robust, induced magneti-
zation. Induced surface magnetization may also in some
cases explain exchange bias at nominally compensated
AFM surfaces; further investigations along these lines
would be fruitful. As mentioned in Sec. IV B, surface
magnetization originating from ferroic magnetic octu-
poles in centrosymmetric AFMs appears connected to
nonrelativistic spin splitting. Overall, the recent exper-
imental confirmations of roughness-robust, induced sur-
face magnetization, as well as its likely ties to other
intriguing spin-based phenomena, indicate that this cat-
egory holds great interest from numerous perspectives.
We hope that our work motivates further studies, both

experimental and theoretical, on the identification and the
properties of various types of AFM surface magnetization.
We also hope it spurs a comprehensive search for AFM
candidates, both linear ME and otherwise, with experi-
mentally useful surface magnetization.
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APPENDIX A: DFT CALCULATION DETAILS
FOR ð1̄20Þ AND (100) Cr2O3

For our density-functional calculations of total energies
of ð1̄20Þ- and (100)-oriented slabs of Cr2O3 with respect to
moment canting angle, we employ the Vienna ab initio
simulation package (VASP) [81] using the noncollinear
local spin-density approximation (LSDA) with spin-orbit
coupling (SOC) included. We adopt the projector

augmented wave method (PAW) [82] and use the standard
VASP PAW pseudopotentials with the following valence
electron configurations: Cr ð3p64s13d5Þ and O ð2s22p4Þ.
To approximately account for the localized nature of 3d
electrons in Cr, we add a Hubbard U correction [83] using
the rotationally invariant method by Dudarev et al. [84].
We set U ¼ 4 eV for consistency with our previous
DFTþ U work on Cr2O3 [44].
To model the ð1̄20Þ surface, we use an orthorhombic slab

with in-plane lattice vectors ð−7.37; 4.25; 0.0Þ and (0, 0,
13.53) in units of Å using a Cartesian coordinate system
with z along the hexagonal [001] axis. We double the
minimal bulk cell defining the electrostatically stable ð1̄20Þ
surface along the [010] surface normal direction for a total
of four 12-Cr layers and add 15 Å of vacuum along [010].
We confirm that the slab is sufficiently thick to have
bulklike behavior in the center by checking the layer-
projected density of states. The slab is shown in the main
text in Fig. 14(a). We fix the lattice parameters to the
relaxed values of bulk Cr2O3 obtained in Ref. [44] and
allow all internal coordinates to relax until forces on all
atoms are less than 0.01 eV=Å. We expand the pseudo
wave functions in a plane-wave basis set with kinetic
energy cutoff of 800 eVand sample the Brillouin zone (BZ)
with a Γ-centered k-point Monkhorst-Pack mesh [85] with
6 × 4 × 1 points. For the (100) surface, we use an ortho-
rhombic slab with in-plane lattice vectors (2.46, 4.26, 0.0)
and (0,0, 13.53). We use a slab with the size of the minimal
bulk unit cell, with six Cr layers (24 Cr atoms total) and
15 Å vacuum along the surface normal [210] [shown in
Fig. 14(b)]. We expand the pseudo wave functions in a
plane-wave basis set with the same kinetic energy cutoff as
for the ð1̄20Þ surface, and we sample the BZ with a
Γ-centered k-point mesh of 14 × 5 × 1 points for the total
energy calculations.
Because the energy differences we are exploring are very

small (the order of μeV), we use constrained magnetic
calculations [86] to ensure that all the Cr moments remain
along the directions we initialize them in. The detailed
implementation of constrained DFT for noncollinear mag-
netism is described in Ref. [86]. For our calculations, we
select a Lagrange multiplier of λ ¼ 10, which is sufficient
to both fix all moments along the desired directions and
keep the penalty energy (an energy contribution in the
constrained magnetism formulation of DFT which forces
magnetic moments to lie along the desired spin axis) well
below the total energy differences.

