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Numerous natural and human-made systems exhibit critical transitions whereby slow changes in
environmental conditions spark abrupt shifts to a qualitatively distinct state. These shifts very often entail
severe consequences; therefore, it is imperative to devise robust and informative approaches for anticipating
the onset of critical transitions. Real-world complex systems can comprise hundreds or thousands of
interacting entities, and implementing prevention or management strategies for critical transitions requires
knowledge of the exact condition in which they will manifest. However, most research so far has focused
on low-dimensional systems and small networks containing fewer than ten nodes or has not provided an
estimate of the location where the transition will occur. We address these weaknesses by developing a deep-
learning framework which can predict the specific location where critical transitions happen in networked
systems with size up to hundreds of nodes. These predictions do not rely on the network topology, the edge
weights, or the knowledge of system dynamics. We validate the effectiveness of our machine-learning-
based framework by considering a diverse selection of systems representing both smooth (second-order)
and explosive (first-order) transitions: the synchronization transition in coupled Kuramoto oscillators; the
sharp decline in the resource biomass present in an ecosystem; and the abrupt collapse of a Wilson-Cowan
neuronal system. We show that our method provides accurate predictions for the onset of critical transitions
well in advance of their occurrences, is robust to noise and transient data, and relies only on observations of
a small fraction of nodes. Finally, we demonstrate the applicability of our approach to real-world systems
by considering empirical vegetated ecosystems in Africa.
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I. INTRODUCTION

In complex systems throughout nature, technology, and
society, smooth variation of parameters can result in sudden
transitions between system states exhibiting significantly
different behavior [1,2]. Examples of these critical transitions
include rapid globalwarming at the end of glacial periods [3],
desertification [4], extinction events of animal or bacteria
species [5–7], development of psychiatric disorders [8],
allograft rejection [9], power outages [10], laser thresholds
[11], the onset of convection [11], transitions in human
movement [12], and many other examples [13–16]. Critical

transitions have the potential to shift a system into a
new state with undesirable properties [17,18], leading to
environmental damage, economic loss, and public health
problems if timely corrective measures are not imple-
mented. Thus, in numerous applications, forecasting
critical transitions is important for preventing or avoiding
damage [19–21].
In response to this need, various early warning signals

(EWSs) have been proposed to anticipate impending
critical transitions [22–27]. A popular approach exploits
a phenomenon known as critical slowing down [28],
whereby a dynamical system approaching a tipping point
exhibits slower recovery from local perturbations [29,30].
Critical slowing down, and, thus, impending critical tran-
sitions, can be detected by increases in generic typical
EWSs [29], such as rising lag-1 autocorrelation [5] and
variance [31,32]. A different approach leverages deep
learning to identify, in addition, whether the approaching
transition is fold, Hopf, or transcritical bifurcation [33].
These methods, like most EWSs, can warn of critical
transitions but cannot predict the specific location where
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they will occur. One recent work [34] acknowledged this
gap by introducing a Bayesian linear segment fit to estimate
the transition time. However, this procedure can be applied
only to low-dimensional systems, which limits its appli-
cability for many complex systems of real-world interest
[35,36]. Another machine-learning method proposes han-
dling networked systems using reservoir computing [37]
but does not evaluate performance on systems with more
than four nodes, restricts attention to synchronization
phenomena, and needs information other than nodal time
series.
Established methods do not address the challenge of

predicting tipping points quantitatively in diverse complex
systems using only observed time series of node states.
These data frequently entail additional issues: A substantial
fraction of nodes may be hidden [38]; and strong obser-
vation noise may be present [39]. Therefore, we are
motivated to ask the following question: how to effectively
discover and integrate the information of the whole network
and then find a versatile and robust way to leverage critical
slowing down and other subtle features that emerge in time
series prior to transitions.
In this paper, we answer this question via a machine-

learning framework sandwiching graph isomorphism
network (GIN) and gated recurrent units (GRU) neural
network layers into a GIN-GRU architecture [40,41]. The
GIN layers read in the time series of each node and identify
and extract the features of individual nodes, subsequently
integrating and outputting them into the collective infor-
mation of the entire graph. The GRU layers then read in the
output of the GIN and interpret those features, looping back
on themselves to generate memory and identify recurring
features in a long time series. The combination of these
layers provides excellence in both graph pattern recognition
and sequence prediction.
We demonstrate that the proposed GIN-GRU framework

is effective in anticipating the exact location of critical
transition of a wide range of complex systems. Moreover,
we establish our method’s robustness to the challenges

associated with most real-world complex system data by
showing that it can provide early and accurate predictions
even for systems measured amid significant noise, when
using transient data, or when a substantial fraction of
system components cannot be observed. Finally, we show
the transferability of ourmethod and its relevance to real data
by considering empirical vegetated ecosystems in Africa.

