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Biological systems are influenced by random processes at all scales, including molecular, demographic,
and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously
established microbial closed ecosystems (CES) as model systems for studying the role of random events
and the emergent statistical laws governing population dynamics. Here, we present long-term measure-
ments of population dynamics using replicate digital holographic microscopes that maintain CES under
precisely controlled external conditions while automatically measuring abundances of three microbial
species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more
than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly
deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered
statistical structure in abundance fluctuations across replicate CES is driven by variation in external
conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the
correlations in population abundances of three species. The observation of strongly deterministic dynamics,
together with stable structure of correlations in response to external perturbations, points towards a
possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events
present on microscopic levels.
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I. INTRODUCTION

Random processes pervade biological phenomena at all
scales, from molecular interactions in cells [1,2] to inter-
actions between organisms in ecosystems [3,4]. These
stochastic processes can dramatically alter system dynam-
ics, leading some to argue that historical contingency is an
essential part of long-term biological dynamics and that
narrative is the appropriate framework to describe biologi-
cal systems [5]. Dependence on random processes is
particularly relevant for ecological dynamics, which
include all scales of interactions. When studying ecology
in natural conditions, one rarely knows every interacting
species, nor can one monitor precisely the chemical and
physical environment. In these conditions, population
dynamics measurements typically consist of a single,
unique, time series [6,7]; thus, it is impossible to separate
random fluctuations from trends [8]. In this case, each

change in species abundance is a unique event, whose
origins one can only speculate about. In fact, any organism
that is part of a complex ecosystem can be subject to
random interactions with other individuals of the same or of
different species [3,4]. It can also interact with a stochas-
tically varying physical environment, characterized by
time-dependent chemical and physical parameters, such
as temperature, pressure, chemical potential, or illuminance
[9,10]. In light of such pervasive stochastic processes,
acting on a variety of temporal and spatial scales, the search
for general principles underlying ecological dynamics
should follow the example of other fields in biology, such
as genetics, and move into the laboratory, where controlled
experiments, performed on replicate systems, can bring
valuable insights [11,12].

A. Closed ecosystems

In order to assess the role of stochastic events in
ecosystems on relatively long time scales, we recently
used closed microbial ecosystems composed of three
species: the photosynthetic green alga (denoted as
species A) Chlamydomonas reinhardtii, the bacterium
(B) Escherichia coli, and the ciliate (C) Tetrahymena
thermophila [13]. Closed ecosystems (CES) [14–16] are
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sealed to material exchange but open to heat exchange
and incident light. As model systems, CES are ideal for
studying population dynamics since they permit the long-
term maintenance of microbial communities under con-
trolled external conditions. Replicate CES can be created
with low variation in initial conditions (nutrients, species
abundances), permitting the study of population dynamics
in ensembles of replicate ecosystems. Quantitative, non-
invasive methods for measuring population dynamics were
developed for characterizing these systems: light-sheet
fluorescence microscopy in previous work [13] and, in
the present study, digital in-line holographic (DIH) micros-
copy [17]. Measuring population dynamics in replicate
CES permits us to explicitly quantify the role of stochastic
events and deterministic processes in system dynamics.
Under constant illumination, these closed ecosystems

sustain their three species for years. The detailed ecological
interactions in this system are not well known. However,
each of the three species is well characterized biologically.
The green alga C. reinhardtii is widely distributed in soil
and water, is phototactic, and presumably acts as a primary
producer in our CES by fixing carbon through photosyn-
thesis [18]. T. thermophila, a single-celled eukaryote that
is common in freshwater ponds, commonly consumes
bacteria but can also grow axenically [19]. The bacterium
E. coli, which is commonly found in mammalian guts and
soil [20], acts to some extent as a decomposer in our CES,
metabolizing nutrients that are not utilized by the other
species. To our knowledge, these three organisms are not
commonly found in the same wild populations nor are they
isolated from hundreds of other interacting species. Our
CES are therefore purely synthetic, and we should not
expect that any specific preadaptation between these
species has taken place naturally. In ideal laboratory
conditions, these organisms’ doubling times are as short
as 6 h, 20 min, and 2 h for A, B, and C, respectively.
However, the doubling time of each species in our CES,
which varies over time, is not known.
As demonstrated in a recent study of diatoms interacting

with bacteria [21], it is likely that many chemical inter-
actions arise between the three species in our CES. These
interactions obscure the simple producer, consumer,
decomposer classification described above. In fact, our
CES exhibited a wide range of complex phenomena [13].
In the presence of gravity and thermal convection, each
CES quickly became an ensemble of local ecological
niches. For example, at the bottom of the containers, we
observed large clumps of algae living among debris and
dense colonies of nonmotile bacteria. Phenotypic trans-
formations occurred spontaneously in many CES including
filamentous E. coli and, most strikingly, the appearance of
unusually large T. thermophila (with ≈10-fold bigger
volume) capable of ingesting algae [22]. In addition to
these phenotypic changes, random processes taking place
within each CES included swimming, taxis, predation,

genetic variation, cell division, and death, which are all
important sources of biological complexity.

B. Correlation matrix and ecomodes

Rather than attempt to characterize all of the processes
taking place in a CES, a previous study using many
replicate ecosystems characterized the structure of the
variation in the abundance dynamics in time and across
replicate CES. In Fig. 1(c), we reproduce, for comparison,
the data obtained in Ref. [13]—we plot the geometric
mean abundances for all three species ðs ¼ A;B; CÞ,
μs ¼ expðhlogNsðtÞiÞ. Here, NsðtÞ are defined as numbers
of individuals in 1 mL, rather than densities, and h·i denotes
an average across 24 replicate ecosystems.
The shaded regions in Fig. 1(c) define the geometric

standard deviations, σsðtÞ ¼ expðσ½logNsðtÞ�Þ, where the
standard deviation is computed across replicate ecosystems
at each point in time t. The fluctuations across replicates, as
measured through σsðtÞ, increased monotonically in time.
We defined the correlation matrix,

Cs;s0 ðtÞ ¼
Cov½logNsðtÞ; logNs0 ðtÞ�
σ½logNsðtÞ�σ½logNs0 ðtÞ�

; ð1Þ

where the covariance is computed across replicates.
Remarkably, after the first 21 days, the fluctuations of
abundances maintained a stable correlation structure in
time as quantified by the eigensystem of CðtÞ. The
eigenvectors of this matrix were dubbed “ecomodes”;
the ecomode corresponding to the largest eigenvalue
dominated the fluctuations and reflected positively corre-
lated fluctuations between all three species (see Ref. [13],
Fig. 4A). Thus, despite the apparent complexity present in
CES, measurements of replicate systems revealed a simple
structure in the fluctuations of abundances.
The observation of structured, increasing fluctuations

across replicate ecosystems raises an important question:
Are these fluctuations driven by processes intrinsic to the
ecosystem (e.g., phenotypic switching, mutation, demo-
graphic fluctuations), or are they a consequence of uncon-
trolled variation in external conditions across replicate
ecosystems (e.g., illumination, temperature)? In other
words, do the intrinsic dynamics follow a strongly deter-
ministic trajectory? Or, do stochastic processes, known to
be present in the system, drive the variation observed in
Fig. 1(c)?

