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Large communities of biological oscillators show a prevalent tendency to self-organize in time. This
cooperative phenomenon inspired Winfree to formulate a mathematical model that originated the theory of
macroscopic synchronization. Despite its fundamental importance, a complete mathematical analysis of the
model proposed by Winfree—consisting of a large population of all-to-all pulse-coupled oscillators—is
still missing. Here, we show that the dynamics of the Winfree model evolves into the so-called Ott-
Antonsen manifold. This important property allows for an exact description of this high-dimensional
system in terms of a few macroscopic variables, and also allows for the full investigation of its dynamics.
We find that brief pulses are capable of synchronizing heterogeneous ensembles that fail to synchronize
with broad pulses, especially for certain phase-response curves. Finally, to further illustrate the potential of
our results, we investigate the possibility of “chimera” states in populations of identical pulse-coupled
oscillators. Chimeras are self-organized states in which the symmetry of a population is broken into a
synchronous and an asynchronous part. Here, we derive three ordinary differential equations describing
two coupled populations and uncover a variety of chimera states, including a new class with chaotic

dynamics.
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I. INTRODUCTION

In 1967, Winfree proposed the first mathematical model
for the macroscopic synchronization observed in large
populations of biological oscillators [1]. These natural
systems typically achieve synchrony via brief pulselike
signals emitted by the individual oscillators [2,3]. Well-
known examples of pulselike interactions are the action
potentials emitted by neurons and other cells [4], the flashes
of light emitted by fireflies [5], and the sound of hands in
clapping audiences [6].

Assuming weak coupling, Winfree exploited the sepa-
ration of time scales to characterize the state of each
oscillator solely by its phase variable 8. Using analytical
arguments and numerical simulations, Winfree discovered
that a population of N > 1 all-to-all-coupled phase oscil-
lators showed a phase transition to macroscopic synchro-
nization at a critical value of the “homogeneity” of the
population [1,7]. Only a few years after Winfree’s seminal
paper, Kuramoto proposed a new phase model singularly
amenable to mathematical analysis [8,9]. In an elegant and
simple way, the Kuramoto model captures the transition to
collective synchronization observed by Winfree and
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quickly became the canonical model to mathematically
investigate synchronization phenomena [10].

The Kuramoto model has motivated a great deal of
theoretical work and has been investigated under countless
variations and used to model a number of physical,
chemical, biological, social, and technological systems
[3,11-13]. Yet, in 2008, Ott and Antonsen made a very
important finding [14]: Kuramoto-like models have sol-
utions in a reduced invariant manifold. This result drasti-
cally simplifies the task of investigating the collective
dynamics of such systems.

However, despite their importance and generality,
Kuramoto-like models—in which interactions are
expressed by phase differences—are approximations of
more-realistic models, such as the Winfree model, in the
weak-coupling limit. Parameters of the original model do
not usually have a simple mapping into the parameters of
the Kuramoto-like model (see, e.g., Refs. [15,16]). In
contrast to Kuramoto-like models, the Winfree model
incorporates explicit pulselike interactions and phase
response curves (PRCs) [17] that are customarily obtained
from experiments [18] or from biologically realistic con-
ductance-based models [19].

Thus far, theoretical attempts to understand the dynamics
of the Winfree model have had very limited success.
Beyond a valuable work in 2001 [20] and a few later
studies [21], the lack of mathematical tractability of the
model seems to be the drawback for its dissemination
among scientists.
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In this paper we show that the Winfree model evolves
into the so-called Ott-Antonsen (OA) manifold [14]. Under
some circumstances—which we make clear below—this
important property permits us to exactly describe this high-
dimensional system by two ordinary differential equations
(ODEs). We exhaustively explore the effect of the PRC’s
shape and the pulse’s width on the collective dynamics of
the Winfree model. In general, the evolution of the Winfree
model in the OA manifold opens the possibility of inves-
tigating phenomena that, thus far, have been addressed
analytically using “Kuramoto oscillators.” As an example,
we uncover the existence of a variety of the so-called
chimera states [22] in populations of “Winfree oscillators.”

II. WINFREE MODEL

The Winfree model is written as
. € N
0, =w; + Q(Q’)N;P(@j)v (1)

where the overdot denotes the derivative with respect to
time, the constant e controls the coupling strength, and the
oscillators are labeled by i =1, ..... ,N. The presence of
heterogeneity in the population is modeled via the natural
frequencies w;, which are drawn from a certain probability
distribution g(w) [1,20,21] (see also Ref. [23]). The PRC
function Q measures the degree of advance or delay of the
phases when the oscillators are perturbed. Here, we adopt a
PRC with a sinusoidal shape:

0(0) = o —sin(0 + p). )

A possible choice relating the offset ¢ and the phase-lag
parameter S is ¢ = sin 3, so that the PRC vanishes at
6 =0, as is naturally assumed in neuronal modeling. If
p < =/2, neuronal oscillators are referred to as type-II,
whereas f = n/2 corresponds to a type-I neuronal oscil-
lator [18,19,23-27].