II. METHOD

In this section, we present our method in detail, including
the generation and processing of data and our deep-
learning-based anticipation algorithm.

A. Generating and processing data

In order to train a neural machine to predict tipping
points far in advance, we first need to generate relevant
training data. Given specific system dynamics equations
that would have transitions with certain parameters, after
altering the value of control parameter ε and simulating, the
important thing we have to attach attention to is how to
identify a system’s precise critical transition point εc [see
Fig. 1(b)], which in the following would be regarded as the
label in our supervised machine-learning training process
and the basis of evaluating prediction accuracy. Many
widely studied approaches can be used to detect transitions.
For instance, different order parameters r are used to
measure synchronization of coupled oscillators [42], and,
in some continuous systems, the real part of the dominant
eigenvalue λ (the eigenvalue whose real part has the
smallest magnitude) of the system’s Jacobian matrix
increases to 0 [ReðλÞ → 0] [43] when the critical transition
occurs.
Motivated by the significance of early prediction, we opt

to use only a small segment of the time series, Xs, instead of
the whole. Therefore, we employ a sliding window
approach as illustrated in Fig. 1(b). The window, with a
width of w ¼ 20 time steps, slides from just before the
transition at εc (where s ¼ 1) to the earliest available data

(a) (c)(b) )

FIG. 1. Overview of our approach to anticipate transitions. (a) Complex network topology underlying observed time series.
(b) Identification of the precise tipping point εc and preservation of the data X1;…; Xn for prediction with a sliding window (numbers
1;…; n correspond to different lead distances). Control parameter ε changes over time t (not necessarily linearly). (c) Overall
architecture of our deep-learning anticipation algorithm (i.e., GIN-GRU). The input, X1;…; Xn, first passes six GIN layers, each
followed by batch normalization [44]. Then, we let the graph-level embeddings obtained by the global max pooling (GMPool) operation
go through a four-layer GRU. Finally, after a multilayer perceptron (MLP), we acquire the predicted ε̃c.
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(the initial w time steps, where s ¼ n). In real systems, the
control parameter ε may not change linearly over time.
Thus, we define the lead distance as jεs − εcj. Our approach
aims to forecast the exact location εc of the critical
transition in advance, from some point εs by using only
successive data Xs. Note that knowledge of the value of εs
is not required in the training or prediction procedure of
our method, and it is just used to assess the method
performance.

B. Deep-learning method

After a large number G of simulations, a massive and
diverse dataset has been built, with tens of thousands of
data X1

1;…; X1
nð1Þ ;…; XG

1 ;…; XG
nðGÞ and their corresponding

labels. We then split the dataset (after randomly shuffling)
into train/validation/test data by 7∶1∶2, avoiding splitting
individual simulations to avoid data leakage. In the training
phase, as shown in Fig. 1(c), we first let each training datum
pass a six-layer GIN. In every layer, the time series of each
node xi is calculated following the formula

x0
i ¼ hΘ

�
ð1þ ϵÞ · xi þ

X
j∈N ðiÞ

xj

�
; ð1Þ

where ϵ denotes a learnable parameter or a fixed scalar,
N ðiÞ denotes the set of i’s neighboring nodes, and hΘ
denotes a multilayer perceptron (MLP) with trainable
parameters Θ. Note that, since the topology information
is unseen,

P
j∈N ðiÞ xj is actually not calculated. After

several layers’ iterations and computing, the representation
of each node is obtained. We then employ a
MaxAggregation operation r ¼ maxNi¼1 xi to garner the
entire network’s representation. Thus far, we have success-
fully transformed a multidimensional complex network
time series into single-dimensional graph-level outputs.
Subsequently, we utilize four GRU layers to further explore
the latent transition characteristics within the outputs. For
each element re in the input sequence r, each layer
computes

he ¼ ð1 − zeÞ ⊙ ne þ ze ⊙ hðe−1Þ; ð2Þ

where he is the hidden state at time e, ze and ne denote the
update and new gates, respectively, and ⊙ is the Hadamard
product defined by ðAi;jÞ ⊙ ðBi;jÞ ¼ ðAi;jBi;jÞ. To avoid
overfitting, between every two GRU layers there is a
dropout layer with a dropout probability Dp ¼ 0.1 to avoid
overfitting. Finally, the outputs are passed to an MLP to
generate a predicted ε̃c. The objective function is the mean
square error L given by

L ¼ 1

B

XB
b¼1

ðε̃cb − εcbÞ2; ð3Þ

where B denotes the batch size of the training set. In the
prediction phase, the dropout operation is removed, and
the test result is recorded when the best result is achieved
on the validation set.

