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Strong Optomechanical Squeezing of Light
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We create squeezed light by exploiting the quantum nature of the mechanical interaction between laser
light and a membrane mechanical resonator embedded in an optical cavity. The radiation-pressure shot
noise (fluctuating optical force from quantum laser amplitude noise) induces resonator motion well above
that of thermally driven motion. This motion imprints a phase shift on the laser light, hence correlating the
amplitude and phase noise, a consequence of which is optical squeezing. We experimentally demonstrate
strong and continuous optomechanical squeezing of 1.7 = 0.2 dB below the shot-noise level. The peak
level of squeezing measured near the mechanical resonance is well described by a model whose
parameters are independently calibrated and that includes thermal motion of the membrane with no

other classical noise sources.
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Interferometry is a ubiquitous method for sensitive dis-
placement measurements. In typical interferometry em-
ploying a coherent state, the amplitude and phase
quantum fluctuations are both at the shot-noise level.
Recently, optomechanical systems have been developed
that not only measure mechanical motion but can also
manipulate the motion with radiation pressure. For ex-
ample, radiation forces have been used to cool mechanical
resonators to near their quantum ground state [1,2]. With
sufficiently strong radiation pressure, quantum fluctuations
can become the dominant mechanical driving force, lead-
ing to correlations between the mechanical motion and the
quantum fluctuations of the optical field [3]. Such correla-
tions can be used to suppress fluctuations on an interfer-
ometer’s output optical field below the shot-noise level
[4,5], at the expense of increasing fluctuations in an or-
thogonal quadrature. This optomechanical method of ma-
nipulating the quantum fluctuations has historically been
termed ponderomotive [6] squeezing.

The history of optical squeezing is intimately linked to
quantum-limited displacement sensing [7], owing to pro-
posals to increase the displacement sensitivity of large-
scale gravitational-wave observatories with squeezed light
[8—11]. Squeezed light was first produced using atomic
sodium as a nonlinear medium [12] and was soon followed
with experiments employing optical fibers [13] and non-
linear crystals [14]. Substantial squeezing has been
achieved in modern experiments (up to 12.7 dB [15]), and
enhanced sensitivity using squeezed light has been realized
in gravitational-wave detectors [16] and in biological

*tpp@jila.colorado.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOL

2160-3308/13/3(3)/031012(8)

031012-1

Subject Areas: Optics, Quantum Physics

measurements [17]. Squeezed microwave fields, which
have now been demonstrated with up to 10 dB of noise
suppression [18], are an important tool in quantum infor-
mation processing with superconducting circuits.

Early on, searches for ever-better squeezing materials
led to suggestions that an optomechanical cavity, in which
radiation pressure proportional to optical intensity changes
the cavity length, could act as a low-noise Kerr nonlinear
medium [4,5,19], and hence could be a useful source of
squeezed light [20]. Further, a unique advantage of utiliz-
ing an optomechanical nonlinearity is that correlations
induced by a mechanical object can be used to enhance
displacement sensitivity for that same object [11,21].

However, experimentally, it has proven difficult to real-
ize the substantial interplay between mechanical motion
and quantum fluctuations of light required for ponderomo-
tive squeezing. Early on, radiation-pressure-induced
optical nonlinearity (bistability) was experimentally dem-
onstrated in a cavity with a pendulum-suspended end
mirror [22]. More recently, ponderomotively squeezed
light at the few-percent level has been demonstrated using
a mechanical mode of an ultracold atomic gas inside an
optical cavity [23], and very recently using a silicon micro-
mechanical resonator [24]. The former experiment was
limited by nonlinearities in the interaction and the latter
by excess mechanical thermal motion. Here, we observe
ponderomotive squeezing at 1.7 = 0.2 dB below (32%
below) the shot-noise level and optical amplification of
quantum fluctuations by over 25 dB. The squeezing is
realized on light transmitted through a Fabry-Perot optical
cavity with an embedded, mechanically compliant dielec-
tric membrane.