We complete the definition of Eq. (1) with the smooth
pulselike signal,

P(0) = a,(1 + cos )", (3)

where the integer parameter n > 1 allows us to control the
width of the pulses. The normalizing constant a,, is chosen
so that the integral of P(0) equals 2z. Thus, a; = 1, and for
other values of n, a, = 2"(n!)?/(2n)!. Note also that the
n — oo limit of Eq. (3) is P(0) = 275(4).

III. LIMIT OF WEAK COUPLING AND NEARLY
IDENTICAL FREQUENCIES

We begin our analysis of the model defined by Eqs. (1-3)
by taking the limit of small € and the frequency diversity.
Applying the classical perturbative averaging technique [9],
we obtain

N
Hlav n € . av av
9,(» ) = o/ + (n—i— 1>N]ZI sin [6’§ )—65 )—/}], 4)
with o, = w; + ec. Equation (4) is precisely the
Kuramoto-Sakaguchi model [28]. An interesting outcome
of our derivation of Eq. (4) is that, the narrower the pulses
(the larger the n values) in the original Winfree model, the
stronger the effective coupling €. = ne/(n + 1).

In the case of a Lorentzian distribution of frequencies,

Alr

[PErAEY )

g(w) =

a closed formula for the coupling at the emergence of a
macroscopic cluster of synchronized oscillators exists [28]:

o 2A 1
o) — <"+ > 6)

~ cos f n

Note that this linear dependence of e, on A is an
approximation.

IV. LOW-DIMENSIONAL DYNAMICS OF THE
WINFREE MODEL

For the remainder of this paper, we analyze the Winfree
model assuming neither weak coupling nor low frequency
diversity. Our first key observation is that Eq. (1), with the
PRC in Eq. (2), belongs to a family of models that can be
written as

0,(t) = w; + B(t) 4 Im[H (r)e= 0], (7)

In our case, B(t) = ech(t) and H(t) = ee~#h(t), with the
mean field

(o) = > P(0,(0). ®)

In the thermodynamic limit N — oo, systems of type (7)
have solutions in the reduced invariant manifold discovered
by Ott and Antonsen [14], which corresponds to a uniform
distribution of certain constants of motion at each value of
 [29]. For B = 0, it has been proven [30,31] that, provided
the w’s are drawn from a probability distribution function
g(w) that is differentiable and well-behaved in a certain
way (see Ref. [31] for details), such as Lorentzian or
Gaussian functions, the dynamics of Eq. (7) converges to
the OA manifold. Remarkably, we have verified that the
proof in Refs. [30,31] also holds for B # 0. Hence, next we
apply the OA ansatz with the certainty that it captures the
asymptotic dynamics of the model.

Let F(6|w, 1)dO be the fraction of oscillators with phases
between € and 6 + df and natural frequency w at time .
The dynamics of F is governed by the continuity equation
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(a) Phase diagram of model (1) obtained from the reduced Eq. (12), with f =06 =0 and n = 10. Inset:

Pulselike function [Eq. (3)]. Panels (b)-(g) show results obtained from the numerical integration of the Winfree model [Eq. (1)],
with N =2000 oscillators and the natural frequencies selected deterministically to represent the Lorentzian distribution:
w; =1+ A tan[z/2(2i =N —1)/(N + 1)], for i = 1,....., N. Two different points ( open square, open circle) corresponding to the

synchronous (b),(d),(f), and asynchronous (c),(e),(g) states were chosen.

(b),(c) Coupling-modified frequencies: Q; =

lim, ™" [36,(¢)dt versus the oscillators’ index i. We observe that in the synchronization region, plateaus in Q appear at a basic
frequency and its integer multiples; other plateaus at rational multiples of the basic frequency are absent due to the purely sinusoidal
form of the PRC; see Ref. [33]. (d),(e) Raster plots (points depicted whenever 8; = 0). (f),(g) Time series of the modulus of the
Kuramoto order parameter R(r) = [N~')" e"/| and the mean field h(z).