III. RESULTS

In this section, we demonstrate the ability of our method
to detect both first- and second-order phase transitions in
systems drawn from ecology, neuroscience, and collective
motion.

A. Predicting synchronization of nonidentical
phase oscillators

First, we explore the ability of our framework to predict
the onset of second-order transitions by considering syn-
chronization of symmetrically coupled Kuramoto oscilla-
tors [45], the dynamics of which are governed by the
equation

dθi
dt

¼ ωi þ ε
XN
j¼1

Ai;j sinðθj − θiÞ; ð4Þ

where ωi denotes natural frequency of each oscillator, ε
here denotes the coupling strength of the interactions, and
A ¼ ðAi;jÞ is the adjacency matrix of the network, which is
defined such that Ai;j ¼ 1 (Ai;j ¼ 0) when there is an edge
(when there is no edge) between node i and node j. The
dynamics of coupled Kuramoto oscillators are highly de-
pendent on the strength ε of the interactions. When coupling
is weak (i.e., small ε), oscillators rotate almost independently
with their respective frequencies ωj. However, as the
coupling becomes sufficiently strong (i.e., ε → εc), a fully
phase-locked state emerges in a critical transition. In this
state, all oscillators synchronize to a common frequency such
that constant phase differences are established between each
pair of nodes: θi − θj ¼ const.
When generating data, to emulate the diversity of real-

world complex networks, for each simulation we use a
distinct combination of parameter values for a scale-free
(SF) network [46] with scale exponent 2.5 and different
initial values for each oscillator’s phase θi. Specifically, the
mean degree is chosen randomly between 3.5 and 6.5, the
number of oscillators is randomly chosen between 65 to
135, and the initial phase of each oscillator is randomly
chosen between 0 and 2π. Because reciprocity in inter-
actions is common in many applications concerning oscil-
lators, we consider undirected networks, i.e., a symmetric
adjacency matrix Ai;j ¼ Aj;i. After initializing, we increase
ε gradually, from 0 to 5, in steps of 0.05. For each value of
ε, the system is evolved for 100 units of time to allow it to
equilibrate, at which point the final value of each oscil-
lator’s phase θi is recorded. We choose the natural
frequency ωi of each oscillator randomly between 0 and
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2π before translating each natural frequency by the same
amount to consider a corotating frame with

P
N
i¼1 ωi ¼ 0.

As a result, when the fully phase-locked state occurs, all
oscillators synchronize to the common frequency
ðdθi=dtÞ ¼ 0. Therefore, the sum

P
i jΔθij over oscillators

of the magnitude jΔθij of the change in phase throughout
the final Δt ¼ 10 interval can be used as a parameter to
evaluate the degree of system synchrony. This is illustrated
in Fig. 2(a) for an example system: When the critical
transition occurs,

P
i jΔθij ¼ 0 (blue curve), the point from

which the order parameter rlink [47] attains unity, rlink ¼ 1
(brown curve). The statistics rlink and

P
i jΔθij change

almost monotonically as the transition point approaches but
do not provide an estimate of the exact onset of complete
synchronization, and, furthermore, computation of rlink
requires knowledge of network topology. In contrast, as
Fig. 2(b) illustrates, deep learning can accurately estimate
the critical transition long before its occurrence, based on
time series alone.
On detecting εc, we start recording data with the sliding

window (see Sec. II A) containing time series segment Xs
(each comprising 20 time steps) of different lead distances
prior to the critical transition, where s∈ ½1; n� and n ≤ 50.
Here, n can vary among simulations depending on the
duration between the start of the simulation and the
simulation’s critical transition, and the maximum consid-
ered n is set to 50. We run G ¼ 1000 simulations, each
leading to n∈ ½1; 50� data, providing a total of 32 632 data
Xs. We assess prediction performance using the relative
anticipation inaccuracy