An optomechanical system can be thought of as an
effective Kerr medium, and hence ponderomotive squeez-
ing can be understood using many of the same ideas as
typical nonlinear media. However, in ponderomotive
squeezing, the finite mechanical response time defined by
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a complex mechanical susceptibility y,,(w) plays an im-
portant role [19]. We can illustrate the features of our
expected ponderomotive squeezing by tracing the quantum
fluctuations 6X; and 60X, in the optical amplitude and
phase quadratures, respectively, propagating through our
optomechanical cavity (Fig. 1). A large coherent state,
referred to as the signal beam, consisting of nearly mono-
chromatic radiation at a frequency w; and vacuum fluctu-
ations at all other frequencies, enters the cavity from the
left, and a vacuum state enters from the right. We first
consider the simplest case where the laser-cavity detuning
A is zero. Because the membrane is located in a spatial
gradient of the standing-wave optical intensity, it is subject
to an optical force from the shot-noise intensity fluctua-
tions, termed radiation-pressure shot noise (RPSN). The
membrane responds to the RPSN drive with motion con-
centrated at frequencies near its mechanical resonances,
i.e., weighted by yx,,(w). The mechanical motion of the
dielectric membrane causes fluctuations in the cavity reso-
nance frequency that are imprinted onto the optical phase
quadrature, yielding 6Xy(w) — 6Xp(w) + r(w)dX;(w),
while 6X; remains unchanged. Here, r(w) is a dimension-
less complex Kerr parameter proportional to the strength of
the coupling, which depends upon a variety of parameters,

including the mechanical response. This Kerr-like
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self-phase-modulation correlates the amplitude and phase
quadratures. If r is real, the correlations destructively
interfere in some particular quadrature, leading to squeez-
ing, as illustrated in Fig. 1(c). If r is purely imaginary, the
added phase fluctuations do not lead to squeezing. This
case occurs when probing on the optical resonance and
measuring at the mechanical resonance frequency, where
the mechanical response is perfectly out of phase with the
RPSN drive.

Another consequence of the finite response time of the
mechanical element [i.e., the imaginary component of
Xm(@)]is that our system is directly coupled to the thermal
bath. Thermal motion of the membrane imprints excess
noise onto the light, which is uncorrelated with the optical
shot noise and hence can limit the level of squeezing. To
obtain significant squeezing near the mechanical resonance,
the level of RPSN relative to the thermal force driving the
membrane should be large [3]. For a beam with laser-cavity
detuning near zero, this ratio is given by R = C/ny X
[1+ Qw,,/k)?*]"", where C=4Ng?/kl, is the opto-
mechanical cooperativity, N is the average intracavity
photon occupation, g is the optomechanical coupling rate,
I’y is the mechanical dissipation rate, « is the cavity decay
rate, w,, is the mechanical resonance frequency, and ny, is
the thermal occupation of the mechanical state.
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Experimental diagram for optomechanical squeezing. (a) The signal beam (blue arrows) enters the optomechanical cavity as

a coherent state. After the optomechanical interaction, a squeezed state emerges. The signal beam is detected either with balanced
direct photodetection or with balanced homodyne detection by mixing with an optical local oscillator (LO) (green arrow). A weaker
damping beam (red arrows) orthogonally polarized to the signal beam is also injected into the cavity. The two beams are combined
before the cavity and separated after the cavity with polarizing beam splitters (PBS) and detected with photodetectors (PD). (b) Signal-
and damping-beam detunings from the cavity resonance. (c) Representative 6X; — 6X,, phase-space distributions of the signal beam
for real and imaginary values of r, the Kerr parameter. The dashed circle represents the variance of the Gaussian noise distribution of
the vacuum state. Distributions inside the dashed circle represent squeezed states. (d) Simulated signal-beam quadrature spectrum
for A = 0 in the idealized case of zero temperature and no optical loss. Otherwise, Heisenberg-Langevin simulation parameters
are set to experimental values: k/27 = 1.7 MHz, I'{/27 = 2.6 kHz, w,,/27 = 1.53 MHz, and VNgo/2m = 350 kHz. The
spectrum is displayed on a logarithmic scale. The region between the white contours is squeezed.
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Figure 1(d) illustrates the basic features we expect to see
when measuring the squeezing in homodyne detection as a
function of quadrature angle ¢ and detuning with respect
to the mechanical resonance. To create this map, we use the
Heisenberg-Langevin model described in the Appendix
that captures more of the complexity of our system. In
the diagram, we can see that for pure intensity quadrature
light, we do not observe squeezing. However, as one
rotates toward the phase quadrature, squeezing appears.
The line shape of the squeezing is not symmetric about w,,
in our case but instead follows a Fano-like line shape. The
vacuum fluctuations directly reflected off the output mirror
interfere  with the quadrature-rotated, mechanical-
resonance-modulated light exiting the cavity. This diagram
also illustrates the basic role of the mechanical suscepti-
bility that weights the interaction between the membrane
and the light. Namely, the magnitude of the squeezing
(8¢ <1) and the antisqueezing (S, > 1) fall off on the
scale of the mechanical linewidth.