9,F = —0y(0F) since the number of oscillators is con-
served. Using the OA ansatz,

F(Olw, 1) = % {1 + {i a(w, t)"me™ + c.c} } )

m=1

(where c.c. stands for complex conjugate), we find that
a(w, t) necessarily obeys

D= —ilw+ Bat 3 (H' ~Ha®).  (10)

This is still an infinite set of equations if the frequency
distribution is continuous. Fortunately, a drastic simplifi-
cation is possible if g(w) has a finite number of simple
poles off the real axis—as it does for the Lorentzian
distribution (5); see below.

For the analysis that follows, it is convenient to use the
generalized order parameters [32]

Z,.(1) = /_ ” g(@) A 7 P Olo, e dodw, (1)

with m € N. Recalling the ansatz [Eq. (9)], and noting that
a admits an analytical continuation into the lower-half
complex @ plane [14], we can evaluate Eq. (11) by
applying the residue theorem. Since the Lorentzian func-
tion [Eq. (5)] has one simple pole w” = @, — iA inside the
contour, we find that all order parameters depend on the
value of a at the pole Z,,(t) = [a(w?”, £)*]™. The dynamics
of the Kuramoto order parameter Z; = Re'? is governed by
two ODEs obtained equating @ = @” in Eq. (10):

eh

R=—AR +5 (1= R*)cos(¥ + ),  (12a)

. 1 2
VY =wy+eh|oc— :

sin(U + ). (12b)

Remarkably, these two ODEs describe exactly the Winfree
model dynamics, irrespective of the particular interaction
function P(#). In order to close Eq. (12), we consider P(6)
to be the pulselike function in Eq. (3) and express the mean
field Eq. (8) in terms of R and W. For n = 1, the result is
trivial: #; =1+ R cos U. For n > 1, with the important
observation that the generalized order parameters are
powers of the Kuramoto order parameter Z,, = Z" [29],
after some algebra we obtain

"L RF cos(k¥)

h,(R,®) =1+ 2(n!)? Zm.
— ! !

(13)

Equation (12) cannot be solved analytically, but the loci
of the bifurcations, where the qualitative behavior changes,
can easily be found by standard numerical continuation
techniques. We rescale A, €, and time by @, so that wy = 1
hereafter. Additionally, we select ¢ = sin f—see the insets
in Fig. 2. We observe that the results are qualitatively the
same independently of n and f; hence, the phase diagram
for # =0 and n = 10 in Fig. 1(a) accounts for all of the
phenomenology of the model.

The case = 0 was already studied in Ref. [20] for a
uniform distribution g(®) obtaining a similar result, albeit
some differences show up due to the different support of the
distributions. In the phase diagram of Fig. 1(a), a Hopf
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bifurcation line emanates from the origin—with the slope
predicted by Eq. (6)—Ilimiting the shaded region of
synchronization together with the other solid lines. In
the synchronous state, a macroscopic cluster of oscillators
rotates with the same coupling-modified frequency €2, and
as a result, the order parameter and the mean field oscillate;
see Figs. 1(b) and 1(f). Note that, in addition, a cluster
of oscillators with Q =0 and quivering near € =0 is
present for all e > 0. The region of synchronization
is bounded at large values of ¢ by a homoclinic (hom)
and a saddle node on the invariant cycle (SNIC) bifurca-
tions. The latter bifurcation line intercepts the e axis at
(n+ 1) /[a,(2n + 1)"1/2], ie., e=0.6735....., for
n = 10. In the phase diagram of Fig. 1(a), we see that
the Hopf line ends at a Takens-Bogdanov (TB) point [34],
which with two other (codimension-two) points organizes
the region where Hopf and SNIC bifurcations meet; this
conveys bistability between the synchronous and the
asynchronous states inside a small region bounded by
the dashed (saddle-node bifurcation), Hopf, and homo-
clinic lines.

After the preliminary introduction to the model dynam-
ics, we focus on the effect that the pulses’ shape and the
oscillators’ PRC has on the phase diagram of Fig. 1(a). The
boundaries in Fig. 2(a) for n = 1 and 10 show that the
region of synchronization enlarges as n grows, as suggested
by Eq. (6). It is interesting to note that the coordinate ¢ of
the TB point diverges with n, while the e values of the
SNIC line decrease. As a result, the region of bistability
widens as n grows since the SNIC bifurcation at the € axis
approaches the finite value \/g =0.6577... as n — oo,
while the e coordinate of the TB point progressively
grows. The study of large n values is difficult due to the
highly convoluted form of Eq. (13). It is, therefore,
useful from a mathematical perspective to consider the
idealization P(6) = 275(0). Using the trigonometric
representation of the Dirac delta function, we obtain the
mean field:

(a) (b)

2 = T 4 — >
n=oco \ - n=oo'\ —
L s LB=0 \ & 1
VOoQ Q
\ q 0
N ° & n=1 N B
€ 1r n=1 \ € 21 N
7/ n=10 n=10 \
0 I I 0 i I
0 0.2 0.4 0.6 0 0.2 0.4 0.6
A A

FIG. 2 (color online). Synchronization boundaries for PRCs
with o = sin 8, where (a) f = 0 and (b) # = 1, and for pulselike
interactions (3) with n =1, 10, and oo (Dirac’s delta). Insets:
PRCs Q(0), see Eq. (2). The region of synchronization for n =
10 appears shaded.

(R, W) = — =K (14)
VT 1 —2R cos U+ R?

In this derivation, the n — oo limit is taken after the N —
oo limit, and, therefore, any subsequent result using %, is
expected to be a truly asymptotic one as n grows provided
N is kept sufficiently large. On the contrary, implementing
instantaneous interactions (n = oo) with a finite population
(N < o0) cannot fit in the theory since the mentioned limits
do not commute (this noncommutativity was studied in
Ref. [35] for a model of leaky integrate-and-fire neurons).

Inserting A, in Eq. (12), we obtain the boundaries [36]
shown with dashed lines in Figs. 2(a) and 2(b). We see that,
for p = 0, there is already a noticeable similarity between
the regions of synchronization for n = 10 and n = co. The
main discrepancy is observed at high e values, which is not
particularly interesting since, in any case, almost the whole
population does not rotate in that region (see Ref. [37] for a
description of this effect). As stated above, as n grows, the
TB point moves upwards, so that the synchronization
regions eventually match at the n — oo limit (note, never-
theless, that the limit is somewhat singular because the
bistability region disappears).

For =1, see Fig. 2(b), the difference between the
results for n = 10 and n = oo becomes apparent, and more
tangible than what could be naively expected from Eq. (6).
In fact, the closer f approaches to z/2, the more favorable
is a sharp P(6) to achieve synchronization. We claim this is
a general statement, since we have also observed it numeri-
cally with Gaussian g(w). It may be conjectured that the
effectiveness of sharp spikes to achieve synchronization is
one reason for their ubiquity in nature.

V. TWO COUPLED POPULATIONS:
CHIMERA STATES

Finally, we illustrate how our results permit us to
investigate problems that, thus far, were addressed only
analytically using the Kuramoto model. Recently, an
interesting dynamical state, called chimera, has been
discovered in which identical oscillators with identical
connectivity self-organize into clusters with different syn-
chronous behavior [22]. In this state, complete synchroni-
zation of all of the oscillators is a stable solution and,
therefore, the chimera state does not appear via a usual
symmetry-breaking mechanism [38]. The simplest setup
capable of sustaining chimeras, in both experimental
[39,40] and numerical [41,42] realizations, consists of
two coupled subpopulations b = (1,2) of identical oscil-
lators. Here, we consider a pulselike coupling with the
positive constants p and v controlling intrapopulation and
interpopulation interactions, respectively,

Nb Nb’ ,
0 =1+ 00 |- S P0) + 3Pl
J=1 Jj=1
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with ' = (2, 1). Note that the equation for each subpopu-
lation has the structure of Eq. (7), with w; =1,
Bo~' = He' = uh®) +vh®), and h®) = L5 p(e\")).
Consequently, there is a solution in which each subsystem
evolves into its own OA manifold (9). The absence of
diversity in the populations makes the OA manifold
neutrally stable [29,43,44]. Nevertheless, the OA manifold
becomes attracting as soon as a tiny amount of diversity is
present [45]. Thus, in some sense, the OA manifold is the
“skeleton” of the phase space, and it is legitimate to analyze
the system with the OA ansatz.

The ODEs governing the dynamics of the order
parameter of the bth subpopulation Zim = Rye'Vr—
cf. Eq. (12)—are

(a)
0.4
chaotic chimera
periodic chimera-
A i
i
0.2 ]
quasiperiodic chimera ~ ~ periodic chimera
~N ~ -
0 1.3 14 1.5 /2
5}
N 1
=
(b) Aa <& WW%WYW
a 0
0 200 400 600
N 1
E AT
o S (Rt
<
-1 0 1 00 200 400 600
~ 1
=
SR cRiNNN)
~ . 0
-1 0 1 0 200 400 600
~ 1 1
=
&~ 0 o
-1 0 1 0 200 400 600