I ¼ jε̃c − εcj
εmax − εmin

;

where ε̃c is our prediction of the critical value εc and εmin
and εmax are the minimum and maximum value of the
control parameter, here, 0 and 5, respectively. Despite the

wide range of critical coupling strengths εc in the unseen
test data (i.e., εc ∈ ½1.35; 4.85�), which poses a significant
challenge for forecasting, the mean over all test data of the
anticipation inaccuracy I is only 0.0215. In Fig. 2(c), we
investigate how mean relative anticipation inaccuracy Ī of
test data changes with lead distances. For lead distances
about 2.0 or less, our neural model starts to exhibit high
predictive accuracy, with Ī ≤ 0.0252. This illustrates how,
far before the critical transition, our deep-learning algo-
rithm can already effectively detect both critical slowing
down and other subtle features emerging from the time
series. Thus, we can accurately predict the tipping points at
an early stage, not having to wait until they are imminent,
which greatly facilitates planning necessary to accommo-
date or avert the transition.

B. Predicting sharp decline of resource biomass

The synchronization transition of the Kuramoto model
we have discussed above belongs to the category of second-
order phase transitions [48,49], in which a physical
quantity characterizing the macroscopic state changes
continuously through the transition point. Now, we explore
the capacity of our machine-learning scheme in anticipating
another kind of transition, the first-order phase transition
[50,51], characterized by an abrupt onset in which the
underlying quantity varies discontinuously at the transition
point.
We consider an ecosystem model widely used to simulate

harvested crops [52,53], animal population systems [52,53],
insect pest systems [54], and human host-parasite systems
[55]. The dynamics of the model are governed by the
equation

dxi
dt

¼ rxi

�
1−

xi
k

�
− ε

x2i
x2i þ1

þd
XN
j¼1

Ai;jðxj−xiÞþηWi;

ð5Þ

System

Prediction

System

FIG. 2. Predicting the onset of synchronization transition of the Kuramoto model. (a),(b) Presentation of an example randomly chosen
from the test data. (a) Indicators measuring the synchronization degree, underlying system quantity

P
i jΔθij and order parameter rlink,

respectively, versus control parameter ε (i.e., coupling strength). The tipping point εc is denoted by a vertical gray dashed line, and the
inset shows the magnification of ε∈ ½2.95; 3.25�. (b) Independent predictions ε̃c from different lead distances. The horizontal lines show
the interval between the start of anticipation εs (i.e., the blue dots) and the predicted critical transition location ε̃c. The relative error, i.e.,
the anticipation inaccuracy I, in each prediction is represented by the color bar on the right, and the inset focuses on the ε∈ ½2.6; 3.35�.
(c) Mean anticipation inaccuracy Ī versus lead distances derived from the entire test dataset.
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where xi denotes the state of one small area. The interpre-
tation of the parameters of this model depends on which of
the ecosystems listed above is considered. For concreteness,
we refer to a grazing system with control parameter ε
representing the grazing rate, for which state variables xi
represent biomass and the parameters k, r,d, and η denote the
carrying capacity, the self-growth rate, the degree of influ-
ence by others, and the intensity of noise, respectively, while
Wi represents measurement noise with a standard Gaussian
distribution [56,57].
When generating data, for each simulation, we use a

distinct combination of SF network parameters and differ-
ent initial values for each node’s biomass xi. Specifically,
the network mean degree is randomly chosen from 2 to 6,
the number of nodes is randomly selected from 5 to 400, the
growth rate r in the interval [0.7, 1), and the influence rate d
in [0.5, 1), while the carrying capacity k and the intensity of
noise η are fixed as k ¼ 10 and η ¼ 0.5. After initializing,
we gradually increase the control parameter ε, from 1 to 3,
in steps of 0.02. Each time, the final value of each node
would be recorded after the system reaches equilibrium. In
contrast to the second-order case, in this first-order phase
transition, the mean resource biomass x̄ ¼ P

i xi changes
abruptly at the tipping point εc as shown in Fig. 3(a) (blue
curve). This corresponds to a critical transition from
underexploitation to overexploitation when grazing pres-
sure surpasses a threshold. At the same time, the real
part ReðλÞ of the dominant eigenvalue (see Sec. II A)
approaches zero from below before suddenly plummeting
(green curve). Figure 3(b) illustrates that our method, using
the time series alone, accurately anticipates ε̃c of the
example system long before the moment of transition.
Upon detecting εc, we begin recording data of time series