In our experiments, we also operate with a finite laser-
cavity detuning. At a finite A, an understanding of the
spectrum of fluctuations must also take into account the
A-dependent quadrature rotation of the intracavity states
relative to the input fields ¢, = tan"'(2A/k) (i.e., off-
resonant phase fluctuations are partially converted into
intracavity amplitude fluctuations and vice versa). This
quadrature rotation generates squeezing in the amplitude
quadrature, which may be observed via direct photodetec-
tion in addition to homodyne detection. The spectral line
shape is also altered by the optomechanical damping and
spring effects of the signal beam [25] on the membrane’s
mechanical response (see the Appendix).

Our optomechanical cavity (see Fig. 1 and Ref. [26])
consists of a 40-nm-thick by 500- um-square silicon nitride
membrane inside a 3.54-mm-long Fabry-Perot optical cav-
ity [27]. We work with the (2, 2) drumhead mode of the
membrane, with two antinodes along each transverse di-
rection, yielding a mechanical resonance frequency of
w,, = 27 X 1.524 MHz, and mechanical dissipation rate
I'y = 27 X 0.22 Hz. The interaction Hamiltonian #igNz,
where z is the operator of the effective mechanical coor-
dinate and N is the intracavity photon-number operator, is
equivalent to that of a harmonically bound end-mirror
optomechanical cavity [4,5]. In our system, g =
27 X 33 Hz, k = 27 X 1.7 MHz, and in a helium flow
cryostat with a base temperature of 4.6 K, we achieve
R > 5, when operating with N ~ 108, This ratio is much
larger than achieved in previous work [3], mainly because
of increased optomechanical coupling. In addition to our
main signal beam, we inject another laser into the orthogo-
nal polarization cavity mode. This damping beam has a
much weaker power than the signal beam but is detuned by
A, ~ —w,, from the cavity resonance. The damping al-
lows us to avoid parametric instability and work with a
mechanical mode with an effective mode temperature of

less than 1 mK. See the Supplemental Material for more
details about experimental methods and calibrations [28].

In our first set of experiments, we use direct photo-
detection to measure the power spectrum of the amplitude
quadrature S;(w), which is normalized such that the de-
tected shot noise is unity. Figure 2(a) shows S; for several
values of A, all at an average transmitted signal-beam
power of 110 uW corresponding to N = 1.1 X 10% or
R = 5.1. A dip in noise below the shot-noise level is visible
in the vicinity of w,,, a clear signature of squeezed light.
The squeezing becomes more pronounced as |A] is in-
creased because the maximally squeezed quadrature is
rotated toward the amplitude quadrature. The data show
excellent agreement over most of its frequency range with
a Heisenberg-Langevin model, including quantum-noise-
limited input optical fields, a thermally occupied mechani-
cal bath coupled to the membrane, and no other classical
noise sources (see the Appendix). However, a small excess
of classical noise is visible at the largest detuning, a few
tens of kHz above the mechanical resonance. Here, cavity
frequency noise induced from a thermally occupied me-
chanical mode of the optomechanical cavity support struc-
ture [26] is increasingly converted in amplitude noise at
larger |A]. All of the system parameters used to generate
the theory curves of Fig. 2(a) are independently measured,
except A is calibrated, in part, using the displayed data.

The shot-noise level for the data of Fig. 2 is calibrated
using balanced direct detection. The transmitted signal is
split into two equal power beams and directed onto a pair
of nearly identical photodetectors. Taking the sum of the
detected signals is equivalent to single-detector direct de-
tection. However, taking the difference of the detected
signals removes classical and quantum correlations, up to
the 20-dB achieved common mode suppression. The dif-
ference signal consists of only the uncorrelated shot-noise
level and a small, approximately 5% contribution from the
photodetector dark noise. S; is computed by taking the
ratio of the power spectra of the sum and difference signals,
after subtracting the measured photodetector dark noise.