C. Digital in-line holographic microscopes
with well-controlled external conditions

In order to address this question, we built a new
instrument consisting of ten DIH microscopes [17].
Hermetically sealed 2-mL cuvettes, each containing
1.6 mL of medium and organisms, were positioned
horizontally inside the microscopes, and holograms were
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acquired at 400-s intervals [Fig. 1(a)]. Each hologram
was reconstructed computationally [17], yielding three-
dimensional micrographs of the ≈5 mm3 imaging volume
with sufficient resolution and sensitivity to distinguish
species morphologically [Fig. 1(b) and Appendix B].
The holographic microscopes allowed us to measure
abundances of all three species with temporal resolution
of a few minutes, over periods of months. Each microscope
provided precise control over temperature and illuminance
(20 mK and 2.5% variation across replicates, respectively),
making the control of external conditions an order of
magnitude more precise than the experiments shown in
Fig. 1(c). Using ten dedicated microscopes, we were able to
gather a large amount of data for different illumination
levels (totaling 9.7 microscope years of data).

II. RESULTS

A. Population dynamics

Figure 1(d) shows the geometric mean dynamics and the
geometric standard deviation for ten replicate CES using
this instrument under conditions similar but not identical
(see Appendix A 2) to those shown in Fig. 1(c). It is
immediately clear that the observed dynamics are very
different from those measured previously [Fig. 1(c)], in
which fluctuations were over threefold for algae and over
fivefold for bacteria and ciliates by the end. Under carefully
controlled external conditions in our holographic micro-
scopes, fluctuations across replicates no longer increased
over the course of the experiment but instead remained
small, on the order of 1.5-fold for algae, 1.9-fold for

FIG. 1. Closed ecosystem population dynamics by digital holography. (a) Imaging schematic: A red laser beam diverges from a focus
at the surface of a gradient-index (GRIN) lens (cylinder on lower right) and illuminates a region within the cuvette containing the
microbial ecosystem, forming an interference pattern or hologram, which is recorded by a camera sensor (rectangle, left). Arrows above
and below the cuvette indicate the direction of homogeneous white illumination provided by LEDs. (b) A single plane, near the wall of
the cuvette facing the camera sensor, is reconstructed computationally from the hologram in (a). Hundreds of such planes form a 3D
image of the observed volume. Gray scale represents intensity. The scale bar is 200 μm. Many T. thermophila and some C. reinhardtii
are visible. E. coli are not readily distinguished by eye in this image (see Appendix B). Inset: Magnified images of, from left to right,
C. reinhardtii, E. coli, and T. thermophila at the same magnification and contrast. The scale bar is 10 μm. (c) Population dynamics from
previous work [13], measured by fluorescence microscopy, in 24 replicate ecosystems. The curve indicates the geometric mean
abundance across replicates, and the shaded region includes 1 geometric standard deviation above and below the geometric mean.
Vertical black dashes along the bottom indicate measurement times. Green (A—algae, right axis): C. reinhardtii; red (B—bacteria):
E. coli; blue (C—ciliates): T. thermophila. (d) Population dynamics measured by digital holography, in 10 replicate ecosystems with
I ¼ I0 (1200 lx) constant illumination. Species abundances were measured every 400 s. A gap occurred between 1.1 and 2.3 days, when
abundances were too high to measure. The horizontal dashes on the right indicate the offset applied to zero counts to avoid divergence of
log transforms. The individual time series used to calculate these statistics are shown in Fig. 2(b). (e) Geometric mean and standard
deviation for 10 replicates in I ¼ 0.25I0 illumination [see individual time series in Fig. 2(a)]. Note that for (c–e) the vertical axis on the
left of panel (c) applies to NB and NC for all three panels, while the vertical axis on the right of panel (e) applies to NA in all three panels.
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FIG. 2. Population time series and phase portraits at low and high illuminations. (a) Time series of population dynamics for 10 replicate
ecosystems at I ¼ 0.25I0 illuminance.Green (A—algae, right axis):C. reinhardtii; red (B—bacteria):E. coli; blue (C—ciliate):T. thermophila.
(b) Time series for 10 replicates at I ¼ I0, as in (a). (c) Population dynamics are plotted as trajectories in the space of one species abundance
versus another, for two illumination conditions: left column, I ¼ 0.25I0 [low illumination, 10 replicates, Figs. 1(e) and 2(a)]; right column,
I ¼ I0 [high illumination, 10 replicates, Figs. 1(d) and 2(b)]; top row, E. coli vs C. reinhardtii; center row, T. thermophila vs C. reinhardtii;
bottom row, E. coli vs T. thermophila. Gray curve, geometric mean trajectory over replicates; white region, 68% confidence interval of
logarithmic abundance over replicates; blue curve, trajectory for a single replicate; red ellipse, 95% confidence interval for initial inoculation
abundance; numbered points, timing along trajectory inweeks, starting at the beginning ofweek 1. The typical time between inoculation and the
first labeled point was 20 h.
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bacteria, and 1.1-fold for ciliates (these values likely
overestimate the intrinsic variations since they also include
variations due to differences among positions of the imaged
volume within the replicates—see Appendix A 6). Thus,
based on the time series in Fig. 1(d), it appears that intrinsic
population dynamics in CES were strongly deterministic.
This implies that the increasing temporal fluctuations
between replicate systems that we observed previously
[Fig. 1(c)] were not driven by intrinsic dynamics but rather
by extrinsic variations in temperature and illumination.
The illuminance for the CES in Fig. 1(d), I0 ¼ 1200 lx,

was constant in time and chosen to approximately match
that of our past experiments [Fig. 1(c)]. To explore whether
the fluctuations around the mean dynamics always stayed
small, we performed another experiment, measuring pop-
ulation dynamics in ten replicate CES with one-quarter the
illuminance (I ¼ 0.25I0). The resulting time series are
shown in Fig. 1(e), where we can observe both a qualitative
change in the geometric means and a substantial increase in
the geometric standard deviations relative to the dynamics
observed at I0. Comparing Figs. 1(d) and 1(e) seems to
suggest that reducing the illumination might qualitatively
alter the role of random events in the dynamics of the
system. In order to scrutinize this observation, we examine
the individual time series for all ten replicate ecosystems
in the 0.25I0 illumination condition [Fig. 2(a)]. It appears
that the structure of the dynamics in this condition is very
similar across replicates, but there exists variability in the
timing of various features characterizing those dynamics.
For example, a rapid and nearly 100-fold increase in the T.