segment Xs for different lead distances, where s∈ ½1; n� and
n ≤ 60. We consider G ¼ 600 different simulations to
generate 26 191 data in total. Despite the wide range of
εc in the massive unseen test data (i.e., εc ∈ ½1.9; 2.66�), the
mean over all test data of the anticipation inaccuracy I is
only 6.77 × 10−3. In addition, the average over test data

depending on lead distances of the anticipation inaccuracy,
shown in Fig. 3(c), is very low even for the largest lead
distance considered, with Ī ≤ 9.94 × 10−3. First of all, this
elucidates that even the earliest sequence of 20 consecutive
observations is sufficient for our algorithm to predict
accurately. More importantly, this further demonstrates
the effectiveness of our GIN-GRU algorithm, which can
capture the overall structural information of complex net-
works and study and excavate from the time series the
bifurcations in a system’s future, even in the case of abrupt
first-order transitions.

C. Predicting abrupt collapse of neuronal system

To further demonstrate the versatility of the GIN-GRU
approach, we consider again the challenging case of first-
order phase transitions, this time while examining a distinct
class of networks and a dynamical model drawn from
neuroscience. Specifically, we utilize Erdős-Rényi (ER)
networks and the Wilson-Cowan model [36,58], which
describes the firing-rate activity of a population of neurons
according to the differential equations

dxi
dt

¼ −xi þ
XN
j¼1

wi;jð1 − εÞ 1

1þ e−τðxj−μÞ
; ð6Þ

where τ and μ control the steepness of the activation
function and the firing-rate threshold, respectively, the
element wi;j ∈R encodes for the strength of the directed
interaction from node j to node i, and the control parameter
ε here denotes the fraction by which link strengths have
decreased.
In the brain networks of a variety of organisms, topo-

logical perturbations, including decreasing link strengths,
or node or link removal, are ubiquitous [35,58]. As shown
in Fig. 4(a), when the decreasing fraction ε is small, the
system exhibits a minor response, and the mean activity of
all neurons x̄ is still positive. However, when ε is large

System
System

Prediction

FIG. 3. Predicting occurrence moment of sharp decline of resource biomass system. (a),(b) An example system randomly chosen from
the unseen test dataset. (a) Underlying system quantity x̄ representing the average resource biomass and another transition indicator
ReðλÞ versus the grazing rate control parameter ε. The tipping point εc is denoted by a vertical gray dashed line. (b) Independent
predictions ε̃c for different lead distances. The horizontal lines show the interval between the start of anticipation εs (i.e., the blue dots)
and the predicted critical transition location ε̃c. The relative error, i.e., the anticipation inaccuracy I, in each prediction is represented by
the color bar on the right. (c) Mean anticipation inaccuracy Ī versus lead distance derived from the entire test dataset.
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enough, a major collapse abruptly occurs, the system
transitions from a functional to a dysfunctional dynamic
state, and x̄ is suddenly suppressed in a first-order phase
transition.When generating data, for each simulation, we use
a distinct combination of ER network parameter values and
different initial values for each node’s activity xi.
Specifically, the mean degree of the ER network is randomly
set between 3 and 6, the number of nodes is randomly
selected from between 300 and 700, and the weight of each
edge is randomly set between 10 and 20. After initializing,
we then increase the weight attenuation factor ε gradually
from 0 to 1 in steps of 0.01. Each time, the final value of each
nodewould be recorded after the system reaches equilibrium.
Similarly to the situation of resource biomass system, in the
Wilson-Cowan model, x̄ has a sudden shift around εc with a
small change of ε. Simultaneously,ReðλÞ approaches close to
0 [see Fig. 4(a) and Sec. II A]. Figure 4(b) shows, for an
example system, the prediction ε̃c of the critical value of the
attenuation factor which our method provides based only on
time series.
On detecting εc, we start recording Xs for different lead

distances, where s∈ ½1; n� and n ≤ 55. G ¼ 1000 different
simulations have been done and generated 28 233 data in
total. Despite the wide range of εc in the unseen test
data, i.e., εc ∈ ½0.38; 0.84�, the mean over all test data of
anticipation inaccuracy is only 0.0132. Moreover, as shown
in Fig. 4(c), not only does our neural machine exhibit high
predictive accuracy in the vicinity of the critical transition,
where the lead distance is small, but the anticipation
inaccuracy tends to plateau to a reasonable level, less than
0.0169, as the lead distance gradually increases.