The limits of the detected squeezing are illustrated in
Fig. 2(b), where the minimum measured value of S; is
plotted as a function of A. The squeezing is limited some-
what by the thermal-noise-to-RPSN ratio 1/R. The finite
quantum efficiency of our detection system is the largest
limit to the detected squeezing. Including losses associated
with the cavity €. = 0.6, propagation to the photodetector
€, = 0.3, and photodetector conversion efficiency €; =
0.87, we estimate an overall quantum efficiency of € =
€.€,6q = 0.42.

For Fig. 2(c), white classical intensity noise with an
amplitude much greater than shot noise has been intro-
duced onto the signal beam prior to entering the cavity.
While classical intensity noise is clearly suppressed as
well, the line shape of S; is qualitatively different from
that of the quantum noise case. In the classical noise case,
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FIG. 2. Quantum intensity noise suppression. (a) Directly detected optical intensity noise signal-beam spectra for several signal-
beam detunings. Also displayed are the measured shot-noise level (gray curves) and the theoretical predictions (black curves). A
200-Hz bandwidth is used. The ratio of RPSN relative to thermal drive R is fixed at 5.1. The damping beam provides [ /27 =
2.7 kHz and & /27 = 1.524 MHz. However, the total mechanical damping rate and resonance frequency change with the signal-
beam detuning A. (b) The minimum value of S; for spectra as displayed in (a) (blue circles). Statistical error bars indicate the standard
deviation. The frequency where the minimum occurs w, shifts with A because of the optical spring effect. Also displayed are the
mechanical thermal noise floor for our current parameters 1/R (dashed green line), the limit set by finite detection efficiency 1 — €
(dot-dashed green line), the sum of the thermal and detection efficiency limits (dot-dot-dashed green line), and expected squeezing in
the absence of optical loss and thermal motion (dotted gray line). (c) The directly detected optical intensity noise signal-beam
spectrum with intentionally added white, classical amplitude noise (red curve), theoretical prediction (black curve), and level of added
amplitude noise (gray line). (d) The mechanical displacement spectrum inferred from the damping-beam transmission spectrum
(orange region) and Lorentzian fit (dotted black line). The detection noise floor is also shown (dotted gray line). One additional peak
due to excess noise is visible in the bottom panel of (a) and in (d) at frequencies of approximately 1.545 MHz due to a thermally

occupied mechanical mode of the cavity support structure.

the Fano asymmetry reverses because of the absence of
coherent interference, with phase and amplitude noise
directly reflected from the output mirror, in contrast to
the quantum noise case. A Heisenberg-Langevin model
incorporating the additional classical laser noise term
agrees well with the measured data. This symmetry differ-
ence between classical and quantum noise provides added
confirmation that the spectra of Fig. 2(a) truly arise from
the manipulation of quantum noise.

Although the transmitted signal-beam intensity spec-
trum is decidedly non-Lorentzian, the mechanical dis-
placement still follows a simple Lorentzian form. The
damping-beam transmitted intensity spectrum acts as a
probe of mechanical motion uncomplicated by strong
quantum correlations because its intensity and thus
RPSN effects on the membrane are small [3]. The me-
chanical displacement spectrum derived from the damping
beam [Fig. 2(d)] shows that the mechanics still retains a
Lorentzian response to locally white force fluctuations.

We next explore all quadratures of the transmitted signal
beam with balanced homodyne detection. We interfere the
transmitted signal beam with an optical local oscillator