Ry cosW¥y Time

FIG. 3 (color online). (a) Location of different chimera types in
the (5, A) plane for6 = 0, n = 1, and S = 0.5 (similar results are
obtained in a wide range of o, S, and n). Chimeras exist between
the dashed line (the locus of a saddle-node bifurcation of limit
cycles) and the solid line (corresponding to both the boundary
crisis [46,47] and the saddle-node bifurcation of cycles). Above
the thick (blue) line, quasiperiodic and chaotic chimeras are
found in the light (green) and dark (red) shaded regions,
respectively. (b)—(e) Trajectories projected onto R,e'¥2 and
R,(r) for the parameter values with distinct behaviors:
(B, A) = (1.4,0.265), (1.42, 0.24), (1.5,0.35), and (1.45,0.19)
from (b) to (e), corresponding to chaotic, quasiperiodic, and
periodic chimera states above and below the thick (blue) line,
respectively.

uh®) + vp®)

R, = 5 (1 —R;)cos(¥, + B),

. , 1+R2

U, =1+ [uh® +vh®)]|6 — ;{ b sin(W, + p)|. (15)
b

Because we are interested in states where one subpopula-
tion is fully synchronized, say, the first one (R; = 1), the
equation for R; disappears. We then obtain a system of only
three ODEs (for ¥, R,, and ¥,) that makes it possible to
carry out an exhaustive exploration of the chimera states.

It is convenient for the analysis to define two para-
meters: A = (u—v)/(u + v), quantifying the imbalance
between intrapopulation and interpopulation interactions,
and S =p+v, quantifying the coupling strength.
Interestingly, in the limit of u, v — 0, irrespective of the
values of ¢ and n, the system reduces (via averaging) to two
ODEs for R, and w = ¥, — ¥, identical to those in
Eq. (12) of Abrams et al. [41] for oscillators of the
Kuramoto-Sakaguchi type. Hence, for S — 0, we can
borrow the results in Ref. [41], in particular, the existence
of chimeras only for f# values not far from /2. However, if
S is not small, the system behaves as genuinely three
dimensional. The structure of the phase diagram in Fig. 3(a)
is reminiscent of the one in Fig. 4 of Ref. [41], but now a
much richer scenario emerges due to the additional degree
of freedom. Above the Neimark-Sacker (or secondary
Hopf) bifurcation, signaled by a thick (blue) line, we find
quasiperiodic chimeras and the expected resonance tongues
corresponding to limit cycles on the surface of the invariant
torus. As we move away from the Neimark-Sacker bifur-
cation, the torus breaks down [46] and the resonances
merge, giving rise to an intricate set of bifurcations (not
shown, see Ref. [48]). Perhaps the most remarkable
consequence of the torus breakdown is the existence of
chaotic chimera states in the dark (red) shaded region of the
phase diagram in Fig. 3(a). Figures 3(b)-3(e) show tra-
jectories projected onto the R,e’2 plane and time series
R, (1) for specific values of f and A.

VI. CONCLUSIONS

The Winfree model describes a population of hetero-
geneous limit cycle oscillators, which interact via pulselike
signals. Our most important finding is that the Winfree
model with sinusoidal PRC, see Eq. (2), belongs to a family
of systems with the form of Eq. (7), and that such systems
have asymptotic dynamics in a reduced space, called the
Ott-Antonsen manifold. This important property allows us
to exactly describe the dynamics of the Winfree model with
only two ODEs, Eq. (12), in the case of Lorentzian
frequency distribution. The phase diagrams in Figs. 1
and 2 permit us to understand the effect of four parameters,
A, €, f, and n, controlling the spread of the natural
frequencies, the coupling strength, the PRC, and the pulses’
width, respectively. Interestingly, we find that brief pulses
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(large n values) are capable of synchronizing hetero-
geneous ensembles that fail to synchronize with broad
pulses. This feature of brief pulses is increasingly enhanced
as the PRC becomes more off centered (increasing /), i.e.,
as it approaches type-I PRCs; see Fig. 2(b). It is worth
noting that this property is not captured by applying
averaging, see Eq. (6), since the approximation [Eq. (4)]
holds only at low values of coupling and frequency
heterogeneity. Finally, the potential of our findings is
illustrated by uncovering a variety of chimera states in
networks of pulse-coupled oscillators, which include a new
class of chimeras with chaotic dynamics.