thermophila abundance is observed in 7 out of 10 repli-
cates, occurring between 29 and 41 days after the start of
the experiment. This variability in the timing of strong
changes in the abundances leads to large values of the
geometric standard deviations compared to the ones
observed at I ¼ I0, where individual time series do not
exhibit comparable temporal features and are very similar
to each other [Fig. 2(b)].
To further quantify this similarity, we construct phase

portraits [Fig. 2(c)], i.e., NsðtÞ plotted against one another,
for I¼ 0.25I0 and I¼ I0, and quantify the variability across
replicate ecosystems in this space (see Appendix B 5). We
find that the replicate-to-replicate variations in the phase
space of abundances are similar and small in both illumi-
nation conditions [Fig. 2(c), white regions]. Remarkably, in
the lower illumination condition (I ¼ 0.25I0), where vari-
ability across replicates in time series was large [Fig. 1(e)],
replicate CES follow very similar trajectories in the phase
portraits.
Interestingly, in the I ¼ 0.25I0 condition, we find that

the timing of the above-mentioned rapid increase in NCðtÞ
is strongly correlated with the time of the phenotypic
switching between small and large cells of T. thermophila
that took place in the CES approximately three weeks prior
(Fig. 3). We measured this correlation by defining two
quantities: τp, the time since the beginning of the experi-
ment when the peak in NCðtÞ is observed, and τm, the time
(after an initial decline) when 10% of the T. thermophila
population is classified as large using a statistical model
(Appendix B 6, Fig. 11). We find that τm is approximately

FIG. 3. Morphological dynamics at low illumination. (a) An example of morphological dynamics from a single replicate at low
illumination (I ¼ 0.25I0). Upper panel: NCðtÞ. Lower panel: The fraction of cells at each time point that are classified as large (π2, see
Appendix B 6). The times τp and τm are defined as shown by the arrows (see text for details). (b) Scatter plot of τp versus τm as defined in
(a) for 7 CES in the I ¼ 0.25I0 condition. τp can only be defined for seven of ten replicates in which the peak inNCðtÞwas observed. For
the remaining three replicates, the large values of τm (not shown) suggest that the peak in NCðtÞ would have occurred at times after data
acquisition terminated. Error bars in τm were computed by varying the threshold applied to π2 by �25%. The correlation coefficient
between τm and τp is 0.90 (p ¼ 0.006).
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20 days shorter than τp, and the two quantities are strongly
correlated [Fig. 3(b)]. In this sense, the apparently stochas-
tic dynamics in each CES are strongly deterministic when
conditioned on the timing of the reappearance of the large
ciliates, which is variable across replicates.

B. Spatial distributions

We find that low variability across replicate CES extends
to the spatial distributions of organisms as well. In Fig. 4,
we show these distributions, in the I ¼ I0 illumination
condition, for all three species. We observe an asymmetric
distribution of algae, potentially driven by a phototactic

response to asymmetry in the illumination due to the gas
bubble present in each CES. Bacteria exhibit spatial
structure consistent with the pattern of thermal convection
that is known to be present in each cuvette (while the
temperature is constant in time, gradients have not been
suppressed). For the ciliates, roughly half of the population
is observed in close proximity to the cuvette walls, where
cells move along the boundary. We observe time depend-
ence in all of these spatial structures. A full analysis of this
rich set of spatiotemporal data lies beyond the scope of this
paper. However, our data already reveal a surprising result:
Despite the many stochastic processes taking place in each
CES, replicate-to-replicate variation in the time-averaged

FIG. 4. Spatial distributions of microbes in the imaging volume. Using data from the ten replicates in the I ¼ I0 illumination condition

[Figs. 1(d) and 2(b)], the time-averaged spatial density gðiÞs ðx; y; zÞ of each species s and replicate i was calculated as described in
Appendix B 4. The mean hgsðx; y; zÞi and coefficient of variation, σ½gsðx; y; zÞ�=hgsðx; y; zÞi, of the time-averaged spatial density were
calculated over replicates. These three-dimensional statistics of spatial density were sliced along five planes of constant y, as shown by
the transparent red slices in the central schematic view of the monitored volume [see Fig. 1(a)], and plotted as heat maps within each
slice (left panel, normalized mean; right panel, coefficient of variation). Within each panel, species are sorted by column [left column,
C. reinhardtii (A); center column, E. coli (B); right column, T. thermophila (C)]. The normalized mean γshgsðx; y; zÞi is shown, where
γ−1s ¼ maxx;y;zhgsðx; y; zÞi.
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spatial distributions of microbes is very low (Fig. 4, right
panel); indeed, the coefficient of variation is less than 10%
for algae and ciliates, and less than 30% for bacteria. We
observe similar variability for the I ¼ 0.25I0 condition
(Appendix B 4, Fig. 10).

C. Variation of external conditions excites
fluctuations along ecomodes

From the analysis of time series of abundances, mor-
phological variation, and spatial distributions, we thus
conclude that CES maintained under tight environmental
control exhibit strongly deterministic dynamics. It is
tempting to presume that the fluctuations observed in
previous experiments [Fig. 1(c)] were driven by variations
in extrinsic parameters between replicate CES. This explan-
ation assumes that the nature of the interactions inside the
CES, leading to the intrinsic dynamics observed here, was
not substantially modified in the new experiments. To test
this assumption, we studied the nature of correlations
between the abundances of the three species and compared
them with the ecomodes observed in the previous studies.
Fluctuations across replicates within a single illumination
condition were typically small and were not stably corre-
lated (Fig. 12). Therefore, to test whether we could excite
fluctuations along ecomodes by varying the extrinsic
parameters of our CES, we measured population dynamics
for 45 days in 8 to 10 CES in each of 7 illumination
conditions ranging from 0.2I0 to I0. Figure 5(a) depicts the
dynamics of the geometric mean and standard deviation
across all 63 replicates and 7 conditions. It is clear

that varying the illuminance by a factor of 5 induces
substantial variation across replicate ecosystems [compare
to Fig. 1(d)]. We compute the eigensystem of the corre-
lation matrix CðtÞ, also calculated over 63 replicates and 7
conditions, and the results are shown in Fig. 5(b).
Remarkably, the ecomodes in Fig. 5(b) are nearly identical
to those we found in the previous experiments. For
instance, the ecomode corresponding to the largest eigen-
value of CðtÞ (L) is identical to that from the previous
experiments, and it corresponds to the abundances of all
three microbial species fluctuating coherently about the
mean. The ranking of the two lower modes is reversed in
comparison with the previous experiments [13], but their
composition is unchanged. This result strongly supports
our hypothesis that the intrinsic dynamics in both experi-
ments are very similar, and it supports the claim that the
fluctuations across replicates observed previously, and the
structure of these fluctuations, were driven by variation in
illumination and possibly other extrinsic variables such as
temperature.