whose phase is stabilized relative to the signal beam (see
the Supplemental Material for details [28]). In Fig. 3(a),
optical quadrature spectra S, (w) over a varying quadrature
phase ¢ are displayed. S, is normalized such that the
measured shot-noise level is unity. The phase ¢ = 0 cor-
responds to the amplitude quadrature and gives informa-
tion equivalent to that obtained in the direct detection
discussed above. (Note that for these measurements, A =
—2a X 42 kHz, allowing some squeezing to be rotated
into the amplitude quadrature.) Regions with noise spectral
density below the shot-noise level are visible over a band-
width of approximately 100 kHz and ¢ ranging over tens
of degrees. The range of observed squeezing is limited to a
region smaller than predicted by theory because of the
thermal motion of the cavity mirrors and support structure
mentioned above. The depth of the observed squeezing in
homodyne detection is also lower than that observed in
direct detection. This reduction is partially accounted for
by imperfect overlap between the probe beam and homo-
dyne local oscillator, contributing an additional effective
optical loss €,, = 0.8. Also, we operate in a regime where
the homodyne local oscillator power is only a factor of less
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FIG. 3. Optical quadrature spectrum. (a) Color map of S . The
white contour is at the shot-noise level, and the region inside this
contour is squeezed. Several additional noise peaks are evident at
frequencies away from the mechanical resonance, due to motion
of thermally occupied modes of the support structure. The inset
shows the squeezed region in more detail and also includes a
theoretical prediction (dashed black curves) of the expected shot-
noise contour. The experimental parameters are the same as in
Fig. 2, except A/27 = —42 kHz. (b) Cuts through quadrature
phase at three different frequencies 1.517 MHz (blue circles),
1.526 MHz (green stars), and 1.535 MHz (red triangles), aver-
aged over a 1-kHz bandwidth, and corresponding to zero-free-
parameter theoretical models (colored solid curves).

than 10 larger than the probe power, making the measure-
ment slightly susceptible to the noise of the local oscillator
(see the Appendix).

Homodyne detection also allows us to quantify the
coherent amplification of optical quantum fluctuations in
our measurement. In Fig. 3(b), we compare our data to a
theoretical calculation based upon a Heisenberg-Langevin
model. The agreement between the model and the data
allows us to interpret the large noise spectral density
(S ~ 330) near the phase quadrature at ¢ = *£90° as
arising mainly from coherent amplification of quantum
noise or so-called antisqueezing. This amplification
persists despite the large imaginary component of the
mechanical response, which has the potential to limit
squeezing and add thermal noise. Note that the measured
spectral densities are far in excess of that required to satisfy

the Heisenberg uncertainty limit \/ S ¢(w)\/ Sptmp(@w)>1.
In the Supplemental Material, we present the parameters

and configuration that would be required to realize a
minimum uncertainty state that saturates the Heisenberg
bound [28].

In conclusion, we have experimentally demonstrated that
an optomechanical system well into the RPSN-dominated
regime is capable of creating squeezed light. The 1.7-dB
strength of optomechanical squeezing we achieve is signifi-
cantly larger than previous optomechanical realizations
[23,24]. However, stronger squeezing has of course been
realized with more developed techniques [15], and increas-
ing efficiency and reducing thermal noise will be required
to study the ultimate limits to deeply ponderomotively
squeezed light. It will also be interesting to compare the
passive squeezing achieved here to techniques that utilize
optomechanically mediated quantum nondemolition mea-
surements of the optical field and active feedback on the
light [29,30].

This material is based upon work supported by the
National Science Foundation under Grant No. 1125844,
by the ONR Young Investigator Program, and by the
DARPA QuASAR Program. C.A.R. thanks the Clare
Boothe Luce Foundation for support.

APPENDIX: CALCULATION
OF OPTICAL SPECTRA

In this Appendix, we describe our solution to the
Heisenberg-Langevin equations of motion for our optome-
chanical system. We then compute the expected output
optical quadrature spectrum and the spectrum obtained
from balanced homodyne detection and direct
photodetection.

1. Heisenberg-Langevin equations

We begin with the following Hamiltonian H = H, +
H, + Hy, where H, describes the intracavity coherent
dynamics, H, represents the coupling of the optical system
to external fields, and Hy represents the external thermal
coupling to the mechanics [3-5,25,31]

Hy = hw,ctc + ho.ata + hGZ,,(c + cHata, (AD

where w,, is the mechanical resonance frequency, ¢ (ct) is
the mechanical annihilation (creation) operator, w, is the
optical resonance frequency, a (al) is the optical intra-
cavity annihilation (creation) operator, G is the optome-
chanical coupling constant, and Z,, = y/h/2mw,, is the
mechanical zero-point motion, with m the mechanical
resonator effective mass. We define a single-photon opto-
mechanical coupling rate ¢ = GZ,, and a dimensionless
mechanical displacement operator z=(c+c)—(c+cT).
The Hamiltonian is linearized by assuming a large optical
coherent-state amplitude compared to the vacuum level
a =[a+ d(t)]e’“t!, where w; is the optical drive fre-
quency, a = {a) is the intracavity coherent-state ampli-
tude, assumed to be real, and d(¢r) is an operator
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containing the quantum and classical noise on the optical
field. Terms of order d? are neglected. The linearized
Hamiltonian that encapsulates the basic interaction is