APPENDIX B: LOCAL SYMMETRY VERSUS
DFT SLAB SYMMETRY

We point out here a subtle conflict between the DFT
calculations of surface magnetization in the main text and
the group-theory method used to determine the existence
of surface magnetization. The surface MPG is determined
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by assuming a semi-infinite slab with a single, vacuum-
terminated surface with normal n̂. In contrast, it is
apparent, for example, from Figs. 14(a) and 14(b) for
Cr2O3 that the electrostatically stable, symmetric ð1̄20Þ
and (100) slabs have two surfaces and, hence, actually
belong to higher-symmetry point groups than the MPGs
we analyze, which correspond to semi-infinite slabs. This
is also the case for the DFT slabs we use for (110) FeF2
and ð11̄0Þ NiO. In fact, the point groups of the symmetric
slabs are not even FM compatible, in general. However,
we argue that using such a slab to explore surface
magnetization is not problematic as long as the number
of bulklike layers between the two surfaces is sufficiently
large: Then, the surfaces behave independently as though
they were on two oppositely oriented, semi-infinite slabs.
From an energetic perspective, only the local symmetry,
i.e., the symmetry of one vacuum-terminated surface and
the nearby bulk with which it interacts, is relevant in
determining whether an induced magnetization is favor-
able for this surface. And this local surface symmetry is
identical to the surface MPG determined by the group-
theory and multipole formalisms.
To confirm that the local symmetry, rather than the

symmetry of the entire DFT slab, is the relevant MPG to
consider, we take the example of ð1̄20Þ Cr2O3 and force
the slab with two surfaces to have the same MPG as the
idealized semi-infinite slab with a single [010]-oriented
surface normal. We do this by substituting the bottom Cr
layer with a monolayer of Fe as shown in the top in
Fig. 20, thereby breaking the extra mirror plane and
inversion symmetries created by having two equivalent
surfaces in Fig. 14(a) in the main text. Because Fe
naturally adopts a þ3 valence state, this “semi-infinite”
slab is electrostatically stable and there are no conver-
gence issues. For this calculation, we use the same
Hubbard U of 4 eV for both Fe and Cr 3d states. We
use the same convergence criteria as for the symmetric
ð1̄20Þ slab and use the same Lagrange multiplier λ ¼ 10
for the constrained magnetic calculations.
We fix the Fe moments as well as the Cr moments in the

center two layers along [001] in the “out” domain, and we
again plot the change in total energy as a function of
canting angle for the top layer of Cr. While there are small
quantitative differences between Figs. 20 and 14(a), the
results for the ð1̄20Þ surface with an Fe monolayer in
Fig. 20 exhibit the same energy lowering with a minimum
at a 0.25° canting angle toward the vacuum. This demon-
strates that, indeed, it is the local surface symmetry for the
DFT slab, reflecting the semi-infinite slab MPG, which
dictates the energetics of the induced surface magnetiza-
tion. Therefore, for all DFT calculations in the main text,
we use the electrostatically stable symmetric slabs, which
have higher global symmetry than the local surface MPG,
to reduce computational cost.

APPENDIX C: DFT CALCULATION DETAILS
FOR (110) FeF2

For density-functional calculations for the (110) FeF2
surface, we again use VASP. We employ the generalized
gradient approximation using the Perdew-Burke-Ernzerhof
(PBE) functional [87], and we select a Hubbard U of 6 eV
and a Hund’s exchange J of 0.95 eV. These parameters are
based on previous DFTþU calculations of FeF2 and its
(110) surface [68,69]. Because surface magnetization in the
case of FeF2 develops collinearly along the bulk Néel
vector in contrast to ð1̄20Þ Cr2O3, we do not include SOC
in our calculations and instead use collinear spin-polarized
DFT. In calculating the site-projected magnetization for the
Fe and F ions, we use the default integration spheres of
1.058 and 0.794 Å, respectively. We relax the bulk FeF2
structure using the plane-wave and force criteria described
for Cr2O3 in the previous section and a 6 × 6 × 9 Gamma-
centered k-point mesh for the bulk tetragonal cell. We then
create a electrostatically stable (110) slab with eight Fe
layers and 15 Å of vacuum along ½110�. Note that we
increase the slab thickness of (110) FeF2 compared to
ð1̄20Þ Cr2O3 due to previous reports that approximately
eight layers are required to obtain bulklike behavior in the
center of the slab [68,69], which was not the case for
ð1̄20Þ Cr2O3. Finally, we relax all internal coordinates of