III. DISCUSSION

We are thus facing a rather astonishing situation: On
microscopic scales, we observe many stochastic processes
taking place in each CES. However, on more macroscopic
scales, replicate-to-replicate variations in the measured
abundances remain small over periods of months.
Strongly deterministic dynamics have been observed pre-
viously in response to what one could call a “strong
perturbation.” For instance, a drastic change of the

FIG. 5. Structure of fluctuations across ecosystems in a range of conditions. (a) Population dynamics, as in Fig. 1(d), for 63 replicate
ecosystems maintained at 7 illumination conditions between I ¼ 0.2I0 and I ¼ I0. The geometric mean (bold curves) and standard
deviation (shaded regions) are computed across all 63 replicates and 7 illumination conditions. Data before 9 days are missing in some
conditions because of overly high cell abundance. (b) Dynamics of the correlation matrix: The correlation matrix CðtÞ of logarithmic
abundances of the three species was calculated for the data shown in (a). The eigenvalues of CðtÞ were sorted by size and are plotted as
time series in the top panel: L (large, black line);M (medium, cyan line); S (small, magenta line). The composition of the corresponding
eigenvectors is plotted in the bottom three panels. Green: C. reinhardtii (A), red: E. coli (B), blue: T. thermophila (C).

STRONGLY DETERMINISTIC POPULATION DYNAMICS IN … PHYS. REV. X 5, 041014 (2015)

041014-7



environment (e.g., large increase of temperature, salinity, or
antibiotic concentration) or of the internal composition of
an organism (e.g., deletion of a crucial gene) can induce a
quasideterministic change of phenotypes or of species
abundances [23]. The CES in our experiments are not,
however, subject to such strong perturbations, and we
observe long-term strongly deterministic dynamics, rather
than rapid transformations.
From the point of view of biology, this situation is

reminiscent of the developmental dynamics of a single
organism, which can be buffered against perturbations and
appear quasideterministic, or subject to “canalization” [24]
(also called homeorhesis [25]). In developmental canali-
zation [24], the dynamics and the outcomes are observed to
be highly reproducible despite many sources of noise. The
analogy of highly deterministic population dynamics
observed here with developmental canalization cannot,
however, be directly applied. Our closed ecosystems were
created with three laboratory strains of microbes, which
have lived in isolation for many years in the laboratory, and
originated from complex ecosystems with a multitude of
components. It is, therefore, difficult to argue that natural
selection evolved buffering mechanisms [26] to reduce
variation in the population dynamics exhibited by our
particular synthetic ecosystems.
Under selection, microbial populations can undergo

rapid genetic change [27,28]. The extent of genetic diver-
sification in our ecosystems has not been determined.
However, the strongly deterministic dynamics that we
observe are unlikely to be wholly due to selection, for at
least three reasons. First, the population size is small, at
least in the bulk—less than 1 × 105 for algae, less than
1 × 106 for bacteria, and less than 1 × 104 for ciliates.
Second, the number of generations during the experiment is
likely small. Since our DIH microscopes image an open
subvolume within each cuvette [Fig. 1(a)], the abundances
we measure arise from division and death as well as
migration; thus, we cannot directly resolve the number
of divisions. However, in the I ¼ I0 condition, over the first
2 to 3 days, all three species experience rapid growth from
their initial abundances [Fig. 1(d)]. From the maximum
abundance reached during this period of growth, we can
estimate the number of generations that occur for each
species, assuming that birth dominates migration during
this period. We find that the number of generations is at
least 3 for algae, at least 7 for bacteria, and at least 5 for
ciliates. We can place a loose upper bound on the number of
generations that occurred during the entire experiment by
calculating how many generations would transpire if the
growth rate inferred early in the experiment were main-
tained for the full 90 days. From this, we approximate the
maximum number of generations to be 160, 230, and 70 for
algae, bacteria, and ciliates, respectively. However, given
that nutrients are not supplied during the experiment, we
expect the actual number of generations to be well below

this estimate. For comparison, similarly sized populations
of yeast propagated under rapid growth had very few
detectable mutations after 100 generations [27]. Third, the
deterministic nature of the dynamics we observe is difficult
to reconcile with the random generation of genetic vari-
ability through mutation.
From a more general point of view, the observation of

deterministic effective dynamics in the presence of noise
is reminiscent of equilibrium thermodynamics and hydro-
dynamics. In both cases, stochastic phenomena taking
place on the microscopic level contribute to often-
deterministic collective behavior on the macroscopic level,
described by simple laws, which use coarse-grained state
variables, such as densities or fluxes. The results of our
experiments are a strong indicator that complex stochastic
phenomena taking place on the microscopic level in a CES
could also be coarse grained on more macroscopic scales,
where the relevant degrees of freedom are few. What are
the collective variables best suited to describe our CES? At
present, we cannot provide a definitive answer to this
question. However, two points are worth noticing: (i) The
trajectories of abundances are strongly deterministic and do
not significantly self-intersect, suggesting that the dynam-
ics can be usefully coarse grained to this level; (ii) the first
ecomode dominates the externally driven fluctuations,
suggesting further dimensional reduction of the space of
collective variables. Of course, our CES are much more
complex than systems described by thermodynamics or
hydrodynamics. In view of many levels of organization,
with interdependent components, we cannot invoke simple
statistical laws, e.g., the law of large numbers, in order to
directly explain the observed strongly deterministic dynam-
ics. The dynamics in thermodynamic or hydrodynamic
systems is often driven by temporal or spatial gradients in
physical quantities, such as temperature, pressure, or
gravitational potential. At present, we do not know what
quantities drive dynamics in our CES, or what the appro-
priate state variables for ecosystems are. However, based on
our results, it seems that the view that contingency always
dominates long-term biological dynamics, imposing a
historical narrative as the appropriate method of study
[5], might be too pessimistic.
We propose that coarse-grained regularities, such as the

strongly deterministic dynamics and the stable ecomodes
observed in this study, might originate in general bio-
chemical [29] and physical constraints, common to many, if
not all, microbial ecosystems. They can be explored further
by systematically measuring the effects of additional
perturbations on population dynamics. Such an approach
would be facilitated by the strongly deterministic nature of
the dynamics around which one would apply perturbations.
Experiments may include both external perturbations, such
as time-dependent modulations of temperature or illumi-
nation, and internal perturbations, such as modifications of
species composition, genomes, gene expression profiles, or
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epigenetic markers. In view of the simplicity and low cost
of the apparatus used here [17], such systematic studies
could, in principle, be performed in hundreds of replicate
systems in a wide range of conditions. Beyond explaining
the behavior of these particular CES, it is our hope that
these studies will establish the basis for a more general,
quantitative theory of ecological dynamics.