Our work suggests a number of future lines of research.
For example, it would be interesting to investigate the
dynamics of the Winfree model with more-realistic ingre-
dients, such as time-delayed interactions or pulselike
functions with coupling kinetics. In addition, our theory
can readily incorporate external fields and multimodal
frequency distributions. All in all, we believe our results
will foster theoretical advances on the collective dynamics
of oscillators’ systems, upgrading the mathematical basis of
macroscopic  synchronization beyond Kuramoto-like
models.
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Note added.—Recently, it came to our attention that, in
parallel to our work, other authors have used the OA ansatz
to study ensembles of pulse-coupled theta neurons [49].

[11 A.T. Winfree, Biological Rhythms and the Behavior of
Populations of Coupled Oscillators, J. Theor. Biol. 16, 15
(1967).

[2] A.T. Winfree, The Geometry of Biological Time (Springer,
New York, 1980).

[3] S. H. Strogatz, Sync: The Emerging Science of Spontaneous
Order (Hyperion Press, New York, 2003).

[4] A.L.Hodgkin and A. F. Huxley, A Quantitative Description
of Membrane Current and Its Application to Conduction
and Excitation in Nerve, J. Physiol. 117, 500 (1952).

[5] J. Buck and E. Buck, Mechanism of Rhythmic Synchronous
Flashing of Fireflies, Science 159, 1319 (1968).

[6] Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek, and A.-L.
Barabasi, Self-Organizing Processes: The Sound of Many
Hands Clapping, Nature (London) 403, 849 (2000).

[7] A.T. Winfree, in Nonlinear Oscillations in Biology, Lec-
tures in Applied Mathematics Vol. 17, F. C. Hoppensteadt
(American Mathematical Society, Providence, 1979)
pp- 93-126.

[8] Y. Kuramoto, in International Symposium on Mathematical
Problems in Theoretical Physics, Lecture Notes in Physics
Vol. 39, edited by H. Araki (Springer, Berlin, 1975)
pp. 420-422.

[9] Y. Kuramoto, Chemical Oscillations, Waves, and Turbu-
lence (Springer-Verlag, Berlin, 1984).

[10] S.H. Strogatz, From Kuramoto to Crawford: Exploring
the Onset of Synchronization in Populations of Coupled
Oscillators, Physica (Amsterdam) 143D, 1 (2000).

[11] A.S. Pikovsky, M.G. Rosenblum, and J. Kurths,
Synchronization, A Universal Concept in Nonlinear
Sciences (Cambridge University Press, Cambridge,
England, 2001).

[12] S.C. Manrubia, S.S. Mikhailov, and D.H. Zanette,
Emergence of Dynamical Order (World Scientific,
Singapore, 2004).

[13] J. A. Acebron, L. L. Bonilla, C.J. Pérez Vicente, F. Ritort,
and R. Spigler, The Kuramoto Model: A Simple Paradigm
for Synchronization Phenomena, Rev. Mod. Phys. 77, 137
(2005).

[14] E. Ott and T. M. Antonsen, Low-Dimensional Behavior of
Large Systems of Globally Coupled Oscillators, Chaos 18,
037113 (2008).

[15] K. Wiesenfeld, P. Colet, and S. H. Strogatz, Synchronization
Transitions in a Disordered Josephson Series Array, Phys.
Rev. Lett. 76, 404 (1996).

[16] E. Montbri6 and D. Pazd, Collective Synchronization in the
Presence of Reactive Coupling and Shear Diversity, Phys.
Rev. E 84, 046206 (2011).

[17] C.C. Canavier, Phase Response Curve, Scholarpedia 1,
1332 (2006); Phase Response Curves in Neuroscience,
edited by N. W. Schultheiss, A. A. Prinz, and R.J. Butera
(Springer, New York, 2012).

[18] T. Tateno and H.P.C. Robinson, Phase Resetting
Curves and Oscillatory Stability in Interneurons of Rat
Somatosensory Cortex, Biophys. J. 92, 683 (2007); B.
Kralemann, M. Frithwirth, A. Pikovsky, M. Rosenblum,
T. Kenner, J. Schaefer, and M. Moser, In Vivo Cardiac
Phase Response Curve Elucidates Human Respiratory
Heart Rate Variability, Nat. Commun. 4, 2418 (2013).

[19] E. M. Izhikevich, Dynamical Systems in Neuroscience (MIT
Press, Cambridge, MA, 2007).

[20] J. T. Ariaratnam and S. H. Strogatz, Phase Diagram for the
Winfree Model of Coupled Nonlinear Oscillators, Phys.
Rev. Lett. 86, 4278 (2001).

[21] D.D. Quinn, R.H. Rand, and S.H. Strogatz, Singular
Unlocking Transition in the Winfree Model of Coupled
Oscillators, Phys. Rev. E 75, 036218 (2007); L. Basnarkov
and V. Urumov, Critical Exponents of the Transition from
Incoherence to Partial Oscillation Death in the Winfree
Model, J. Stat. Mech. (2009) P10014.