IV. ROBUSTNESS ANALYSIS

Accurate network structure and precise knowledge of
relevant external conditions are difficult to ensure [38,39],
and, hence, we have restricted ourselves to using only
time series without providing to our machine-learning
prediction algorithm any topological information or values

of the control parameter. In practice, measurement noise is
ubiquitous, it can be difficult to observe all relevant
variables, and the system is not allowed to reach equilib-
rium. Therefore, in this section, we validate the robustness
of our GIN-GRU approach against incomplete data, obser-
vational noise, and transient data.

A. Incomplete data

In practice, we commonly encounter the challenging
scenario where only a partial observation of the full system
is available [38]. For example, measurement limitations or
unrecognized salient variables observations may restrict the
detection range to only a subset of nodes [59], while the other
nodes are regarded as “hidden” because direct observation or
information about them is unattainable. Concretely, in our
case, the time series of only a randomly chosen subset of all
nodes is observed. The problem is then expressed as
anticipating tipping point ε̃c given only the time series of
the nonhidden nodes.
To uncover the impact of missing data, we consider

Wilson-Cowan neuronal systems with the same distribution
of topological and dynamical properties as previously. The
result of anticipation inaccuracy versus different ratios of
hidden nodes is shown in Fig. 5(a). Overall results (thick
purple line and filled circles) and results for specific lead
distances are plotted separately. Even when 81% of the
nodes are unobserved, our algorithm exhibits prediction
accuracy comparable to the scenario where complete data
are available. Performance tends to improve as s becomes
smaller, but trends are similar across different s. Even when
anticipating from an early stage (i.e., for high s) and with a
high fraction (i.e., 99%) of nodes unobserved, the mean
anticipation inaccuracy Ī remains low, at less than 0.039.

B. Observational noise

Another commonchallenge in realistic networked systems
is noise [39,60], either dynamical or observational.

System

System
Prediction

FIG. 4. Predicting occurrence moment of abrupt collapse of Wilson-Cowan neuronal system. (a),(b) Presentation of an example
randomly chosen from the test dataset. (a) Underlying system quantity x̄ representing the average activity of all neurons and another
transition indicator ReðλÞ versus link degradation control parameter ε. The tipping point εc is denoted by a vertical gray dashed line.
(b) Independent predictions ε̃c for different lead distances. The horizontal lines show the interval between the start of anticipation εs (i.e.,
the blue dots) and the predicted critical transition location ε̃c. The relative error, i.e., the anticipation inaccuracy I, in each prediction is
represented by the color bar on the right. (c) Mean anticipation inaccuracy Ī versus lead distance derived from the entire test dataset.
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Dynamical noise refers to the intrinsic stochasticity in
dynamics, which we have already considered in the resource
biomass system (see Sec. III B), while observational noise is
induced by the measuring process. We consider observa-
tional noise aβX added to original time series X such that the
final observed time series used in our prediction model is
Xobs ¼ X þ aβX, whereβX are drawn independently for each
time step from a standard normal distribution and the
intensity a determines the signal-to-noise ratio (SNR).
Our problem becomes predicting tipping point ε̃c based
on noisy time series data Xobs.
Now we test the impact of observational noise on the

performance of our deep-learning approach. Wilson-
Cowan neuronal system abrupt collapse anticipation inac-
curacy (MRE) versus different SNR (dB) of observational
noise is displayed in Fig. 5(b), showing overall perfor-
mance (thick purple line and filled circles) and specific lead
distances separately. Our algorithm exhibits remarkable
resilience, tolerating 35 dB SNR without obvious deterio-
ration. Similarly to the case of incomplete data, overall
trends and those for different lead distances are similar.
Even in the most challenging circumstance—predicting far
in advance (i.e., large lead distance) and the highest noise
intensity (5 dB)—the mean anticipation inaccuracy remains
low, at less than 0.035.

C. Transient data

Real dynamical systems often do not maintain an
equilibrium state. Therefore, in this subsection, we dem-
onstrate that our approach can also be applied to predict
critical transitions from transient data. Specifically, we
reduce the time interval between a change in the control
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parameter and the recording of the system state. While in
Sec. III C each state of the Wilson-Cowan neuronal system
is recorded after 1000 time units, by which time it had
equilibrated, here the state is recorded after only 300 time
steps, at which point the system clearly has not reached
equilibrium [Figs. 6(a) and 6(b)]. In Fig. 6(c), we depict the
mean anticipation inaccuracy versus lead distance when
relying on such transient data, showing that the average
anticipation inaccuracy over all test data is 0.026, only
slightly higher than for the equilibrium data previously
considered.
In Figs. 6(d) and 6(e), we present the challenging

circumstance in which the control parameter continuously
increases as the system evolves. In this case, when record-
ing the data point, we expect the system to consistently be
significantly out of equilibrium. However, our method still
performs robustly, with no substantial decrease in predic-
tion performance [see Fig. 6(f)].