IV. MATERIALS AND METHODS

A. Media and strains

Three species (“ABC”) microbial communities [13] were
constructed using the alga Chlamydomonas reinhardtii
(A: strain UTEX 2244, mating type +), the bacterium
Escherichia coli [B: strain MG1655 Δ flu Δ fimA HK022
att::(cat PλR dTomato) hsdR], and the ciliate Tetrahymena
thermophila (C: CU428 mating type VI, Cornell University
Culture Collection).
For each experiment, each species was grown axenically

as follows. Algae were grown in Sager-Granick medium
[30] with Hutner’s trace elements (purchased from [31])
substituted for the standard trace elements. Cells were
thawed from a frozen stock and diluted into Sager-Granick
media and maintained at 200 rpm shaking, 25 °C, and
7500 lx in an incubator. Cultures were grown 7 to 9 days
prior to initiating ecosystems resulting in densities of
≈1 × 106 cells=mL. Bacteria were grown from glycerol
frozen stocks in the same media used to construct the
community, at 30 °C with 200 rpm shaking resulting in
densities of ≈1 × 107 cells=mL. Ciliates were grown in
SPP rich media at room temperature without shaking
for approximately 2 days, resulting in densities of
1 × 105 cells=mL. Cultures were initiated from a single
long-term soybean stock that was replenished every
6 months [32]. ABC ecosystems were constructed using
1=2x Taub #36 supplemented with 0.03% w/v proteose
peptone No. 3 (BD) [33] and a Tris-acetate pH buffer
(20 mM Tris, 3 mM acetate).

B. Initiating closed ABC ecosystems

To initiate replicate ecosystems, an axenic culture of
each of the three species was grown. Each culture was
washed twice in the media used to construct the commu-
nity. For A and C, the densities of the washed cultures were
measured by flow cytometry (BD Biosciences LSR II)
using Spherotech AccuCount Fluorescent Particles
(Spherotech, ACFP-50-5). For B, culture density after
washing was measured by optical density. Three species
were then combined into a single culture at densities of
5000 cells=mL, 500 cells=mL, and 500 cells=mL for A, B,
and C, respectively. Replicate ecosystems were initiated in
a biosafety cabinet by pipetting 1.6 mL of this mixture into
sterile and clean quartz cuvettes (StarnaCell, 23-Q-5).
Cuvettes were sealed with a sterile, greased (Apiezon
M) teflon stopper and epoxy designed to form a hermetic

seal with glass (Epoxy Technology, 905-T). The epoxy was
cured for ≈20 h upright, without shaking, in an incubator at
25 °C with 7500 lx illumination.
Prior to initiating ecosystems, quartz cuvettes were

cleaned thoroughly by scrubbing with a detergent
(StarnaCell, CellClean), rinsing with deionized (DI) water,
sonicating with a mixture of acetone and isopropyl alcohol
(IPA), and soaking for 2 h with 50% nitric acid. Finally,
cuvettes were rinsed with DI water and IPA, dried
under pressurized nitrogen gas, and capped with teflon
stoppers. Cuvettes were sterilized by UV light from a
transilluminator.
For each of the seven illumination conditions, we

performed two independent experiments measuring
dynamics in 3 to 6 replicate ecosystems. For each experi-
ment, the entire initiation protocol described here was
performed independently.
To test for contamination, we plated axenic cultures

used to initiate the communities on four nutrient conditions
(Luria-Burtani Broth, Nutrient Broth, Yeast-Peptone-
Dextrose, and Thioglycollate broth) and terminated any
experiment in which contamination was detected. In the
experiments presented here, no contamination was detected
by this method.

C. Ecosystem external conditions

As described previously [17], each microscope inde-
pendently controls the temperature (temporal-fluctuation
standard deviation 3 mK, standard deviation across repli-
cates 20 mK) and illumination (standard deviation 2.5%)
for each ecosystem. Illumination is supplied symmetrically
from above and below for each ecosystem by two 1-W
light-emitting diodes (LEDs, Lumileds, nominal color
temperature 3000 K). For all experiments presented here,
the temperature was held constant at 25 °C. The illuminance
was constant in time and symmetric from above and below,
but this level of illuminance was varied between experi-
ments. Illuminance is measured as a fraction of the
maximum calibrated output of the LEDs (I0 is the maxi-
mum output). The maximum output was estimated, using a
calibrated photodetector, to be 1200 lx (I0).
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APPENDIX A: ADDITIONAL
EXPERIMENTAL METHODS

1. Seal quality

To test the quality of the teflon stopper-grease-epoxy
seal, each cuvette was weighed before and after each
experiment. Any reduction in mass was attributed to water
evaporation. Changes in mass of <1 mg over the duration
of the experiment were below the resolution of the balance
used. The mean evaporation rate was 0.098 mgd−1.

2. Differences in conditions
from previous experiments

The experiments presented here differed from the mea-
surements of Hekstra and Leibler [13] in two important
ways. First, we modified the medium by adding a Tris-
acetate pH buffer. This increased pH buffering capacity and
resulted in less dramatic changes in pH over the course of
the experiment than were observed previously (see below).
Second, the incubators used by Hekstra and Leibler for
storage of CES during the experiment subjected those
systems to ≈30% variation in the level of illumination
across replicates and greater thermal fluctuations over
time (s:d: ≈ 50 mK).
We performed an experiment to test whether the pH

buffering capacity of the medium could account for the
qualitative changes in the dynamics observed in Figs. 1(c)
and 1(d). We measured population dynamics by hologra-
phy in ecosystems without a Tris-acetate buffer in the
medium. The resulting dynamics are shown in Fig. 6. We
observe strongly deterministic dynamics even when the
buffer is removed from the medium. We conclude that
this chemical difference between the experiments of
Hekstra and Leibler and the measurements presented here
cannot account for the deterministic dynamics we observe.
Finally, we note that the large variability in illumination
within the incubators used in previous work is consistent
with our observation of ecomodes driven by variable
illuminance (Fig. 5).

3. Viability and cryopreservation

To test for viability of each species at the end of the
experiment, a small sample of each ecosystem was sub-
cultured under selective conditions. For A, we used Sager-
Granick media which contains no carbon source (other than
carbon dioxide). For B, viability was confirmed by plating
on Luria-Burtani broth. To test for the presence of C, we
subcultured each ecosystem in fresh experiment medium
and allowed for several days of growth. Subcultures were

then inspected by bright-field microscopy for the presence
of C. Viability for all systems in all conditions studied here
is shown in Fig. 7 (top four panels). For ecosystems in
which A or C was viable, we cryopreserved a sample of
the subculture using the appropriate protocol for each
species [34].