[22] A.E. Motter, Nonlinear Dynamics: Spontaneous Synchrony
Breaking, Nat. Phys. 6, 164 (2010).

[23] Y. Tsubo, J. N. Teramae, and T. Fukai, Synchronization of
Excitatory Neurons with Strongly Heterogeneous Phase
Responses, Phys. Rev. Lett. 99, 228101 (2007).

[24] D. Hansel, G. Mato, and C. Meunier, Synchrony
in Excitatory Neural Networks, Neural Comput. 7, 307
(1995).

[25] B. Ermentrout, Type I Membranes, Phase Resetting Curves,
and Synchrony, Neural Comput. 8, 979 (1996).

011009-6


http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1126/science.159.3821.1319
http://dx.doi.org/10.1038/35002660
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1103/PhysRevLett.76.404
http://dx.doi.org/10.1103/PhysRevLett.76.404
http://dx.doi.org/10.1103/PhysRevE.84.046206
http://dx.doi.org/10.1103/PhysRevE.84.046206
http://dx.doi.org/10.4249/scholarpedia.1332
http://dx.doi.org/10.4249/scholarpedia.1332
http://dx.doi.org/10.1529/biophysj.106.088021
http://dx.doi.org/10.1038/ncomms3418
http://dx.doi.org/10.1103/PhysRevLett.86.4278
http://dx.doi.org/10.1103/PhysRevLett.86.4278
http://dx.doi.org/10.1103/PhysRevE.75.036218
http://dx.doi.org/10.1088/1742-5468/2009/10/P10014
http://dx.doi.org/10.1038/nphys1609
http://dx.doi.org/10.1103/PhysRevLett.99.228101
http://dx.doi.org/10.1162/neco.1995.7.2.307
http://dx.doi.org/10.1162/neco.1995.7.2.307
http://dx.doi.org/10.1162/neco.1996.8.5.979

LOW-DIMENSIONAL DYNAMICS OF POPULATIONS OF ...

PHYS. REV. X 4, 011009 (2014)

[26] L. Neltner, D. Hansel, G. Mato, and C. Meunier, Synchrony
in Heterogeneous Networks of Spiking Neurons, Neural
Comput. 12, 1607 (2000).

[27] P. Goel and B. Ermentrout, Synchrony, Stability, and Firing
Patterns in Pulse-Coupled Oscillators, Physica (Amster-
dam) 163D, 191 (2002).

[28] H. Sakaguchi and Y. Kuramoto, A Soluble Active Rotator
Model Showing Phase Transitions via Mutual Entrainment,
Prog. Theor. Phys. 76, 576 (1986); O. E. Omel’chenko and
M. Wolfrum, Nonuniversal Transitions to Synchrony in the
Sakaguchi-Kuramoto Model, Phys. Rev. Lett. 109, 164101
(2012).

[29] A. Pikovsky and M. Rosenblum, Dynamics of Hetero-
geneous Oscillator Ensembles in Terms of Collective
Variables, Physica (Amsterdam) 240D, 872 (2011).

[30] E. Ott and T. M. Antonsen, Long-Time Evolution of Phase
Oscillator Systems, Chaos 19, 023117 (2009).

[31] E. Ott, B.R. Hunt, and T.M. Antonsen, Comment on
“Long-Time Evolution of Phase Oscillator Systems", Chaos
21, 025112 (2011).

[32] H. Daido, Onset of Cooperative Entrainment in Limit-Cycle
Oscillators with Uniform All-to-All Interactions: Bifurca-
tion of the Order Function, Physica (Amsterdam) 91D, 24
(1996).

[33] J.R. Engelbrecht and R. Mirollo, Structure of Long-Term
Average Frequencies for Kuramoto Oscillator Systems,
Phys. Rev. Lett. 109, 034103 (2012).

[34] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory
(Springer-Verlag, New York, 1998).

[35] R. Zillmer, R. Livi, A. Politi, and A. Torcini, Stability of the
Splay State in Pulse-Coupled Networks, Phys. Rev. E 76,
046102 (2007).

[36] For p =0, the boundary is at
V1 —14A% + A%)/6A with A <2 — /3.

[37] B. Ermentrout and N. Kopell, Oscillator Death in Systems of
Coupled Neural Oscillators, SIAM J. Appl. Math. 50, 125
(1990).