Hy = hw,ctc+ hw.ata + hGZ,,(c + chHa*a + Hgg

+ HTMsy (A2)
Hgs = hGZ,y(a*ctd + acd?), (A3)
Hrys = hGZ,p(a*cd + actd?). (A4)

The resulting linearized Hamiltonian contains both the
beam splitter (Hpg) and the two-mode squeezing (Hryys)
Hamiltonians.

We solve the Heisenberg-Langevin equations of motion
for this system in the frequency domain, using the Fourier
transformation ~ convention  f(w) = [*_ "' f(t)d1,
o) = [, e fT(t)dt, and [f1(0)]T = f(—w). We as-
sume thermally driven mechanical motion, with mechani-
cal damping rate I'y and initial thermal occupation n,,. We
include the effects of the additional optical damping beam
in an orthogonal cavity mode by defining effective values
for w,,, T'y, and ny for the motion of the mechanical
resonator in the presence of the optomechanical damping,
spring, and cooling induced by the damping beam [25].
The optomechanical effects of the signal beam are intrinsic
in the equations of motion. The optical loss rate to the input
port, output port, and internal loss are k;, kg, and Ky,
respectively, yielding a total cavity damping rate of k =
K1 T kg + ki The external optical input fields consist of

|

a coherent state, of frequency w; , incident on the input port
of the two-sided Fabry-Perot cavity, and vacuum incident
on the output port. An effective detuning of the input signal
field from the average value of the optomechanically
shifted cavity resonance is given by A. The optical output
operator dgy = [dgy + doy(t)]e’“t" is computed using the
cavity input-output relations dy, = /kga@ and dg, +
di, = /Kkgd, where d;, is the noise operator representing
the vacuum field incident on the output port [32].

2. Optical output spectrum

The quadrature output operator is defined as X, (w) =
o (®)e’® + al (w)e~i®, where ¢ is the quadrature phase
angle. Because we have assumed a to be real, the input-
output relation indicates that a,, is also real, and ¢ = 0
(¢ = 7/2) corresponds to the amplitude (phase) quadra-
ture. The symmetrized power spectrum of the quadrature
operator is Syx(w):

Sxx(w) = (X4 (— )X 4(w)),
= [(Xp(—0)Xy(®)) + (Xy(0)Xy(—w))]

The spectrum consists of three terms. A, is the shot noise
on the output. A_, represents the noise imprinted by the
actual mechanical motion. The cross term A, contains the
correlations between shot noise and motion driven by
radiation pressure from the shot noise. This term is respon-
sible for any squeezing:

A (w) = kglalg* [l x (@)* + [x(— o) = x(@)x (—0)e*? — yi(w)xi(—w)e ¢ Yz(—w)z(w));,
A (w) = iJkgagi[—x.(—w)e*? + xi(w)Kz(—w)(w)); + [~ x(w)e?® + xi(—w)K{(—w)z(w)),
+ [xi(w)e % — x (—o)z(—w) T (), + [xi(—w)e - xy (o) KT (—w)z(w)),},

Ay () = ({T(—0)d(w), + ({(—w) (), = 1.

The output shot-noise operator is {(®) = x.(@)/KLKr&L(@) + x (@) /KinKréim(@) + [x(@)kg = 1]ér(@). &1, &k,
and &;,, are the Langevin vacuum noise operators for the input port, output port, and internal loss of the cavity, respectively:

o)), — 1 ng+1/2  ng+1/2
(- w)zlwh, w<w>|2[r°(|xm<w>|2+|Xm<—w>|2
() (@), =—2nB8R ()

N(—w)

We have introduced the following notation. The cavity
susceptibility is y.(w) = [k/2 — i(A + w)]~!. The me-
chanical susceptibility is y,,(0)=[Ty/2—i(w —w,)]"".
The optomechanical damping and spring effects are encom-
passed in N (0)=[xw(@)x,(—0)] ' —i20,glal*X
[x.(w)— x:(—w)]. We also assume the mechanical thermal
and optical vacuum baths are uncorrelated at different
times (£(—w')é(w)) = 6(w — w'), for noise operator &,

)+zw3nglea|2[|xe<w>|2 " |Xc<—w>|2]],

(e, =2 (o) (o), = o) ), =,

and we assume integration over w’ for physically relevant
quantities.