4. pH

All experiments were initiated in medium at pH 7. At
the end of all experiments, pH was measured by color
metric pH paper to be 7.4. The observed increase in pH is
consistent with the consumption of acetate by A over the
course of the experiment. The precision of pH measure-
ments was ≈0.2. For experiments with the Tris-acetate
buffer removed from the medium, the pH at the end of the
experiment was measured to be 5.5.

5. Flow cytometry

At the end of each experiment, a well-mixed sample
of each ecosystem was analyzed by flow cytometry (BD
LSR II). In all flow cytometry measurements, C abundan-
ces were too low (1 mL−1 to 10 mL−1) to be measured. B
abundances (dTomato fluorescence) could not be reliably
measured because of the presence of aggregates and a large
background signal from chlorophyll of A. However, abun-
dances of A were quantified at the end of each experiment.
The results are shown in Fig. 7 (bottom panel).

6. Alignment

In the holographic microscopes, there is some systematic
variation in the position of the 5.4 μL imaging volume
within the cuvette. In particular, because of machining and
alignment errors, the distance between the optical axis and
the bottom face of the cuvette (y axis) is variable. We
quantified this variation by imaging a small marker dot on

FIG. 6. Effect of pH buffer. Time series for nine CES measured
by holography with the Tris-acetate pH buffer omitted from the
medium. Geometric mean and standard deviation are shown as in
Figs. 1(c)–(e).
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the back face of each cuvette prior to removing it from the
microscope at the end of the experiment. The position of
the dot was then measured on a separate bright-field
microscope with a large field of view. For the 48 ecosys-
tems in which this measurement was performed, we found
the distance to be 2560 μm �430 μm.
Because of the significant spatial heterogeneity we

observed in the ecosystems, we investigated whether the
variability in abundance over replicates could be explained
by their vertical positions. Vertical positions were only
measured for the six replicates from one repetition of the
I ¼ I0 condition. For these replicates, we found that the
relative abundance residuals ðNi

sðtÞ − hNsðtÞiÞ=hNsðtÞi for
replicate i and species s stabilized after day 27. We
computed the time averages of these quantities from day
27 to day 92 for each of the six replicates in this data set and
regressed them on the vertical position of the imaged region
within that replicate, yi. For both algae and bacteria (ciliates
were not considered because of low abundance), the relative
abundance residual and vertical position were negatively
correlated [ρA¼−0.86ðp¼0.014Þ, ρB¼−0.71ðp¼0.06Þ].

After adjusting for the influence of the vertical position on
the abundances, the remaining fluctuations are significantly
smaller (σA ¼ 1.26 and σB ¼ 1.6), suggesting that better
control of the cuvette position should result in the meas-
urement of even less variability across replicates.

APPENDIX B: DATA ANALYSIS

1. Iterative signal removal

The reconstruction of each hologram results in a three-
dimensional array of complex amplitudes from within the
sample. For our purposes, the phase information is not
used, and only the squared modulus, or intensity, is of
interest. The focal plane of each object is identified
automatically [17].
A major difficulty for automated computer analysis is

the low intensity of E. coli relative to C. reinhardtii and
T. thermophila. The signal-to-noise ratio for the majority of
bacterial cells is sufficient to separate them from the
background; however, out-of-focus light from the brighter
species complicates segmentation. This out-of-focus light
can have significant spatial extent and can exhibit localized
regions of intensity above the background. These discrete
bright spots do not come into focus and can be distin-
guished from in-focus objects in three dimensions.
However, applying global segmentation results in many
false objects. An example of this effect is shown in Fig. 8.
To solve this problem, we exploit the computational

nature of digital holography by removing the signal from
bright objects before analyzing dimmer objects. By per-
forming an initial segmentation at a high intensity thresh-
old, all bright objects are identified, the focal plane of each
bright object is determined, and the morphology is ana-
lyzed in that plane. The signal from the object can then be
removed from all focal planes by setting all complex
amplitudes within the object to zero. The result is propa-
gated back to the hologram plane by inverting the
reconstruction procedure, resulting in a hologram that is
equivalent to the original with the signal from the bright
object removed (Fig. 8). All objects above the intensity
threshold are analyzed and removed, and then a second
round of segmentation, analysis, and removal is performed
at a lower intensity threshold. By using many thresholds,
artifacts associated with objects having intensities near the
threshold intensity can be avoided. In our implementation,
18 rounds of signal subtraction are used.

2. Species classification

The image analysis of each blob measures the spatial
location, spatial moments of the two-dimensional intensity
distribution in the focal plane, and statistics describing the
number of voxels exceeding various intensity thresholds.
A training set of 8967 manually classified objects was used
to train a support vector machine [35] to classify objects
into four classes (algae, bacteria, ciliates, and background).

FIG. 7. Final viability and total algal density. Top four panels:
Viability of each species, measured as described above, as a
function of illumination. Green, red, and blue symbols show the
fraction of systems with A, B, and C viable, respectively. Black
squares show the fraction of replicates where all three species are
viable. The two experiments in each illumination condition are
represented by circle and square symbols. Bottom panel: Density
of C. reinhardtii, as measured by flow cytometry, from a well-
mixed sample of each replicate, at the end of each experiment as a
function of illumination condition. A single point is plotted for
each replicate with symbols denoting different experiments
within each illumination condition.
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A test set of 1825 manually classified objects was used to
estimate the classification error rate—the results are tabu-
lated in Table I; there were no detection errors for the
test set.

3. Count statistics

Cells leave and enter the imaged region by a combination
of swimming and convective flow. Our goal is to filter the
noise due to sampling in order to infer an underlying
abundance. We can roughly estimate the residence times of
each species using measurements of the convective flow
and diffusion coefficients for typical swimming behaviors;
in each case, the estimated residence time is less than one
minute, so we expect little correlation in sampling noise for
measurements separated by 400 s.