V. TRANSFERABILITY AND APPLICATION

In scenarios where critical transitions are pertinent and
limited training data are available from the system under
study, directly training a neural machine may not be
feasible. To address this challenge, we propose a strategy:
leveraging the neural machine already well trained on
synthetic data and fine-tuning it on a small dataset from
the system of ultimate interest. This approach enables the
neural machine to adapt to the new system and capture its
latent mechanism effectively. In this section, we demon-
strate the transferability of our algorithm to empirical
vegetated ecosystems in Africa.

In regions with semiarid climates, vegetated ecosystems
can undergo sudden and unforeseen changes, including
transitioning from forest to savannah due to fluctuating or
time-varying factors like rainfall [61]. These transitions can
have severe consequences for both the ecosystem and its
dependent communities. To study this type of system, we
utilize satellite imagery from the Moderate Resolution
Imaging Spectroradiometer (MODIS) at a resolution of
250 meters per pixel (MOD44B) [62] to obtain continuous
measurements of tree coverage.
We integrate vegetation data with mean annual precipi-

tation data obtained from the Tropical Rainfall Measuring
Mission (TRMM) 3B43 dataset, which has a resolution of
0.25° [63]. To assign each vegetation pixel an annual
precipitation value, we linearly interpolate the precipitation
data at the vegetation grid level, averaging over a span of
20 yr. Within the dataset, regions showcasing bistability
between tropical forests and savannahs within an inter-
mediate range of mean annual precipitation have long been
recognized [64,65]. We identify three such districts in
Central Africa that exhibit bistability and an abrupt
transition between the two states (see Fig. 7).
Each data point in Fig. 7 represents a 500-pixel×500-pixel

area and is recorded sequentially along the variation of
latitude with a step of 50 pixels. We build a network
comprising 100 nodes, each spanning five pixels in the
longitudinal direction and without overlap between distinct
nodes. To apply our established framework, we linearly
interpolate the original data to obtain more data points to
meet the time series segment Xs length requirement (each
comprising20 time steps)mentioned inSec. II A. In addition,
owing to the different widths of three districts, i.e., from 500
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to 800 pixels, we can obtain different numbers of transition
datawith the same slidingwidth of 100 pixels. To be specific,
we obtain two and four subsets of data from two districts
[mean locations are (26.119439°E, 2.498051°N) and
(20.892508°E, 3.957983°N), respectively] and use them to
fine-tune our neural machine. Finally, we anticipate the
critical transition of rainfall for a brand new district [mean
location (23.957871°E, 3.957249°N)].
Given the limited availability of real data for vegetated

ecosystems, we employ a transfer learning strategy [66] to
predict real critical transitions. Initially, we train a neural
machine on synthetic data to obtain a pretrained deep-
learning (DL) model. Subsequently, this pretrained model
is fine-tuned using the limited data available from real
vegetated systems. This fine-tuning process allows the DL
model to adapt to the new and underlying mechanisms of
the real system.
To enhance the generalizability of our DL model, we

generate synthetic training data from previously discussed
first-order phase transition systems, including the resource
biomass and neuronal systems, along with a new math-
ematical model of ecosystem focusing on the interactions
between macrophyte coverage and turbidity in shallow
lakes [57,67]. In this mathematical ecosystem, we vary the
number of nodes randomly between 10 and 200, the scale
exponent for the scale-free network between 2.1 and 2.9,
and the network mean degree between 2 and 6. Following
pretraining on synthetic data, we fine-tune the DL model
using limited real data from two districts of the empirical
vegetated ecosystem [as depicted in Fig. 7(a)]. This fine-
tuning process involves further training the DL model for a
relatively small number of epochs (300 epochs compared to
1000 epochs in the pretraining stage).
This final DL model is used to predict the critical mean

annual rainfall for a completely new district. It is worth
noting that the fine-tuning data are sourced from two
districts that are different from the target district, ensuring
there is no data leakage when making predictions. As
shown in Figs. 7(b) and 7(c), despite the distinct patterns
and critical rainfall (εc) values in the new, unseen district
compared to those used for fine-tuning, our deep-learning
approach maintains a low anticipation inaccuracy. The
mean relative errors are merely 0.008 and 0.016, respec-
tively. Furthermore, our algorithm demonstrates the
capability to quantitatively predict critical transitions far
from the transition onset, underscoring its transferability
and relevance to real-world systems.