FIG. 20. Top: slab of ð1̄20Þ chromia with a monolayer of Fe
replacing the bottom Cr, such that the MPG of the total slab is
lowered and matches that of a semi-infinite slab (MPG 2).
Bottom: total DFT energy per formula unit for the Cr-terminated
surface as a function of the canting angle. The penalty energy Ep

in the constrained magnetic calculations is plotted with a dashed
line and star markers.
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the slab while keeping the lattice vectors fixed to our bulk
relaxed values.
For the calculation of the lattice-mediated ME response,

phonon frequencies and eigendisplacements are computed
using density-functional perturbation theory [88], as imple-
mented in the QUANTUM ESPRESSO (QE) [89,90] and
THERMO_PW [91] packages. Self-consistent ground-state
and linear response calculations are performed within the
collinear spin-polarized generalized gradient approxima-
tion scheme, without SOC included, and the exchange-
correlation energy is treated using the PBE parametrization
[87]. Ion cores are described using scalar-relativistic ultra-
soft pseudopotentials (PPs) [92], with 4s and 3d valence
electrons for Fe (PP Fe. pbe-n-rrkjus_psl.1.0.0.UPF from
pslibrary 1.0.0 [93,94]) and with 2s and 2p valence electrons
for F (PP F. pbe-n-rrkjus_psl.1.0.0.UPF). Correlation effects
are dealt with by introducing a Hubbard U correction [95],
with U ¼ 6 eV and J ¼ 0.95 eV, selected to be consistent
with VASP calculations on the (110) surface. Pseudo wave
functions and charge density are expanded in a plane-wave
basis set with kinetic energy cutoffs of 80 and 400 Ry,
respectively. BZ integrations are performed using a Γ-
centered uniform Monkhorst-Pack [85] mesh of k points
with 4 × 4 × 6 points.
Frozen phonon calculations of the induced Fe magnetic

moments are performed at the distorted structure obtained
by freezing in the phonon ionic displacements. The induced
local magnetic moments are computed using the all-
electron linearized augmented-plane-wave (LAPW) code
ELK [96], to have a more accurate description of the atomic
magnetic moments, within the local spin-density approxi-
mation, with spin-orbit coupling included. The APW wave
functions and potential inside the muffin-tin spheres are
expanded in a spherical harmonic basis set, with cutoff
lmax ¼ 12. Similarly to the calculations performed in QE, a
Hubbard U correction with the same values of U and J is

applied. The BZ is sampled with the same mesh of k points
used in QE.

APPENDIX D: DFT CALCULATION DETAILS
FOR ð11̄0Þ NiO

For density-functional calculations of ð11̄0Þ NiO, we
again use VASP and choose the generalized gradient
approximation with the PBE functional [87]. We take
U ¼ 4.6 eV within the Dudarev implementation [84] of
DFTþ U [83]. This is based on the parameters used for
DFTþ U calculations of NiO in Ref. [49]. We fully relax
the bulk structure, and then relax the internal coordinates
of a four-layer slab with an electrostatically stable ð11̄0Þ
surface and 15 Å of vacuum along ½11̄0�. We note that the
slab is quite thin (approximately 6 Å); due to the large
number of atoms in the ð1̄10Þ surface plane [96 for the slab
shown in Figs. 18(a) and 18(b)], a thicker slab would be
computationally prohibitive. By checking the layer-
projected density of states, we confirm that the center of
the slab is sufficiently bulklike. Analogously to the case of
ð1̄20Þ Cr2O3, we perform constrained magnetic calcula-
tions with a Lagrange multiplier λ ¼ 10.