[38] Note that this is not the case of the chimeralike state
found in ensembles of leaky integrate-and-fire oscillators

e, = (1 +5A2+

in S. Olmi, A. Politi, and A. Torcini, Collective Chaos in
Pulse-Coupled Neural Networks, Europhys. Lett. 92, 60007
(2010).

[39] M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and
Phase-Cluster States in Populations of Coupled Chemical
Oscillators, Nat. Phys. 8, 662 (2012).

[40] E. A. Martens, S. Thutupalli, A. Fourriere, and O. Hallatschek,
Chimera States in Mechanical Oscillator Networks, Proc.
Natl. Acad. Sci. U.S.A. 110, 10563 (2013).

[41] D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley,
Solvable Model for Chimera States of Coupled Oscillators,
Phys. Rev. Lett. 101, 084103 (2008).

[42] E. Montbrid, J. Kurths, and B. Blasius, Synchronization of
Two Interacting Populations of Oscillators, Phys. Rev. E
70, 056125 (2004).

[43] A. Pikovsky and M. Rosenblum, Partially Integrable
Dynamics of Hierarchical Populations of Coupled Oscil-
lators, Phys. Rev. Lett. 101, 264103 (2008).

[44] S. Watanabe and S.H. Strogatz, Constant of Motion for
Superconducting Josephson Arrays, Physica (Amsterdam)
74D, 197 (1994).

[45] C.R. Laing, Chimera States in Heterogeneous Networks,
Chaos 19, 013113 (2009).

[46] V. Afraimovich, V. Arnol’d, Y. II’yashenko, and L.
Shil’nikov, in Dynamical Systems, V, Encyclopaedia of
Mathematical Sciences, edited by V. Arnol’d (Springer-
Verlag, Berlin, 1994).

[47] E. Ott, Chaos in Dynamical Systems (Cambridge University
Press, Cambridge, England, 2002).

[48] V. Kirk, Merging of Resonance Tongues,
(Amsterdam) 66D, 267 (1993).

[49] P. So, T.B. Luke, and E. Barreto, Networks of Theta
Neurons with Time-Varying Excitability: Macroscopic
Chaos, Multistability, and Final-State Uncertainty, Physica
(Amsterdam) 267D, 16 (2014); T. B. Luke, E. Barreto, and
P. So, Complete Classification of the Macroscopic Behavior
of a Heterogeneous Network of Theta Neurons, Neural
Comput. 25, 3207 (2013).

Physica

011009-7


http://dx.doi.org/10.1162/089976600300015286
http://dx.doi.org/10.1162/089976600300015286
http://dx.doi.org/10.1016/S0167-2789(01)00374-8
http://dx.doi.org/10.1016/S0167-2789(01)00374-8
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1103/PhysRevLett.109.164101
http://dx.doi.org/10.1103/PhysRevLett.109.164101
http://dx.doi.org/10.1016/j.physd.2011.01.002
http://dx.doi.org/10.1063/1.3136851
http://dx.doi.org/10.1063/1.3574931
http://dx.doi.org/10.1063/1.3574931
http://dx.doi.org/10.1016/0167-2789(95)00260-X
http://dx.doi.org/10.1016/0167-2789(95)00260-X
http://dx.doi.org/10.1103/PhysRevLett.109.034103
http://dx.doi.org/10.1103/PhysRevE.76.046102
http://dx.doi.org/10.1103/PhysRevE.76.046102
http://dx.doi.org/10.1137/0150009
http://dx.doi.org/10.1137/0150009
http://dx.doi.org/10.1209/0295-5075/92/60007
http://dx.doi.org/10.1209/0295-5075/92/60007
http://dx.doi.org/10.1038/nphys2371
http://dx.doi.org/10.1073/pnas.1302880110
http://dx.doi.org/10.1073/pnas.1302880110
http://dx.doi.org/10.1103/PhysRevLett.101.084103
http://dx.doi.org/10.1103/PhysRevE.70.056125
http://dx.doi.org/10.1103/PhysRevE.70.056125
http://dx.doi.org/10.1103/PhysRevLett.101.264103
http://dx.doi.org/10.1016/0167-2789(94)90196-1
http://dx.doi.org/10.1016/0167-2789(94)90196-1
http://dx.doi.org/10.1063/1.3068353
http://dx.doi.org/10.1016/0167-2789(93)90069-D
http://dx.doi.org/10.1016/0167-2789(93)90069-D
http://dx.doi.org/10.1016/j.physd.2013.04.009
http://dx.doi.org/10.1016/j.physd.2013.04.009
http://dx.doi.org/10.1162/NECO_a_00525
http://dx.doi.org/10.1162/NECO_a_00525