We assume that the counts of each species are a
temporally uncorrelated Poisson-distributed random varia-
ble AðtÞ, whose rate fluctuates in time. This rate is
interpreted as a spatial density integrated over the imaging
region, from which Poisson-distributed random counts are
drawn because of discrete cells entering and leaving the
region. The rate is unitless and corresponds to the expected
value for the counts as a function of time. It is estimated
independently for each species in each replicate. In our
experiments, the underlying rate varies over time by at least
3 orders of magnitude, so the variance due to counting
noise also varies by several orders of magnitude. In this
case, it is clear that a stationary filter is inappropriate,
and we specify a probabilistic model for the counts and
underlying rate which has superior performance. The
quantity of interest is the conditional probability of the
underlying logarithmic rate given the counts:

L ¼ PðWjfAðtiÞgÞ; ðB1Þ

where W represents the logarithm of the rate over the time
interval of the experiment, ½0; tm�, and ti is the time of
measurement i, i ¼ 1; 2;…; m. Applying Bayes’ rule gives

FIG. 8. Signal subtraction detail. (a) Focal plane of reconstructed T. thermophila, to the upper left. (b) Same T. thermophila from (a),
290 μm out of focus. An E. coli, indicated by a red arrow, is barely visible, to the right—see (f) and (h) for better visibility at high
contrast. (c) Focal plane from (a), after the signal from the T. thermophila has been subtracted. (d) Focal plane from (b), after signal
subtraction, showing unperturbed E. coli. (e)–(h) Duplicate panels (a)–(d) at high contrast. The scale bar is 20 μm. (i) Intensity profile
across the horizontal coordinate in (b) and (f), through the E. coli cell, before subtraction. The large high-intensity region around 70 μm
is the out-of-focus T. thermophila, while the peak at 140 μm is the in-focus E. coli cell. (j) Intensity profile through the same row of
pixels as in (i), after signal subtraction—see (d) and (h).

TABLE I. Classification table.

Manual classification

Algae Bacteria Ciliates Background

SVM
classification

Algae 812 19 0 0
Bacteria 3 618 1 0
Ciliates 2 0 282 0
Background 0 1 0 87
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L ¼ PðfAðtiÞgjWÞPðWÞ=PðAÞ; ðB2Þ

where PðAÞ does not depend on W and so does not affect
the estimation of W. From our assumption that AðtÞ is
Poisson and temporally uncorrelated,

PðfAðtiÞgjWÞ ¼
Ym
i¼1

PðAðtiÞ ¼ aijWðtiÞ ¼ wiÞ

¼
Ym
i¼1

e−ewi ewiai

ai!
: ðB3Þ

Previous work suggested that the fluctuations of WðtÞ
across replicates can be well described as a random walk
[13]. To derive an expression for PðWÞ for our filter
without imposing additional structure, we assume that
WðtÞ itself is a random walk, with Gaussian increments.
Define Δti ¼ tiþ1 − ti, and let γ be a parameter that
determines the increment variance:

PðWÞ ¼ PðWðt1Þ ¼ w1Þ
Ym−1

i¼1

PðWiþ1 ¼ wiþ1jWi ¼ wiÞ

¼ PðWðt1Þ ¼ w1Þ
Ym−1

i¼1

ð2πγΔtiÞ−1=2

× expð−ðwiþ1 − wiÞ2=2γΔtiÞ: ðB4Þ

We can now write the portion of the log likelihood that
depends on W:

logðLPðAÞÞ ¼ logPðWðt1Þ ¼ w1Þ

þ
Xm−1

i¼1

�
− 1

2
log 2πγΔti − ðwiþ1 − wiÞ2

2γΔti
− ewi

þ aiwi − logðai!Þ
�

− ewm þ amwm − logðam!Þ: ðB5Þ

This expression is maximized over wi by gradient
ascent, using a moving average of the logarithm of
measured counts as starting values. The parameter γ
was chosen by testing the distribution of ai against a
Poisson distribution with rate ewi . The optimal value
was γ ¼ 2.56 × 10−2= day. The distribution of the initial
logarithmic rate was assumed to be Gaussian, with mean
equal to the average of the logarithm of the first few
measurements:

PðWðt1Þ¼w1Þ¼ð2πσ20Þ−1=2exp½−ðw1−μ0Þ2=2σ20�; ðB6Þ

where μ0 ¼ 1
n

P
n
i¼1 log ai, σ0 ¼ μ−1=20 and n ¼ 5.

We found that this filter performed very well. The
distributions of counts were indistinguishable from
Poisson with the inferred rate, and the autocorrelation of
the residuals δi ¼ log ai − wi decayed very quickly
(Fig. 9), justifying the assumption of independence of
consecutive measurements.

4. Spatial density estimation

The analysis of our experiments yields a list of identified
organisms, with a location in space, which we denote as

rðiÞj;s ¼ ðxj; yj; zjÞ, where i denotes the experimental repli-
cate, s denotes the species, and j indexes the individual
organisms of species s in replicate i. The simplest

FIG. 9. Autocorrelation of count-smoothing residuals. The autocorrelation function of the residual from the count-smoothing
procedure, δi ¼ log ai − wi, was calculated for one of the replicates and each species, with lag measured in time points (400 s). The blue
line shows the 95% confidence interval. The rapid decay observed here was typical for all replicates.
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characterization of spatial structure is the time-averaged
spatial density:

PrðrðiÞs ∈ VÞ ¼
Z
V
gðiÞs ðx; y; zÞ dx dy dz; ðB7Þ

where V is a region in space.
We estimated the spatial density gðiÞs ðx; y; zÞ for each

replicate and species via kernel density estimation [36],
using cross validation to choose bandwidths. The optimal
bandwidths in x, y, and z were 82 μm, 68 μm, 204 μm for
algae; 88 μm, 72 μm, 225 μm for bacteria; and 107 μm,
88 μm, 246 μm for ciliates.
Our data are sharply truncated in space, by optical

constraints in x and y, and by the cuvette walls in z. To
reduce bias in the estimate due to truncations, we
supplemented the bounded data set with its reflections
across the boundaries [37]. The cuvette wall positions

were determined manually by finding a region near each
z extremum where the density of blobs fell close to zero.
We estimated the precision of this procedure to be
�5 μm. The wall locations varied by a small amount,
which was accounted for by linearly transforming the
data from each replicate along the z axis to coincide with
a standard reference.
The confidence interval of the estimate can be calculated

by bootstrapping [38]. We calculated 95% confidence
intervals with at least 70% coverage, denoted bðiÞs , and

considered the ratio bðiÞs =gðiÞs , averaged over space, to
indicate the precision of the spatial density estimates.
Typical values over space and replicates were 6% for
algae, 10% for bacteria, and 8% for ciliates.
Spatial distributions for all three species are shown in

Fig. 4 for the I ¼ I0 condition and Fig. 10 for the I ¼
0.25I0 condition. We note that the apparently large σ½g�=hgi
for E. coli and T. thermophila in the I ¼ 0.25I0 condition is

FIG. 10. I ¼ 0.25I0 spatial distributions of microbes in imaging volume. γhgi and σ½g�=hgi are defined in the caption to Fig. 4 for the
I ¼ I0 condition.
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due to statistical variation in hgi arising from low abun-
dances rather than variation across replicates.