APPENDIX E: MAGNETIC OCTUPOLE TENSOR

Here, we report the spherical irreducible components of
the magnetic octupole tensor Oijk introduced in Sec. IVA.
For the full derivation, see Ref. [22].O can be decomposed
into a totally symmetric tensor S and a residue tensor R:

Oijk ¼ Sijk þRijk: ðE1Þ
The traceless part T of the totally symmetric tensor S is
expressed in terms of seven independent parameters (O−3,
O−2, …, O2, O3) as follows:

T 1jk ¼
1

20

2
64

5O3 − 3O1 5O−3 −O−1 2ð5O2 −O0Þ
5O−3 −O−1 −ð5O3 þO1Þ 20O−2

2ð5O2 −O0Þ 20O−2 4O1

3
75;

T 2jk ¼
1

20

2
64

5O−3 −O−1 −ð5O3 þO1Þ 20O−2

−ð5O3 þO1Þ −ð5O−3 þ 3O−1Þ −2ð5O2 þO0Þ
20O−2 −2ð5O2 þO0Þ 4O1

3
75;

T 3jk ¼
1

20

2
64
2ð5O2 −O0Þ 20O−2 4O1

20O−2 −2ð5O2 þO0Þ 4O−1

4O1 4O−1 4O0

3
75: ðE2Þ

We refer to these parameters as proper magnetic octupoles, because they transform into each other upon rotations in the
same way as the atomic f orbitals.
The residual tensor R can be further decomposed into two tensors, written by using five and three independent

parameters, respectively. The five-dimensional residue tensorRð5Þ is written in terms of the quadrupole momentsQðτÞ of the
toroidal moment density τðrÞ ¼ r × μðrÞ as
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Rð5Þ
1jk¼

1

3

2
6664

0 −QðτÞ
xz QðτÞ

xy

−QðτÞ
xz −2QðτÞ

yz −1
2
ðQðτÞ

x2−y2þ3QðτÞ
z2
Þ

QðτÞ
xy −1

2
ðQðτÞ

x2−y2þ3QðτÞ
z2 Þ 2QðτÞ

yz

3
7775;

Rð5Þ
2jk¼

1

3

2
6664

2QðτÞ
xz QðτÞ

yz −1
2
ðQðτÞ

x2−y2−3QðτÞ
z2
Þ

QðτÞ
yz 0 −QðτÞ

xy

−1
2
ðQðτÞ

x2−y2−3QðτÞ
z2
Þ −QðτÞ

xy −2QðτÞ
xz

3
7775;

Rð5Þ
3jk¼

1

3

2
6664
−2QðτÞ

xy QðτÞ
x2−y2 −QðτÞ

yz

QðτÞ
x2−y2 2QðτÞ

xy QðτÞ
xz

−QðτÞ
yz QðτÞ

xz 0

3
7775; ðE3Þ

and the three-dimensional residue tensor Rð3Þ is cast into
the three components of the moment of the toroidal
moment density, tðτÞ ¼ R

r × τðrÞd3r, in the following
way:

Rð3Þ
1jk ¼

1

3

2
664

0 tðτÞy tðτÞz

tðτÞy −2tðτÞx 0

tðτÞz 0 −2tðτÞx

3
775;

Rð3Þ
2jk ¼

1

3

2
664
−2tðτÞy tðτÞx 0

tðτÞx 0 tðτÞz

0 tðτÞz −2tðτÞy

3
775;

Rð3Þ
3jk ¼

1

3

2
664
−2tðτÞz 0 tðτÞx

0 −2tðτÞz tðτÞy

tðτÞx tðτÞy 0

3
775: ðE4Þ
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