VI. DISCUSSION

Anticipating critical transitions is a crucial task in dealing
with nonlinear systems. In this work, we propose a deep-
learning-based framework for quantitative prediction of
tipping points solely using time series data. Through three
synthetic examples and one empirical system, we demon-
strate the effectiveness and robustness of our methods. Even

when predicting critical transitions well in advance, our
approach maintains precision. The ubiquity of critical thresh-
old phenomenon in real-world systems and potential catas-
trophe risks means that the method has broad application
prospects. For instance, provided the difference between the
system’s current control parameter value and the value at the
transition is known, natural disasters would have more
possibilities to be managed effectively.
There are some methods in the literature aiming for early

warning. A novel deep-learning approach was proposed in
Ref. [33], but the work is dedicated to early bifurcation
classifications rather than estimates of transition onset.
Traditional EWSs such as rising variance [31] and lag-1
autocorrelation [5], as well as indicators such as rlink (see
Sec. III A), also show changeswell before a critical transition
but do not provide a quantitative prediction. In addition,
many indicators utilize information, such as the full topology
of the network, which is challenging to access in more
realistic situations. In contrast, our approach does not remain
at the qualitative level but, instead, leverages only time series
data to sense and capture latent transition laws and transform
them into quantitative anticipation. Observed trends in
accuracy are consistent with the different properties of first-
and second-order phase transitions. Specifically, accuracy
depends on lead distance more strongly for the biomass and
Wilson-Cowan systems, which are first-order transitions
characterized by abrupt changes, than for the second-order
Kuramoto system.
Many works that focus on EWSs only consider a small

number of variables (generally no more than 3), which
renders uncertain their applicability to more realistic
scenarios. For example, a recent approach based on
bifurcation theory also works well in anticipating low-
dimensional cases [68], but, since it is derived from a
one-dimensional time series, may be challenged by high-
dimensional systems. Another method has been proposed
to anticipate synchronization transitions of networked
systems [37], by employing a “parameter-aware” reservoir
computing neural machine which can predict the locations
of the transition points for both smooth and explosive
transitions. Unfortunately, because the computational load
of reservoir computing is quite large, the method’s appli-
cability is restricted to sufficiently small networks. In
addition, the method relies on knowledge of control
parameter values, but this information may not be available
in practical settings. In our GIN-GRU combined deep-
learning scheme, these restrictions are all lifted.
We also conducted experiments with graph convolutional

networks [69], graph attention networks [70], and other
graph neural networks, as well as many recurrent neural
networks, but found that theGIN-GRU architecture achieves
the highest anticipation accuracy. This can be attributed to
GIN’s incorporation of graph isomorphism within its net-
work structure, enabling GIN to more effectively leverage
global information from local features through a specialized
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feature mapping function and a learnable layerwise aggre-
gation function. We found that the long short-term memory
network [71] yielded similar effects to GRU, but GRU is
much more efficient.
The computational complexity of our proposed algo-

rithm mainly depends on two parts. The GIN has complex-
ity about OðLNNnÞ, where N, L, and Nn denote the
number of nodes, number of layers of GIN, and number of
neurons of the multilayer perceptron, respectively. The
GRU incurs complexity approximately OðLsdidhÞ, where
Ls, di, and dh represent the length of sequence, the
dimension of the input, and number of hidden neurons,
respectively. Our machine-learning implementation is
based on PYTORCH, and experiments are conducted on a
local machine equipped with two NVIDIA V100 32 GB
GPUs. All our codes are available in Ref. [72].
Our work raises several questions worthy of future

pursuit. First, the size of sliding window (i.e., w) is
presently set to 20. Although this is already relatively
small, it would be interesting to investigate how much
smaller windows can be while still providing accurate
predictions. Second, some networked dynamical systems
may undergo critical transitions more than once [73,74].
Predicting the locations of all transitions solely based on
pretransition data is a challenging but valuable goal. Third,
the nodes in a complex system can have higher-order
interactions that may impact the transition of networked
systems [75,76]. Hence, it is an interesting direction to
extend the approach to anticipating higher-order network
tipping points. Finally, regarding our framework for pre-
dicting the critical transitions of empirical systems based on
a deep-learning model well trained on synthetic data, it
would be worthwhile to integrate more synthetic systems to
increase the versatility of the pretrained model.
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