5. Phase portrait statistics

To quantify the stereotypical nature of the trajectories in
the I ¼ 0.25I0 and I ¼ I0 illumination conditions, we
applied a temporal alignment to the time series of loga-
rithmic densities. We denote the smoothed logarithmic

abundance of species s and replicate i by uðiÞs ðtÞ ¼
wðiÞ
s ðtÞ − logðVðiÞ=1 mLÞ, where VðiÞ is the volume of

the imaged region for replicate i, in units of mL. Note

that the abundance NðiÞ
s ðtÞ ¼ expðuðiÞs ðtÞÞ. The goal is to

find nondecreasing functions τij and τ0ij such that the
integrated squared difference upon alignment is minimized:

τij; τ0ij ¼ argmin
τ;τ0∈T

Z
1

0

X
s

ðuðiÞs ðτðlÞÞ − uðjÞs ðτ0ðlÞÞÞ2dl; ðB8Þ

whereT is the space of nondecreasing functions from [0,1]
to ½0; T�, T is the experiment duration, and l parametrizes
the alignment functions. The functions τ and τ0 can be
calculated on a discrete grid by dynamic programming.
Statistics over the aligned trajectories are calculated as

follows. First, one of the replicates is chosen as the
reference trajectory—this replicate is denoted with the

index i0. Aligned versions of each replicate are defined

as ~uðjÞs ðtÞ ¼ uðjÞs ðτ0i0jðτ−1i0jðtÞÞÞ and statistics of aligned

trajectories can be calculated for ~uðjÞðtÞ over replicates j.
The mean of ~uðjÞs ðtÞ over replicates is calculated

and transformed to represent effective population
abundance:

~μsðtÞ ¼ exp

�
1

n

Xn
j¼1

~uðjÞs ðtÞ
�
: ðB9Þ

In Fig. 2(c), the mean aligned densities ~μsðtÞ in the
I ¼ I0 and I ¼ 0.25I0 illumination conditions are plotted
as gray curves, and the covariance matrix for these same
data sets is used to compute the 68% confidence interval,
plotted as white ellipses. For the I ¼ 0.25I0 data set, it was
necessary to adjust the temporal range of alignment
determined by T for three replicates that did not exhibit
the rapid increase in T. thermophila abundance around
day 28–42.

6. Morphological dynamics

As discussed above, analysis of the reconstructions
yields blobs classified as one of the three microbial species
as well as each blob’s morphological properties. The
morphological dynamics are most significant for species

FIG. 11. Gaussian mixture model fit for one replicate in the I ¼ 0.25I0 condition. The upper panel shows the means of the two modes
(μ1 and μ2), the second panel shows the weights of these modes in the mixture distribution (π1 and π2, respectively), the third panel
shows a histogram of the raw data, and the fourth panel shows the inferred probability density at each time point. In both the third and
fourth panels, each column (time point) is normalized independently. The bottom panel plots the classification with large cells in red and
small cells in black; note that there is no overlap between these classes.
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C, so we focus our characterization of the morphological
dynamics on this species only.
In particular, we consider the lateral size of each blob,

denoted Sij for individual j in replicate i, measured in μm.
The distribution of lateral size over time and replicates is
approximately log-normal, so we consider the logarithm:
λij ¼ logðSij=1 μmÞ. Each logarithmic size is associated
with the time of measurement, tij, and so we write λiðtÞ to
indicate time dependence.
We found that distributions of λiðtÞ in many temporal

windows were bimodal, with a strongly time-
dependent structure (Fig. 11). We therefore parametrized
the time-dependent distribution of logarithmic size using a
Gaussian mixture model (GMM) with two modes. These
distributions are estimated independently for each replicate,
so we suppress the replicate index i:

PðλðtÞjΘðtÞÞ ¼ π1ðtÞϕ1ðλðtÞ; θ1ðtÞÞ
þ π2ðtÞϕ2ðλðtÞ; θ2ðtÞÞ; ðB10Þ

where ϕmðλ; θmÞ is Gaussian with θm ¼ fμm; σ2mg and
Θ ¼ fπ1; π2; θ1; θ2g. We regularize the model for smooth-
ness between time points by maximizing the following
objective function:

OðΘðtiÞ;Θðti−1Þ; λðtiÞÞ

¼ lðΘðtiÞ; λðtiÞÞ − η1
X2
m¼1

ðμmðtiÞ − μmðti−1ÞÞ2

− η2ðπ1ðtiÞ − π1ðti−1ÞÞ2; ðB11Þ

where

lðΘðtiÞ; λðtiÞÞ ¼ log

�Y
k

PðλðtiÞ ¼ λkjΘðtiÞÞ
�

ðB12Þ

is the log-likelihood of the data observed at time point ti
given the model parameters ΘðtiÞ, and the product over k is
taken over all cells measured at time ti. This maximization
was performed using a standard nonlinear, constrained
optimization routine (Matlab, Mathworks). The η1 and η2
set the degree of smoothness between time points and were
chosen by cross validation to be η1 ¼ 450 and η2 ¼ 450.
The size variance was set equal for both modes (σ2m ¼ σ2)
for all time points and all replicates. The value σ2 ¼ 0.08
was chosen by examining previous GMM fits where
σ2m was observed to be stable across time, systems, and
modes. Thus, our description of the ciliate morphologies
consists of three parameters per time point per system,
while capturing the salient features of the morphological
dynamics.

FIG. 12. Ecomodes in individual environmental conditions. Eigensystems of the correlation matrix (as in Fig. 4) for 10 CES in the
low-illumination condition (I ¼ 0.25I0, left column) and the high-illumination condition (I ¼ I0, right column). Eigenvalues are plotted
in the upper panels, and eigenvector composition in the lower panels [as in Figs. 5(a) and 5(b), respectively].
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Θðti−1Þ is not always available because of gaps in the
data, which vary in duration from a single acquisition to
many days. For small gaps in the data, we wish to maintain
the smoothness between nearby time points, while for
large gaps, the smoothness penalty, determined by η1 and
η2, should be much smaller to permit large changes in
the model parameters. Therefore, when Θðti−1Þ is not
available because of missing data, we maximize
OðΘðtiÞ;Θðti−kÞ; λðtiÞÞ, where ti−k is the most recent time
point with available data, and we use modified regulari-
zation parameters η01 ¼ η1=k, η02 ¼ η2=k.

7. Ecomodes

We computed the eigensystem of the correlation matrix
CðtÞ for ecosystems in a single illumination condition,
either high (I ¼ I0) or low (I ¼ 0.25I0), and the results are
shown in Fig. 12. We find that in the high-illumination
condition, the correlation matrix is dominated by noise. In
the low-illumination condition, the largest ecomode has a
similar structure to that computed across illumination
conditions, but this breaks down after about 30 days.
The M and S ecomodes in the I ¼ 0.25I0 condition differ
qualitatively from those we computed across all illumina-
tion conditions (see Fig. 5).
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