Any loss in the optical detection system, including
propagation losses between the cavity and detector, imper-
fect mode matching to the homodyne detector, or
finite photodetector conversion efficiency, can be modeled
by a single effective loss port with fractional loss e.y;.
The loss port attenuates the signal reaching the detector
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FIG. 4. Calculated homodyne spectrum for finite signal-beam
detuning. Homodyne transmission spectra S, are calculated for
three  signal-beam-cavity  detunings: (a) A/27 =0,
(b) A/27 = —42 kHz, and (c) A/27 = —100 kHz. The other
parameters used are g/2m = 33 Hz, m = 6.75 X 107!2 kg,
0 /27 = 1.5243 MHz, [eft /270 = 2560 Hz, Tt =
3.8 X 107* K, €. = 0.55, /27 = 1.7 MHz, iz = 0.6k, N =
1.1 X 108, and €.y |@oyl?/la@Lol> = 0.1. The parameters of (b)
match the parameters of the measured spectrum presented in
Fig. 3. With those parameters, the mechanical damping from the
signal beam is 6 kHz. Calculated spectra are displayed on a
logarithmic scale. The region between the white 0-dB contours is
squeezed.

Aoyt — [€extloye and injects vacuum noise, leading an
effective quadrature spectrum of Syy(w)— €. Syx(w)+
(1 - eext)-

The homodyne detection consists of combining a strong
optical local oscillator with the output from the cavity on a
beam splitter. Both outputs of the beam splitter are re-
corded on photodetectors, and the two photocurrents are
subtracted. Assuming an equal splitting on the beam split-
ter, the subtracted photocurrent signal is proportional to
(C_loutdLOeld7 - &outaLOeiiq&) + aout(dLO + d]to) +
ayo(doye’® + di ,e=i%), where the annihilation operator
of the local oscillator is a; o = [Go + dio(f)]e’®:'™%, and
we have neglected terms of order d. The third term is

proportional to X 4. The second term, which represents the
local oscillator vacuum noise beating against the coherent
portion of the cavity output field, is negligible when a; o >
a.y and is typically ignored. However, in the homodyne
detection system described in the main text, we are limited
to a local oscillator power that is less than 10 times larger
than the signal-beam power in order to ensure that the
photodetectors remain in their linear range. In this case,
the local oscillator noise term must be included to quanti-
tatively model the homodyne data. The one-sided, symme-
trized, shot-noise-normalized spectra S,(w) in the main
text are then given by

2{|dLO|2[6extSXX(w) + (l - eext)] + Eextlaoutlz}

Sp(w)= - -
¢ 2(|aLo|2 + Gextlaoutlz)

(A6)

Using this full expression, one sees that the level of per-
ceived squeezing is reduced by the additional uncorrelated
noise floor of the local oscillator.

The one-sided, symmetrized, shot-noise-normalized, di-
rect photodetection spectrum, discussed in the main text,
requires Syy(w) to be evaluated at ¢p = 0:

Sl(w) = EextSXX(w)|¢:0 + (1 - Eext)-

Several calculated spectra of Sy in Fig. 4 illustrate the
effects of the signal-beam detuning A. Three different
values of A are displayed, and the other parameters are
chosen to match the experimental data of the balanced
homodyne experiment. Two trends are evident as A is
varied. First, the entire spectrum is rotated by the cavity
filtering by tan™!(2A/k). This rotation is most evident by
focusing on the white 0-dB contour, which is shifted away
from ¢ = 0 for increasing detuning. Second, the optome-
chanical damping from the signal becomes significant for
nonzero detuning, consequently broadening the features.
This broadening is evident near the phase quadrature,
which when A ~ 0 is proportional to the actual mechanical
motion. The area between the 0-dB shot-noise contours
also becomes noticeably wider near the amplitude quad-
rature and near w,, as A is increased.

(A7)
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